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We study a holographic model of a relativistic quantum system with a global Uð1Þ symmetry, at

nonzero temperature and density. When the temperature falls below a critical value, we find a second-

order superfluid phase transition with mean-field critical exponents. In the symmetry-broken phase, we

determine the speed of second sound as a function of temperature. As the velocity of the superfluid

component relative to the normal component increases, the superfluid transition goes through a tricritical

point and becomes first order.
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I. INTRODUCTION

Recently, gauge/gravity duality [1–3] has been used to
model strongly interacting systems in terms of a gravity
dual. The most important case is the strongly interacting
quark gluon plasma created at the Relativistic Heavy Ion
Collider. While a systematic treatment is still lacking, the
N ¼ 4 super-Yang-Mills plasma has been used instead,
with some success. Most notably, the viscosity/entropy
density ratio, universal among all theories with a gravity
dual [4–6], seems to be not too far away from the value
extracted from experimental data [7,8].

The long-distance behavior of a black hole horizon is
captured by the same hydrodynamic equation governing
the evolution of the plasma. As a result, from the gravity
equations one can reconstruct the hydrodynamic equations,
including transport coefficients. One can go beyond lead-
ing order in the gravity equations and capture second-order
corrections, in the process discovering extra terms typi-
cally ignored in almost all implementations of the Israel-
Stewart formalism [9,10]. The approach has been extended
to R-charged black holes, dual to fluids with chemical
potentials [11,12].

In this work, we use black holes to study relativistic
superfluids. Our work is a continuation of Ref. [13], where
a holographic model of a superfluid was constructed. Here,
we investigate the behavior of the superfluid when a su-
perfluid current flows through the system. It is known that
in nonrelativistic superfluids there is a critical superfluid
velocity, above which the superfluid phase does not exist.
We discover exactly the same phenomenon in the relativ-
istic superfluids at low temperatures: there is a first-order
phase transition between the superfluid and the normal
phase as one changes the superfluid current. The phase
transition becomes second order at higher temperatures.

Wewill also be discussing the superfluid hydrodynamics
of such systems, in particular, the speed of second sound. A
short discussion of hydrodynamics can be found in [14].
Hydrodynamics of a system with spontaneously broken
symmetries is different from hydrodynamics of normal
liquids because the system contains long-range modes
(Goldstone bosons) which must be included in the hydro-
dynamic equations.

II. THERMODYNAMICS

Let us first review the thermodynamics of quantum
systems with a spontaneous Uð1Þ symmetry breaking.
For simplicity consider a system with one global Uð1Þ

symmetry, such as complex �4 theory. We define the free
energy F ¼ �T lnZ where

Z ¼ tre��H; (1)

and H is the Hamiltonian. While we eventually take the
thermodynamic limit V ! 1, for now it is more conve-
nient to think of the system as living inside a d� 1
dimensional torus Td�1 where the perimeters of the d�
1 circles are Li.
When the Uð1Þ symmetry is not spontaneously broken,

the free energy F depends only on the temperature, and, if
we do not take the thermodynamic limit, the Li: F ¼
FðT; LiÞ. When the symmetry is spontaneously broken,
the system contains a massless (pseudo) scalar field ’,
which is compact: ’� ’þ 2�. In the example of the
complex �4 theory, ’ is just the phase of �. If one thinks
about ’ as the elementary field, periodicity in ’ space
means that we are free to impose boundary conditions such
that ’jxi¼Li

¼ ’jxi¼0 þ 2�ni. Thus there is a set of parti-

tion functions Z½n�, where we integrate over all fields with
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boundary conditions specified by n. The usual ground state
corresponds to ni ¼ 0.

As we shall see later, Z½n� does not exist in the strict
thermodynamic sense. Physically, if one sets ni � 0, the
system will relax over time to a state with no winding.
However, the time scale for this process may be long, and
the winding state is practically stable. We assume stability.

Define qi � @i’, an analogue of the topological charge
density whose integral can distinguish various boundary
conditions:

I
Ci

q � dx ¼
Z Li

0
qidx

i ¼ ’jxi¼Li
� ’jxi¼0 ¼ 2�ni; (2)

where Ci is the ith spatial circle of the Td�1. We can
therefore impose the boundary conditions on ’ by intro-
ducing Lagrange multipliers �i which pick out the required
values of ni:

Z½n� ¼
Z
fng

D�e�S½��

¼
Z

D�d�e�S½�� exp
�
i
X
j

�j

�I
Cj

q � dx� 2�nj

��
:

(3)

We are taking advantage of the fact that the Euclidean path
integral on a compact time circle of perimeter � ¼ 1=T
yields the thermal partition function at a temperature T.
Having compactified the time direction, it is natural to ask
what boundary conditions should be applied for ’ in the
timelike direction. The answer to this question involves
introducing a chemical potential, and we will return to it
shortly.

We can write the field ’ as ’ðxÞ ¼ �ix
i þ �’ðxÞ where

�i is constant, and �’ðxÞ is periodic. The delta function in
the path integral for Z½n� will pick out �i ¼ 2�ni=Li, so
knowing �i is equivalent to knowing the boundary con-
ditions for ’. In the thermodynamic limit, F depends on
the Li only through an overall multiplicative volume factor
V and �i becomes a continuous variable which transforms
as a vector under rotations. At zero temperature, the energy
(for given n) is always minimized for ’ ¼ �ix

i because
that is when the ðr’Þ2 term is smallest. So at zero tem-
perature, the ground state can be uniquely characterized by
the �i. We assume now that the thermal state can be
uniquely characterized by �i and T, and define the parti-
tion function as

Z½�� ¼
Z

D�d�e�S½�� exp
�
i
X
j

�j

I
Cj

ðr’��Þ � dx
�
:

(4)

Note that � is the equilbrium value of ðr’Þ. In nonrela-
tivistic superfluids r’ is proportional to the superfluid
velocity. We shall use the same terminology and call r’
the superfluid velocity. Z½�� describes a stationary state
with constant, nonzero superfluid velocity. The partition

function Z is a scalar, and therefore can only depend on �2

in the thermodynamic limit.
Note that the state described by Z½�� is in fact meta-

stable, rather than stable. This is because ’, as the phase of
a complex field �, is ill defined when � ¼ 0; hence the
winding numbers ni are not topological and can change
with time. The process of ‘‘unwinding’’ can be visualized
as follows. Imagine a state with only one of the ni equal to
1, and other winding numbers equal 0. The state can be
thought of as containing a ðd� 2Þ dimensional domain
wall, across which ’ changes by 2�. However, in d > 2
dimensions, there is no topological conservation law which
would ensure the stability of the domain wall, and the
domain wall will decay through hole nucleation. In terms
of superfluid hydrodynamics in 3þ 1 dimensions, nucleat-
ing a hole in the two-dimensional domain wall corresponds
to producing a vortex loop. Production of vortex loops
violates Landau’s criterion for superfluidity [15], and ren-
ders the state with nonzero � metastable.
In a theory with large N, similar to the one we will be

considering, the rate of vortex loop production is exponen-
tially suppressed, as both the energy of a vortex loop and
the action of the configuration describing vortex nuclea-
tions are proportional to N. Therefore, provided that the
volume and time scales are not too large, one can treat
states with a nonzero superfluid velocity as thermal equi-
librium states.
We now would like to introduce a chemical potential �

and work in the grand canonical ensemble. We define the
potential function � � F��N ¼ �PV ¼ �T lnZ
where

Z ¼ tre��ðH��QÞ (5)

and Q is the conserved charge corresponding to the Uð1Þ
symmetry. To introduce � at the level of the path integral,
it is useful to gauge the Uð1Þ symmetry by coupling the
system to a nondynamical gauge field A�:

Z ½A� ¼ eW½A� ¼
Z

D�e�S½�;A�: (6)

We are temporarily ignoring the dependence ofZ on the�.
The one point function of the Uð1Þ current is then gener-
ated by W½A�:

�W½A�
�A�ðxÞ ¼ hJ�ðxÞi: (7)

In a system where the external field strength is zero F�� ¼
0, we may pick a gauge in which A� is constant and it

makes sense, given (7), to interpret A0 ¼ � as the chemical
potential.
Gauge transformations which send A� ! A� þ @��

have a nontrivial effect on the compact scalar: ’ ! ’þ
�. In the presence of the background gauge field, the
pressure P can depend only on gauge invariant quantities
such as D�’ ¼ @�’� A�. The grand canonical partition
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function thus becomes

Z½A;�� ¼
Z

D�d�e�S½�;A�

� exp

�
i
X
j

�j

I
Cj

ðr’�A��Þ � dx
�
: (8)

Similar to Z½��, by rotational symmetry Z½�� can only
depend on �2 in the thermodynamic limit. We are assum-
ing that the pressure P ¼ �TV�1 lnZ depends on three
parameters, P ¼ PðT;�; 12 ðDi’Þ2Þ.

We can now choose a gauge in which ’ ¼ 0, so that
ðDi’Þ2 ¼ A2

i . The chemical potential � can be interpreted
as the zero component of the gauge field, and we have P ¼
PðT; A0; A

2
i Þ. At zero temperature, the system is Lorentz

invariant, provided one treats A0 and Ai as spurion fields
that transform as a four-vector under the Lorentz group. As
a result, the pressure can only depend on A2

� ¼ A2
i � A2

0.

At finite temperature, the pressure depends on A0 and A2
i

separately, which we can write as P ¼ PðT; A0; A
2
�Þ. In

other words, gauging the symmetry allows us to trade the
dependence of pressure on the condensate phase for the
dependence of pressure on the background gauge field. In a
general gauge, P ¼ PðT;�D0’; ðD�’Þ2Þ. Denoting 	 �
1
2 ðD�’Þ2, we have the pressure as a function of three

thermodynamic variables: P ¼ PðT;�; 	Þ. From it one
can define the conjugate variables,

dP ¼ sdT þ nd�� f2d	: (9)

Notice that s, n, and f2 are functions of T, �, and 	. If the
third term was absent from Eq. (9), then s would be the
entropy density, and n the charge density. We will give the
interpretation of s, n, and f2 in the next section.

III. HYDRODYNAMICS

Let us set the external gauge field A� to 0. The equations

of ideal relativistic superfluid hydrodynamics are known.
We will use the form written in [14]. In this formulation,
the degrees of freedom are T, �, ’, and a unit four-vector
u� satisfying 
��u

�u� ¼ �1 (recall that we use the

mostly plus convention for the flat metric tensor 
��).

We will later identify u� with the velocity of the normal
component. The equations consist of the conservations of

the energy-momentum tensor T�� and of the Uð1Þ sym-
metry current j�,

@�T
�� ¼ 0; (10)

@�j
� ¼ 0; (11)

and a ‘‘Josephson equation’’ describing time evolution of
’,

u�@�’þ� ¼ 0: (12)

The stress-energy tensor and the current are expressed in
terms of the hydrodynamic variables through

T�� ¼ ð�þ PÞu�u� þ P
�� þ f2@�’@�’; (13)

j� ¼ nu� þ f2@�’; (14)

where the energy density � is defined by �þ P ¼ Tsþ
n�. Thus we have (dþ 2) hydrodynamic equations (10)–
(12) for (dþ 2) variables T, �, ’, and u�. One can derive
from Eqs. (10)–(14)

@�ðsu�Þ ¼ 0: (15)

One can interpret this equation as the equation of entropy
conservation (entropy is conserved since we are working at
the level of ideal, nonviscous hydrodynamics). Thus s is
the entropy density and u� is the velocity of entropy flow.
In the two-fluid model only the normal component carries
entropy; therefore u� is interpreted as the normal velocity.
The two contributions to the current in Eq. (14) can be
interpreted as the normal and superfluid currents.
Therefore n is the normal density, and f2 is the analogue
of the pion decay constant. (The equivalent of the super-
fluid density would be f2�.)
Let us look at small fluctuations about an equilibrium

state at fixed temperature, chemical potential and zero
normal and superfluid velocities, i.e., we write T ¼ T0 þ
T0, � ¼ �0 þ�0, u� ¼ ð1; vi0Þ, �i � @i’ ¼ �0

i, where T
0,

�0, vi, and �0 are small. In terms of � the variation of
pressure is dP ¼ sdT þ ðnþ�f2Þd�� f2�d�, where

� ¼ j ~�j. Further, let us assume that pressure is a smooth
function of �2 at small �, so that @P=@� ¼ 0 in equilib-
rium. The linearized hydrodynamic equations become
(omitting subscript ‘‘0’’ on equilibrium quantities)

@2P

@T@�
@tT

0 þ @2P

@�2
@t�

0 þ f2@i�
0
i þ n@iv

0
i ¼ 0; (16a)

�
�

@2P

@T@�
þ T

@2P

@T2

�
@tT

0 þ
�
�
@2P

@�2
þ T

@2P

@T@�

�
@t�

0 þ w@iv
0
i þ f2�@i�

0
i ¼ 0; (16b)

w@tv
0
i þ f2�@t�

0
i þ s@iT

0 þ ðnþ�f2Þ@i�0 ¼ 0; (16c)

@t�
0
i þ @i�

0 ¼ 0: (16d)

In this system of equations, pressure is taken as P ¼ PðT;�; �Þ, and w ¼ �þ P is the density of enthalpy. The first
equation is the linearized current conservation equation @�j

� ¼ 0. The second equation is the linearized energy
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conservation @�T
�0 ¼ 0. The third equation is the linear-

ized momentum conservation, @�T
�i ¼ 0. Finally, the

fourth equation says that � and �i are not independent
because � ¼ �@t’ while �i ¼ @i’.

An interesting feature of the linearized hydrodynamic
equations (16) is that they admit propagating mode solu-
tions even if one ignores the fluctuations of the energy-
momentum tensor, i.e., if one ignores the (normal) sound
fluctuations. If one were to ignore the condition @�T

�� ¼
0, together with fluctuations of temperature T0 and velocity
of the normal component v0

i, then the system (16) becomes

@2P

@�2
@t�

0 þ f2@i�
0
i ¼ 0; (17a)

@t�
0
i þ @i�

0 ¼ 0: (17b)

Fourier transforming all variables as e�i!tþik�x, we find a
propagating mode with frequency

!2 ¼ v2
2k

2; v2
2 ¼

f2

ð@2P
@�2Þ

¼ �
ð@2P
@�2

ÞT;�
ð@2P
@�2ÞT;�

> 0: (18)

When expressing f2 in terms of ð@2P=@�2Þ, we have
assumed that P ¼ Oð�2Þ at small �. The thermodynamic
derivatives in Eq. (18) are to be evaluated at � ¼ 0. The
propagating mode (18) is the leftover of the second sound
in superfluids which survives even if one ignores the
@�T

�� ¼ 0 part of the hydrodynamic equations. One ex-

pects that this mode is captured by the dual gravitational
description which ignores the backreaction of the gauge
fields on the metric.

It is not difficult to find the eigenmodes of the full
system (16). Taking all variables proportional to
e�i!tþik�x, one finds a fourth order equation for frequency,

a!4 � bk2!2 þ ck4 ¼ 0 (19)

where the coefficients a, b, and c are independent of k.
When b2 > 4ac, the equation for !2 has two real positive
roots !2 ¼ v2

sk
2 and !2 ¼ v2

2k
2. The first solution is the

normal sound, and the second solution is the second sound.
In terms of thermodynamic derivatives, the coefficients a,
b, and c are given by

a ¼ Tw

��
@2P

@T2

��
@2P

@�2

�
�

�
@2P

@T@�

�
2
�
; (20)

b ¼
�
@2P

@T2

�
Tðn2 þ wf2Þ þ

�
@2P

@�2

�
Ts2 � 2

�
@2P

@T@�

�
Tsn;

(21)

c ¼ f2Ts2: (22)

In particular, a, b, and c are positive. Let us now look at
simple examples. In the nonsuperfluid phase f2 ¼ 0, and
therefore v2

s ¼ b=a, while the second sound is absent,
v2
2 ¼ 0. Even in the nonsuperfluid phase, the speed of the

normal sound looks like a complicated expression in terms
of the derivatives of pressure PðT;�Þ. The expression for
v2
s simplifies if instead of PðT;�Þ we work with Pðs; nÞ.

Indeed, the coefficient a is proportional to the Jacobian of
the transformation from the ðs; nÞ variables to the ðT;�Þ
variables. In terms of Pðs; nÞ, the speed of sound in the
normal phase becomes

v2
s ¼ n

w

�
@P

@n

�
s
þ s

w

�
@P

@s

�
n
: (23)

Now that we have v2
s expressed in terms of Pðs; nÞ without

reference to the chemical potential, we can evaluate the
thermodynamic derivatives in the canonical ensemble in-
stead of the grand canonical. In the canonical ensemble, the
total charge (number of particles) N ¼ nV is fixed, and
therefore dn=n ¼ �dV=V. It will be convenient to go
from the ðs; nÞ to the ðS; �Þ variables. For the total entropy
S we have dS=V ¼ dðsVÞ=V ¼ ds� sdn=n, while on the
other hand the relation TdS ¼ dEþ PdV gives TdS=V ¼
d�� wdn=n. This implies that the speed of sound in the
normal phase (23) can be written as

v2
s ¼

�
@P

@�

�
S;N

: (24)

As another example, consider a scale-invariant theory, in
which case pressure has the form PðT;�Þ ¼ TdgðT=�Þ,
where gðT=�Þ is a dimensionless function. The speed of
normal sound evaluated from Eq. (19) is v2

s ¼ 1=ðd� 1Þ,
in either normal or superfluid phase. The speed of the
second sound evaluated from Eq. (19) can be written as

v2
2 ¼ f2

��
1þ�n

Ts

��
@2P

@�2
� nþ�f2

s

@2P

@T@�

���1
: (25)

We can see that in scale-invariant theories, the cartoon
expression (18) can be recovered in the formal ‘‘large-
entropy’’ limit Ts � �n, together with

s

�
@2P

@�2

�
� ðnþ�f2Þ

�
@2P

@T@�

�
:

In theories which do not have scale invariance, the speed of
the second sound does not have the simple form (25), but
can be easily determined from Eq. (19) given the equation
of state PðT;�Þ.
Note that the simple expression (18) ceases to be a good

approximation to the speed of the second sound at T � �.
This is because at small temperatures we expect that the
system can be described as a gas of massless Goldstone
bosons, with entropy density s� Td�1. On the other hand,
we expect in the low-temperature region that n��d�1

which implies that the condition of large entropy cannot be
satisfied at T � �. At low temperatures (high densities)
the speed of the second sound has to be determined from
the full equation (19).

C. P. HERZOG, P. K. KOVTUN, AND D. T. SON PHYSICAL REVIEW D 79, 066002 (2009)

066002-4



IV. DUAL GRAVITY DESCRIPTION

On the gravity side, we study the Einstein-Maxwell
theory with a complex scalar field. Fluctuations of the
bulk metric correspond to fluctuations of T�� on the
boundary, while fluctuations of the Uð1Þ gauge field cor-
respond to fluctuations of J� on the boundary. The scalar
field is charged under the bulk Uð1Þ, and its background
value corresponds to the condensate on the boundary. The
mass of the scalar is a free parameter. We also need to
specify the boundary conditions. The metric will be
asymptotically anti–de Sitter (AdS) because we want to
study the superfluid system in flat space. The boundary
conditions for the scalar correspond to the ‘‘normalizable’’
mode because we want to describe the system in which a
charged operator has an expectation value. However, the
boundary conditions for the Uð1Þ gauge field should cor-
respond to the ‘‘non-normalizable’’ mode because we want
to describe the system in the background gauge field, as
discussed above. In other words, we fix the value of A� at

the asymptotic AdS infinity. Fixing the value of A0 at
infinity amounts to fixing the chemical potential in the
boundary theory, and leads to a charged black hole in
AdS. Fixing the value of Ai at infinity does not introduce
additional ‘‘hair’’ for the black hole because we expect the
new black hole solution to be only metastable, in accord
with field theory expectations. So we want to find a (meta-
stable) stationary solution with the above boundary con-
ditions, and then study small fluctuations around this
solution, corresponding to hydrodynamic fluctuations in
the boundary theory.

In the following, we will ignore the backreaction of the
gauge and scalar fields on the metric. It would be nice to
include the backreaction, at least perturbatively to leading
order. The action is

S ¼ �
Z

ddþ1x
ffiffiffiffiffiffiffi�g

p �
1

4e2
FMNF

MN

þ ðDM�ÞðDM�Þ	 þm2��	
�
; (26)

where DM� ¼ @M�� iAM�, FMN ¼ @MAN � @NAM,
and capital Latin indices run from 0 to d. The equations
of motion are

1ffiffiffiffiffiffiffi�g
p DAð ffiffiffiffiffiffiffi�g

p
gABDB�Þ ¼ m2�; (27)

1ffiffiffiffiffiffiffi�g
p @Mð ffiffiffiffiffiffiffi�g

p
gMAgNBFABÞ ¼ e2gNAJA; (28)

where the current is JA ¼ i½�	ðDA�Þ ��ðDA�Þ	�. We
write the bulk scalar as � ¼ 1ffiffi

2
p ei’, and make a gauge

transformation AM ! AM þ @M’. In the new gauge, the
phase ’ disappears from the equations of motion, and the
current becomes

JM ¼ 2AM: (29)

From the Maxwell equations (28) one can see that the
background value for  would induce a (position-
dependent) mass for the gauge field. This is the Higgs
mechanism in the bulk. We take the (dþ 1) dimensional
background metric of the following form:

ds2 ¼ 1

z2

�
�fðzÞdt2 þ dx2 þ dz2

fðzÞ
�
: (30)

The metric with fðzÞ ¼ 1 corresponds to pure AdS and
fðzÞ ¼ 1� ðz=zhÞd corresponds to our black hole solution.
To find the background solution for  and AM, we take all
fields independent of t and x. The z-component of the
Maxwell equations (28) now gives 2Az ¼ 0 which means
we can choose Az ¼ 0. The equations of motion become

zd�1@z

�
f

zd�1
0
�
¼

�
A2
i �

A2
t

f
þm2

z2

�
; (31)

zd�3@z

�
1

zd�3
A0
t

�
¼ e2

z2f
2At; (32)

zd�3@z

�
f

zd�3
A0
i

�
¼ e2

z2
2Ai: (33)

In the limit when Ai ¼ 0 they reduce to the coupled ðAt; Þ
system of equations studied recently in [13].

A. The free energy

Up to boundary counterterms, the free energy of the field
theory is determined by the value of the action (26) eval-
uated on shell, � ¼ �TSos þ � � � , where the ellipsis de-
notes boundary terms that we will introduce. Employing
the equations of motion, we may rewrite (26) as

Sos ¼
Z

ddx

� ffiffiffiffiffiffiffi�g
p

gzz

2

�
1

e2
g��A�A

0
� þ 0

���������z¼�

þ 1

2

Z zh

�
dz

ffiffiffiffiffiffiffi�g
p

A�A
�2

�
: (34)

We have included a cutoff � because this on-shell action is
naively divergent and needs to be regularized through the
addition of boundary terms. It is difficult to treat the
general case both succinctly and clearly and several full
treatments already exist in the literature (see, for example,
[16]). We proceed to regularize this action in the simple
case d ¼ 3 and m2 ¼ �2. Using the explicit form of the
metric (30), the on-shell action reduces to

Sos ¼
Z

ddx

�
f

2

�
1

e2

��A�A

0
� þ 1

z2
0

���������z¼�

þ 1

2

Z zh

�
dz

ffiffiffiffiffiffiffi�g
p

A�A
�2

�
:

(35)
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The near boundary behavior of the fields takes the form

A� ¼ ða� þOðz2ÞÞ þ zðb� þOðz2ÞÞ; (36)

 ¼ zðaþOðz2ÞÞ þ z2ðbþOðz2ÞÞ: (37)

These boundary values have various reinterpretations in
the field theory. For the gauge field, a0 ¼ � is the chemical
potential while ai ¼ �i is a superfluid velocity. Then b0 �
 is proportional to the charge density while bi � Ji are
charge currents. For the scalar field, there exists an ambi-
guity [17]. For a scalar operator O1 of conformal dimen-
sion one, a ¼ hO1i while b is a source. For a scalar O2 of
conformal dimension two b ¼ hO2i while a is a source.

In regulating Sos, we must carefully formulate the
boundary conditions. For example, do we wish to keep
A� or A0

� fixed on the boundary? Keeping A0 fixed corre-

sponds to keeping the chemical potential fixed and thus
working in the grand canonical ensemble in the field
theory. In the spatially homogenous case where we can
set Az ¼ 0, varying AM in the bulk leads to a boundary term
proportional to A0

��A�. Without an additional boundary

term, we are working in an ensemble where a� is held

fixed. If we would like to work in the canonical ensemble,
at fixed charge, it is b0 that must be held fixed at the
boundary (�A0

0 ¼ 0). To accommodate this change, we

would need to make what amounts to a Legendre transform
and add the boundary term

1

e2

Z
ddxA0A

0
0

��������z¼�
¼ ��Q=T; (38)

to the action (26). Wewill work in an ensemble where a� is

held fixed and thus will need no such further boundary
terms.

A similar decision needs to be made about the scalar
operator. It is most natural to work in an ensemble where
the value of hOii is fixed instead of the source for the
operator. However, we still must decide whether we want
our scalar operator to have conformal dimension one or
two. As the ensemble where the source for O1 is fixed is
equivalent to the ensemble where hO2i is fixed, we know
that the ensembles where hO1i and hO2i are fixed must be
related by a Legendre transform [17].

Consider first the case where hO1i is fixed. The on-shell
action is naively divergent, and we must add a counterterm.
The counterterm and the 0 term in the on-shell action
combine to give

�
1

2z2
0 � 1

2z3
2

���������z¼�
¼ 1

2
abþOð�Þ: (39)

In the Legendre transformed case, where hO2i is fixed, we
add two counterterms, one to ensure that we hold �0 fixed
at the boundary instead of � and one to control the
divergence:

�
1

2z2
0 � 1

z2
0 þ 1

2z3
2

���������z¼�
¼ � 1

2
abþOð�Þ:

(40)

Recalling that this regularized on-shell action is the nega-
tive of the free energy and assuming a spatially homoge-
nous system so that we may divide out by a factor of the
volume V, we find for the free energies that

�ið�; �;OiÞ=V ¼ 1

2

�
�� � � J þ ð�1ÞiO1O2

�
Z zh

0
A�A�g

��2 ffiffiffiffiffiffiffi�g
p

dz

�
: (41)

Recall � ¼ �PV. Having fixed Oi, �, and �, the con-
jugate boundary values �ijOj, Q, and Js are then deter-

mined through the dynamics of the gravitational theory.
Since �1ðO1Þ and �2ðO2Þ ¼ �1ðO1Þ þO1O2V are

Legendre transforms of each other, we have

1

V

@�1

@O1

¼ �O2 and
1

V

@�2

@O2

¼ O1: (42)

Thus critical points of the free energies correspond to
gravitational solutions where at least one of the two Oi

vanish.

B. Numerical results

The nonlinear differential equations (31)–(33) appear to
be intractable analytically. However, it is relatively
straightforward to integrate the equations numerically.
The results of this section are most succinctly summarized
by the two phase diagrams for the scalarsO1 andO2 shown
in Fig. 1.1

To see where these phase diagrams come from, we begin
by reviewing the case � ¼ 0 studied in the canonical
ensemble in [13] while here we choose to work at fixed
�. Given � ¼ 0, the third differential equation (33) drops
out. Plots of the expectation value hOii versus temperature
are shown in Fig. 2, as the black curves on the far right. At
high temperature, hOii ¼ 0, but at the critical temperature
Tc, there is a second-order phase transition where the
expectation values become nonzero. For O1, Tc ¼
0:213j�j while for O2, Tc ¼ 0:0587j�j. Near but slightly
below Tc the scalars exhibit the standard mean-field scal-
ing with the reduced temperature

hOii � ðTc � TÞ1=2: (43)

The most straightforward way to see that the phase tran-
sition is second order is to examine a plot of the free energy
versus temperature:�i is smooth at Tc. Using Eq. (41), we
have produced Fig. 3(a) for the scalar O1, which indeed
shows this smooth behavior. We do not show a very similar
plot for the second scalar O2.

1We set e ¼ 1 in this section.

C. P. HERZOG, P. K. KOVTUN, AND D. T. SON PHYSICAL REVIEW D 79, 066002 (2009)

066002-6



Amore elaborate demonstration that the phase transition
is second order comes from an investigation of �i as a
function of the order parameter Oi near Tc, recovering
completely standard results in the Landau-Ginzburg
mean-field theory of phase transitions. We have found
numerically that

��i

Vj�j3 ¼ �iðTÞ
�hOii
j�ji

�
2 þ �iðTÞ

�hOii
j�ji

�
4

(44)

fits the free energy curves extremely well. Moreover, �i

and �i are nearly linear in T:

�1 ¼ 3:07ðT � TcÞ=Tc;

�1 ¼ 0:743� 0:899ðT � TcÞ=Tc;
(45)

�2 ¼ 5:13ðT � TcÞ=Tc;

�2 ¼ 1:34� 1:45ðT � TcÞ=Tc:
(46)

By definition, �i passes through zero at the phase
transition.
As we increase the superfluid velocity �, nothing dra-

matic happens immediately. The phase transition remains
second order although Tc decreases as can be seen from
Fig. 2. Because the decrease is due to the additional kinetic
energy of the system, we expect the decrease to be qua-
dratic in �, which is born out by the shape of the second-
order lines in the phase diagram, Fig. 1. Numerically, we
find that Tcð�Þ 
 Tcð0Þ � ��2=j�j where � 
 0:27 for O1

and � 
 0:14 for O2.
However, there exists a critical � above which the phase

transition becomes first order. For O1, this critical velocity

Numerical results

a)

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

T

⎪µ⎮
T

⎪µ⎮

ξ

b)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

⎪µ⎮

ξ

⎪µ⎮

FIG. 1 (color online). The phase diagrams for the theory with a scalar with (a) conformal dimension one and (b) conformal
dimension two. The solid blue lines indicate a second-order phase transition while the solid red lines (in between the dashed lines)
indicate a first-order phase transition. The dashed blue lines are spinodal curves, while the red dot indicates the tricritical point.
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FIG. 2 (color online). The condensate as a function of temperature for the two operators: (a) O1 and (b) O2. The curves in the plots,
from right to left, are for j�=�j ¼ 0, 1=4, 1=3, 2=5, and 1=2.
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is � ¼ 0:342j�j while for O2 it is � ¼ 0:274j�j. From
Fig. 2, it is clear that something interesting must happen
because the curves hOii become multivalued for suffi-
ciently large �. It is possible to see that the phase transition
is first order in different ways. The simplest is to look at the
free energy as a function of temperature. Figure 3(b)
presents this classic swallow tail shape forO1 and �=j�j ¼
4=7. At the phase transition, the free energy is continuous
but not differentiable. The two nonanalytic points in the
free energy curve are ‘‘spinodal points’’ or points beyond
which one of the phases ceases to exist even as a metastable
minimum of the free energy.

To demonstrate more convincingly that the phase tran-
sition becomes first order, we computed the free energy as
a function of the order parameter near the putative tricrit-
ical point. We found numerically that the free energy is
well described by the sixth order polynomial

��i

Vj�j3 ¼ �iðT; �Þ
�hOii
j�ji

�
2 þ �iðT; �Þ

�hOii
j�ji

�
4

þ �iðT; �Þ
�hOii
j�ji

�
6
: (47)

At the tricritical point, �i and �i both vanish. Moreover,
near the tricritical point, �i and �i vary linearly with T and
� while �i is positive and roughly constant.
Before moving to a discussion of second sound, we

would like to point out one nice feature of Fig. 2: The
curves approach each other at low temperature. This agree-
ment is a consequence of the fact that at T ¼ 0, the
pressure P can only be a function of the Lorentz invariant
quantity �2 � �2, as discussed in Sec. II.
The speed of second sound as a function of temperature

is shown in Fig. 4. The plots were computed in the probe
approximation using Eq. (18). We have set the superfluid
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FIG. 4 (color online). The speed of second sound as a function of T=j�j, computed by evaluating thermodynamic derivatives in Eq.
(18): (a) O1 scalar, (b) O2 scalar. The speed of second sound vanishes as T ! Tc and appears to approach a constant value as T ! 0.
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FIG. 3 (color online). The difference in free energy��1 between the phase with a scalar condensate and without one as a function of
T=j�j: (a) � ¼ 0 and (b) �=j�j ¼ 4=7.
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velocity � ¼ 0. The behavior close to Tc is qualitatively
similar to that of superfluid 4He [18]. As the temperature is
decreased from Tc, the speed of second sound rises rapidly
from zero and eventually levels off. Experimentally, it is
difficult to go to very low temperature and remain within
the hydrodynamic limit. The scattering length for the
phonons approaches the system size. Numerically, we
have also had difficulty finding solutions at very low
temperatures; the curves in Fig. 4 terminate where our
numerics fail. Theoretically, however, the expectation for
4He is that second sound at T 
 0 is a sound wave sup-
ported by a gas of phonons [19]. Thus, the speed of second
sound close to T ¼ 0 should approach v2

2 ¼ v2
s=ðd� 1Þ.

The naive extrapolation of the curves in Fig. 4 suggests
that v2

2 is 1=3 in the O1 case and 1=2 in the O2 case. The

fact that the curves in Fig. 4 level off at low temperature is
caused numerically by a similar growth in the susceptibil-
ity and the pion decay constant in Eq. (18). That wework in
the probe approximation suggests our model may not be
reliable at low temperature anyway. We have neglected the
coupling between our Abelian-Higgs sector and the metric.
The Abelian-Higgs sector on its own does not support
ordinary sound.

V. CONCLUDING REMARKS

We have discussed the hydrodynamics of relativistic
superfluids. Moreover, we presented a holographic model
that reproduces many of the familiar features of super-
fluids, including a critical superfluid velocity above which
the system returns to its normal phase and a second-order
phase transition at zero superfluid velocity between the
normal and superfluid phases.

In many respects, our holographic model is similar to the
Landau-Ginzburg mean-field treatment of phase transi-
tions. Near the phase transition, we saw that the potential
function for the order parameter has the familiar polyno-
mial expansion Vð�Þ ¼ ��2 þ ��4 þ � � � . In our case,
however, the values of � and � and indeed the entire
structure of Vð�Þ are not set directly by the field theorist
but are instead encoded in a nontrivial fashion by the bulk
gravitational solution. By assuming a simple gravitational
model, we are led to a particular Vð�Þ that is valid not just
near Tc but at all temperatures in the superfluid phase.
Moreover, from the model one can extract not only the
static thermodynamic properties, but also quantities rele-
vant for time-dependent, dynamic processes, such as the
kinetic coefficients and the correlation functions.

In the future, it would be very interesting to extend the
numerical results above. Two obvious directions present
themselves. In the calculation of the speed of second sound
from derivatives of the pressure P, one could go beyond the
probe approximation and include the backreaction of the
Abelian-Higgs sector on the metric. We hope that the
resulting speed of second sound will be phenomenologi-

cally meaningful not only near T ¼ Tc but all the way
down to T ¼ 0.
Another interesting project for the future would be to

find the sound wave poles in the density-density correlation
function. By studying fluctuations of the scalar and gauge
field of the form e�i!tþikx in the probe limit, one should be
able to isolate a pole of the form 1=ð!2 � v2

2k
2 þ � � �Þ in

the Fourier transform of the retarded Green’s function for
the charge density. Here the ellipsis denotes higher order
(damping) terms in k. Beyond the probe limit, there should
also be a pole corresponding to the propagation of ordinary
sound.
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APPENDIX: COMPARISION WITH THE CARTER-
KHALATNIKOV-LEBEDEV FORMULATION OF

SUPERFLUID HYDRODYNAMICS

In this Appendix we show that the hydrodynamic equa-
tions written in Sec. III are equivalent to the set of equa-
tions proposed previously by Carter, Khalatnikov, and
Lebedev [20–23] (see also [24,25]). The formulations of
Refs. [20,21] have been shown to be equivalent in
Refs. [22,23]. We will follow the notation of Ref. [23].
In Ref. [23], superfluid hydrodynamics is formulated as

follows. First, one postulates that the thermodynamic prop-
erties of the superfluid are defined by a scalar function �,
which is a function of two 4-vectors s� and n�, which are
the entropy density and the particle number density. Since
� is a Lorentz scalar, the number of variables that it
depends on is three: s�s�, n

�n�, and s�n�.

One defines two Lorentz vectors �� and �� from

d� ¼ ��ds
� þ��dn

�: (A1)

The superfluid hydrodynamic equations are

@�s
� ¼ 0; (A2)

@�n
� ¼ 0; (A3)

@��� � @��� ¼ 0; (A4)
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s�ð@��� � @���Þ ¼ 0: (A5)

At first sight, Eqs. (A2)–(A5) do not bear much resem-
blance to Eqs. (10)–(15). However, these systems of equa-
tions are in fact equivalent. The variables appearing in the
Carter-Khalatnikov formulation can be identified with the
hydrodynamic variables used in this paper as in the follow-
ing relations:

� ¼ �� f2ð@�’Þ2; (A6)

s� ¼ su�; (A7)

n� ¼ nu� þ f2@�’; (A8)

�� ¼ �@�’; (A9)

�� ¼ 1

s

�
�ðTsþ�nÞu� þ n@�’

�
: (A10)

We now show that any solution to the hydrodynamic
equations (10)–(15) satisfies Eqs. (A1)–(A5), upon the
subsitutions (A6)–(A10). First, Eqs. (A2) and (A3) coin-
cide with Eqs. (11) and (15) due to Eqs. (A7) and (A8).
Furthermore, Eq. (A4) is trivially satisfied by Eq. (A9).

Now let us check Eq. (A1). The left-hand side is

d� ¼ d�� dðf2ð@�’Þ2Þ
¼ Tdsþ�dn� @�’dðf2ð@�’ÞÞ; (A11)

where the thermodynamic relation �þ P ¼ sT þ�n and
Eq. (9) have been used, while the right-hand side is

��ds
� þ��dn

� ¼ 1

s
½�ðTsþ�nÞu� þ n@�’�

� ðu�dsþ sdu�Þ
� @�’½u�dnþ ndu� þ dðf2@�’Þ�

¼
�
T þ�n

s

�
dsþ n

s
u�@�’ds

� u�@�’dn� @�’dðf2@�’Þ
(A12)

where we have used u2 ¼ �1, u�du
� ¼ 0. Now from the

Josephson equation u�@�’ ¼ �� one sees immediately

that (A12) is identical to (A11). Thus, Eq. (A1) is verified.
The last equation that has to be checked is Eq. (A5). We

first write

s�ð@��� � @���Þ ¼ @�ðs���Þ � s�@��� (A13)

where @�s
� ¼ @�ðsu�Þ ¼ 0 has been used. We expand

@�ðs���Þ ¼ @�½�ðTsþ�nÞu�u� þ nu�@�’�
¼ �@�½ðTsþ�nÞu�u�� þ nu�@�@�’

� @�ðf2@�’Þ@�’ (A14)

where Eq. (11) has been used;

s�@��� ¼ su�@�

�
�
�
T þ�n

s

�
u� þ n

s
@�’

�

¼ s@�T þ n@��þ s�@�

�
n

s

�
þ su�@�’@�

�
n

s

�

þ nu�@�@�’: (A15)

Combining Eqs. (A14) and (A15), using the Josephson
equation, one finds

s�ð@��� � @���Þ ¼ �@�½ðTsþ�nÞu�u��
� @�ðf2@�’Þ@�’� s@�T

� n@��: (A16)

It is easy to check that the right-hand side is equal to
@�T

�
� up to an overall sign, with T�

� defined in Eq.

(13), and hence is equal to zero.
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