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We consider the bremsstrahlung energy loss of high-energy partons moving in the quark-gluon plasma,

at weak coupling. We show that the rates for these processes receive large OðgÞ corrections from classical

(non-Abelian) plasma physics effects, which are calculated. In the high-energy (deep Landau-

Pomeranchuk-Migdal) regime these corrections can be absorbed in a change of the transverse momentum

broadening coefficient q̂, which we give to the next-to-leading order. The correction is large even at

relatively weak couplings �s � 0:1, as is typically found for such effects, signaling difficulties with the

perturbative expansion. Our approach is based on an effective Euclideanization property of classical

physics near the light cone, which allows an effective theory approach in Euclidean space and suggests

new possibilities for the nonperturbative lattice study of these effects.
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I. INTRODUCTION

The phenomenon of jet quenching, or suppression of
high-pT hadrons in Aþ A collisions relative to expecta-
tions from scaling of binary pþ p collisions, has been the
focus of much recent interest at the Relativistic Heavy Ion
Collider (RHIC) [1,2]. Its theoretical description (see, e.g.,
[3] and references therein) is based on the theory of jet
evolution in thermalized media, whose uncertainties it is
thus worthwhile to seek to reduce, or at least, quantify. This
requires the calculation of higher-order effects, which we
propose to do in this paper in the regime of weak coupling.

As established by a large body of work on the thermo-
dynamic pressure [4–6], finite temperature perturbation
theory meets with serious convergence difficulties.
Unless the strong coupling �s obeys �s & 0:1, a strict
perturbation theory in powers of g may not be reliable.
Such a behavior appears to be generic: it is also observed
for the next-to-leading order [NLO or OðgÞ] corrections to
thermal masses [7–9], as well as for the only transport
coefficient presently known at NLO, heavy quark momen-
tum diffusion [10] (whose behavior seems to be even
worse).

Following Braaten and Nieto [5], who studied the ther-
modynamic pressure, these large perturbative corrections
can be attributed to purely classical (non-Abelian) plasma
effects. They have shown this by first making use of the
scale separation gT � 2�T to integrate out the scale 2�T,
leaving out a three-dimensional effective theory (‘‘electric
QCD’’ or EQCD) describing the scale mD � gT as well as
more infrared scales. The claim then is that contributions
from the scale 2�T, as well as the parameters of the
effective theory, enjoy well-behaved perturbative series
[5,11]; all large corrections are included in the effective
theory. Furthermore, by treating this effective theory non-
perturbatively using various resummation schemes [9,12]

or the lattice [13], reasonable convergence can be obtained
down to T � 3� 5Tc.
It is natural to expect large corrections from gT-scale

plasma effects in other quantities as well. Unfortunately,
for real-time quantities such as are most transport coeffi-
cients and collision rates, a resummation program similar
to that available in Euclidean space has yet to be fully
developed and applied. This is because the real-time de-
scription of plasmas requires the hard thermal loop (HTL)
theory [14] [which in essence is classical (non-Abelian)
plasma physics [15], also known as the Wong-Yang-Mills
system [16]], which is arguably more complicated than its
Euclidean counterpart EQCD.
In this paper, we aim to point out progress which can be

made for a specific class of ‘‘real-time’’ quantities: those
which probe physics near the light cone. This includes the
collision kernel Cðq?Þ that is relevant for the evolution of
jets in transverse momentum space, whose crucial role in
the theory of jet quenching will be reviewed below.
To explain the idea, we observe that the soft contribution

toCðq?Þ (that arising from soft collisions with q? � gT) is
described by soft classical fields that are being probed
passively by the high-energy jet passing through them.
These soft classical fields are the fields surrounding the
plasma particles. We now observe that the field compo-
nents moving collinearly with the jet are not particularly
important—the standard calculation of collision rates [17]
[or see Eq. (21) below] reveals that the contributing parti-
cles move with generic angles in the plasma frame, with
even a suppression for the ones collinear to the jet (due to
the reduced center-of-mass energy)—which implies that
the result must be insensitive to the precise value of the jet
velocity v � 1. The trick is then to set v ¼ 1þ �—which,
though unphysical, cannot affect the answer—thus making
the hard particle’s trajectory spacelike. This makes
Euclidean techniques directly applicable, thereby dramati-
cally simplifying the calculation. In other words, at the
classical level Cðq?Þ is more ‘‘thermodynamical’’ than
actually dynamical.*scaronhuot@physics.mcgill.ca
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In this paper, we will thus (analytically) compute the full
OðgÞ corrections to the transverse collision kernel Cðq?Þ,
describing the evolution of the transverse momentum of a
fast particle. The second moment of that kernel gives the
phenomenologically interesting momentum broadening
coefficient q̂, which we also compute at NLO.

This paper is organized as follows. In Sec. II, we sum-
marize our results and explain their relevance to jet
quenching;, in particular, we discuss the relevance of the
parameter q̂. In Sec. III, we explain our computational
strategy and formalism. Details of the calculation of
Cðq?Þ and of its (ultraviolet-regulated) second moment q̂
are given in Secs. IV and V, respectively. In Sec. VI, we
derive, at NLO, the relation between the collision kernel
Cðq?Þ for the momentum broadening problem and that for
jet evolution—which turns out to be identical to the
leading-order relation—and we discuss certain operator
ordering issues which could enter higher-order treatments.
Finally, in the appendix we relate our approach to a slight
generalization of sum rules previously found by Aurenche,
Gelis and Zaraket [18].

Alternative estimates of q̂ and of jet evolution, based on
gauge-string duality (see, for instance, [19–25]), will not
be discussed in this paper.

II. RESULTS

A. Collision kernel

The main result of this paper is a full next-to-leading
order [OðgÞ] (analytic) expression for the differential col-
lision rate Cðq?Þ, defined as

d�

d2q?=ð2�Þ2 � Cðq?Þ; (1)

which describes the evolution of the transverse momentum
of a hard particle (with E * T).

The OðgÞ corrections to Cðq?Þ, given in Eq. (19), are
due to gT-scale physics and only arise for q? � gT � T;
they are plotted in Fig. 1. Both the LO and NLO kernels

Cðq?Þ are proportional to the (quadratic) Casimir of the
gauge group representation of the jet. The ‘‘leading order
curves’’ in the plots are based on the full (unscreened)
Eq. (21) at hard momenta, multiplied by q2?=ðq2? þm2

DÞ to
make them merge smoothly with the analytic result
Eq. (10) at low momenta, following the prescription given
in [26]. The ‘‘next-to-leading order’’ curves use the leading

order curves plus Cðq?ÞðNLOÞ given by Eq. (19).
The NLO correction is already quite large for �s ¼ 0:1,

giving nearly a factor of 2 around q? � T. As discussed in
the introduction, this is consistent with the behavior ob-
served forOðgÞ plasma effects in other quantities. At �s ¼
0:3, a typical value used in comparisons with RHIC data
(see, e.g., [27]), it is clear that the strength of the correction
has grown out of control, meaning that (presently un-
known) yet higher-order corrections are most certainly
also important (though our results suggest that the value
of �s required to fit the data could be significantly smaller
than the estimate of [27]).
An interesting by-product of the approach used in this

paper is that it extends naturally to higher orders: it makes
perfect sense to evaluate the gauge-invariant Wilson loop
Eq. (9) nonperturbatively within the Euclidean three-
dimensional EQCD theory, as done perturbatively to
OðgÞ in this paper, for instance using the lattice.
Although this would not include all Oðg2Þ corrections to
Cðq?Þ (contributions from the hard scale 2�T will be
missed), by analogy with the works on the pressure men-
tioned in the introduction, these missing contributions can
be expected to be numerically subdominant [28]. We leave
this possibility to future work.

B. Application to jet evolution

The dominant energy loss mechanism of high-energy
particles (at weak coupling) is bremsstrahlung (including
quark-antiquark pair production), triggered by soft colli-
sions against plasma constituents. The theoretical descrip-
tion of these processes, at the leading order in the coupling,

FIG. 1. LO and NLO collision kernels Cðq?Þ � ð2�Þ2d�=d2q? for a fast quark in QCD (with Nf ¼ 3 flavors), for �s ¼ 0:1 and
�s ¼ 0:3. For gluons the curves are to be multiplied by a (Casimir) factor 9=4.

SIMON CARON-HUOT PHYSICAL REVIEW D 79, 065039 (2009)

065039-2



is well established [29–31]. Their duration tform depends on
the energy of the participants, and interpolates between the
Bethe-Heitler (single scattering) regime tform � E=q2? �
E=m2

D at energies E & T, and the Landau-Pomeranchuk-
Migdal (LPM) [32] (multiple-scattering) regime at high

energies E � T with tform � ffiffiffiffiffiffiffiffiffi
E=q̂

p
, in which destructive

interference between different collisions plays a significant
role.

In all of these regimes, however, the description factors
into a ‘‘hard’’ collinear splitting vertex (Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi, DGLAP vertex [33]),
times (the imaginary part of) a quantum mechanical am-
plitude (wave function in the transverse plane) which
describes the in-medium evolution of the vertex. The latter
accounts for the collisions which trigger, and occur during,
the splitting process [29–31]. The DGLAP vertices them-
selves only involve hard scale physics (in essence, they are
Clebsch-Gordon coefficients between different helicity
states) and thus cannot receive OðgÞ corrections; the
NLO effects, associated with soft classical fields having
p� gT, are contained in the dressing amplitude.

In Sec. VI, we discuss these amplitudes at NLO and
show that the relevant (three-body) collision kernel factors
as a sum of the kernels Cðq?Þ, exactly like it does at LO
[29–31,34]. As a consequence, our results forCðq?Þ can be
used to give a full NLO treatment of radiative jet energy
loss: one must simply include the NLO shift Eq. (19) to the
two-body kernel Cðq?Þ which enters as an input to these
calculations [35].

C. Momentum broadening coefficient (q̂)

When the effects of a large number of small collisions
are added together, it is natural to replace them by an
effective diffusive process. The diffusion coefficient rele-
vant for transverse momentum broadening, q̂, is the second
moment of the collision kernel Eq. (1):

q̂ �
Z qmax

0

d2q?
ð2�Þ2 q

2
?Cðq?Þ: (2)

The ultraviolet cutoff jq?j< qmax is needed to deal with
the strong power-law tail Cðq?Þ � g4T3=q4? at large q?,
which leads to a logarithmic dependence of q̂ on qmax. We
emphasize that this is a leading order logarithm; below we
shall comment on the value of the cutoff qmax. Using our
NLO kernel Eq. (19), we have calculated the expansion of
q̂ up to terms of order g2:

q̂

g4CsT
3
¼ CA

6�

�
log

�
T

q�

�
þ �ð3Þ

�ð2Þ log
�
qmax

T

�
þ Cb

�

þ NfTf

6�

�
log

�
T

q�

�
þ 3

2

�ð3Þ
�ð2Þ log

�
qmax

T

�
þ Cf

�

þ CA

6�

mD

T
�ðNLOÞ þOðg2Þ; (3)

with �ðNLOÞ ¼ 3
16� ð3�2 þ 10� 4 log2Þ ’ 2:1985 a con-

stant calculated in Sec. V, characterizing the strength
of the NLO correction. Here m2

D ¼ g2T2ðCA þ NfTfÞ=3
is the leading order Debye mass, with CA ¼ 3 and
NfTf ¼ 1:5 in QCD with three flavors of quarks. The

constants Cb ’ �0:068 854 926 766 592 and Cf ’
�0:072 856 349 715 786 are given in [26], to which we
refer the reader for further discussion of the leading order
result.
The series Eq. (3) represents the g expansion of [1=ð2�Þ

times] the area under the curve in plots such as Fig. 1. For
�s ¼ 0:1 the area under the leading order curve in the
figure (up to qmax ¼ 4T) yields q̂LO � 2:60 GeV2=fm
whereas the truncated expansion Eq. (3) gives
q̂LO;truncated � 2:08 GeV2=fm. The NLO shift is �q̂ �
2:22 GeV2=fm from the figure, about a factor of 2 effect,
and �q̂truncated � 5:26 GeV2=fm according to Eq. (3).
Thus Eq. (3) suffers from sizeable truncation errors. We
would like to stress, however, that the NLO correction
Eq. (19) itself, and Fig. 1, are not merely truncation errors
from the lower-order contribution, but represent genuine
NLO effects.
As discussed in the preceding subsection, it would be

premature to attempt comparison of our q̂ results with
experimental data, since it is clear that (yet unknown)
higher-order corrections should also be important at physi-
cally relevant couplings. We also note that different ap-
proximation schemes taking q̂ as input [this excludes the
AMY scheme [31,34], which uses the full Cðq?Þ], when
fitted to RHIC data, tend to disagree rather significantly on
its preferred value [3]; since a critical analysis of these
approximations lies beyond our scope, we simply conclude
that it is not completely clear at present which experimen-
tally extracted value of q̂ we should compare with.
It seems appropriate here to recall some subtleties asso-

ciated with the phenomenological parameter q̂, which do
not arise if one instead works with the full collision kernel
Cðq?Þ. First, the value of the cutoff qmax to be used in
Eq. (3) is process dependent: since the q? > qmax tail of
Cðq?Þ describes collisions occurring on a finite rate [36]
�ðq?>qmaxÞ � g4T3=q2max, weighting them with q2? in

Eq. (22) ceases to make sense for ��1
ðq?>qmaxÞ * tjet, with

tjet the jet’s lifetime, to be replaced with a formation time

tform for bremsstrahlung pairs in the context of energy loss
calculations. Therefore, parametrically, one should set

qmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4T3tjet

q
. For bremsstrahlung in the deep LPM

regime, tjet ! tform � ffiffiffiffiffiffiffiffiffi
E=q̂

p
so qmax � gðET3Þ1=4 [37],

which is parametrically much lower than the often-used

kinematic cutoff qmax � ðETÞ1=2.
Second, the presence of the ultraviolet tail implies that

collisions having q? � qmax (with qmax the physical cutoff
as determined above), which are intrinsically nondiffusive,
already contribute at the next-to-leading logarithm order to
bremsstrahlung rates. That is, they contribute at Oð1Þ
compared to the log-enhanced diffusive contribution
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� logqmax=mD due to mD � q? � qmax. Therefore, ap-
proximations based on diffusive physics are, at best, ex-
pansions in inverse logarithms of the energy. The quality of
such expansions has been studied in [37], with the con-
clusion that formulas to next-to-leading logarithm can be
trusted at least when Ejet * 10T (E being the smallest

energy of the participants), however their studies included
the subleading term (e.g., the constant under the loga-
rithm), which is not included in typical jet quenching
calculations employing q̂ as an input parameter (see
[3,38] and references therein for an overview of these
approaches).

III. STRATEGY: SPACELIKE CORRELATORS
AND EQCD

In this section, we relate certain correlators at space-
time separation (more precisely, correlators supported on
spacelike, and lightlike, hyperplanes of the type x0 ¼ ~vx3,
~v � 1), to Euclidean-signature correlators. We will then
apply to them the formalism of dimensional reduction.

A. Spacelike correlators

Field operators at spacelike separated points (anti)com-
mute with each other and their correlator does not depend
on the operator ordering. For two-point functions at van-
ishing time separation, a well-known Euclidean represen-
tation holds [39]

G>
ij ðt ¼ 0;xÞ � 1

Tre��H
Tr½e��HOiðxÞOjð0Þ	

¼ T
X

n

Z d3p

ð2�Þ3 e
ip
xGEð!n;pÞ; (4)

the sum running over the Matsubara frequencies !n ¼
2�inT, � ¼ 1=T. GE

ij is the Euclidean correlator of the

operators Oi;j, taken here to be bosonic.

In Lorentz-covariant theories, Eq. (4) can be extended
immediately to any correlator which is equal time in a
suitable boosted frame. Specifically, under a z-axis boost
with velocity ~v, the thermal density matrix transforms to

e��H ! e�~��ðH0þ~vP03Þ; (5)

the primed quantities referring to quantities in the boosted
frame; ~� ¼ 1ffiffiffiffiffiffiffiffiffi

1�~v2
p . The identification of H0 and P03 as the

generators of time and space translation shows periodic
identification x0� ¼ x0� þ i~�ð�;�~v�; 0?Þ for the geome-
try associated to Eq. (5), with associated quantization
condition on the ‘‘Matsubara frequencies’’ p00 þ ~vp03 ¼
2�inT=~�. The spatial momentum p03 must be kept real: it
serves as a label for the physical states living on the x00 ¼ 0
hyperplane. Thus only the frequency p00 is complex. This
determines the extension of Eq. (4) to equal-time, two-
point functions in the boosted frame:

G>
ij ðx00 ¼ 0;x0Þ ¼ T

~�

X

n

Z d3p0

ð2�Þ3 e
ip0
x0

GEðp0
n
0;p0Þ; (6)

with p0
n
0 ¼ �~vp03 þ 2�in T

~� .

It will be convenient to boost this formula back to the
plasma rest frame and to write it for general space-time

arguments, setting ~v ¼ x0

x3
:

G>
ij ðx0;x0Þ ¼ T

X

n

Z d3p

ð2�Þ3 e
ip

�
n x�GE

ijðpnÞ; (7)

with p0
n ¼ 2�inT and p3

n ¼ p3 þ 2�inT x0

x3
.

Equation (7) is the main result of this section. It differs
from Eq. (4) only due to the imaginary part of p3

n, which
precisely guarantees that the Fourier exponential is a pure
phase and that the sum over n makes sense. Equation (7)
extends in a straightforward way to any higher-point cor-

relator supported on ( x
0

x3
¼ ~v)-type hyperplanes: one gets a

summation integration
P

n

R
p , with the pn as in Eq. (7), for

all external legs, subject to the usual restriction of momen-
tum conservation (and of ‘‘n conservation’’), like for
equal-time, higher-point correlators [39]. The momenta
running in loops must also be ‘‘twisted’’ like those in
Eq. (7), e.g., Imp3 ¼ ~v Imp0, to reflect the boosted-frame
origin of the formula. This ensures that the imaginary part
of every momentum is timelike, which is the natural do-
main for Euclidean physics.
We will be interested in the amplitudes of ultrarelativ-

istic dipoles moving with velocity v ¼ 1, e.g., x3 ¼ x0

(note ~v ¼ 1=v in general). Our derivation of Eq. (7) might
seem compromised, since an ‘‘infinite’’ boost with velocity
~v ¼ 1 does not exist. However, a more careful look at the
argument reveals that the boost plays no important role:
after all we undid it in the end. All that is really important,
is that we can imagine quantizing the system along hyper-
planes parallel to ~v, and express the thermal density matrix
within these hyperplanes. Since it is certainly possible to
quantize a system along light fronts, the result Eq. (7) must
hold for x3 ¼ x0. An alternative derivation of this, based on
sum rules, is sketched in the appendix.
The attentive reader might complain that setting x3 ¼ x0

in Eq. (7) corresponds to taking a v & 1 limit, whereas the
physically relevant regime v % 1 lies beyond the reach of
Eq. (7). Are we claiming that these limits are equivalent in
general? No [40]. Our claim, explained in the introduction,
is merely that they are equivalent for classical plasma
physics effects. This is robust to the extent that only a
phase-space suppressed fraction of the classical back-
ground fields propagate collinearly with the jet. This is
true for the Coulomb field of the plasma particles, which
track the particles but not the jet, but also for the plasma
gluons, whose contribution to Cðq?Þ from the (unphysical)
C̆erenkov processes is readily checked to be proportional
to (v2 � 1) and to smoothly vanish as v & 1. It is unclear,
however, whether this will remain true when quantum
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effects are included (which will enter at order g2), because
of collinear components present in the jet’s own wave
function.

B. Dimensional reduction

Naturally, the contribution from soft physics (momenta
�gT) to sums like Eq. (7) is expected to be dominated by
the n ¼ 0 mode. We thus begin by ‘‘integrating out’’ the
modes with n � 0.

First we claim that loop diagrams for which all external
momenta have n ¼ 0 are equal to the standard ones. These
two sets of diagrams have p0 ¼ 0 and pz real, and could
only differ due to the twisted Matsubara momenta Eq. (7)
which circulate in the former; our claim is that this does not
affect their value. The reason is that the imaginary part of
every momentum P in such loops is timelike with a real
part obeying Rep0 ¼ 0, ensuring that ReP2 is positive
definite (spacelike). The imaginary part of the p3 integra-
tion contours can thus be deformed from Imp3 ¼ ~v Imp0

to Imp3 ¼ 0 without crossing any pole.
In particular, the modes having n ¼ 0 are described by

precisely the standard EQCD three-dimensional effective
theory [41,42]. EQCD is pure three-dimensional Yang-
Mills with coupling constant g23D ¼ g2T coupled to a

massive adjoint scalar A0 of mass mD. It is an effective
theory for the gT scale (the Euclidean version of the hard
thermal loop theory [14]), in which the loop expansion
proceeds in powers of g2T=mD � g. Its parameters do not
receive OðgÞ corrections.

The propagators of EQCD are

~G 00ðqÞ ¼ �1

q2 þm2
D

; ~GijðqÞ ¼ 	ij

q2
� �qiqj

q4
: (8)

(We use the tilde to denote that these are three-dimensional
propagators.) The minus sign in front of the A0 propagator
reflects the fact that we will couple it to Minkowski-space
Wilson lines: we have not performed a Wick rotation.

In addition to its interaction with the n ¼ 0 modes, we
must also include the direct coupling of the operator of
interest to the n � 0 modes. Physically, and as shown in
the appendix, a contribution from these modes would
correspond, in the real-time formalism, to a failure of the
soft approximation nBðp0Þ � T=p0. Such a failure would
signal a contribution from the p0 � T region in Minkowski
space, which would necessary be signaled by ultraviolet
divergences in the soft approximation, since this approxi-
mation correctly describes the intermediate region gT �
p0 � T and any contribution from the scale T should leave
an imprint on this region. Thus, provided we do not find
ultraviolet divergences from the n ¼ 0 contribution alone
(which computes exactly the soft approximation, see the
appendix), we conclude that we can safely ignore the direct
coupling to the n � 0 modes. This will turn out to be our
case.

IV. THE CALCULATION

In this section, we express the collision kernel Cðq?Þ as
a correlator supported on x3 ¼ x0 trajectories and evaluate
it using EQCD. We only give details in the Feynman gauge
� ¼ 0; as a check on the calculation, however, we explic-
itly checked the � independence of Cðq?Þ.

A. Operator definition of Cðq?Þ and leading order
result

The evolution of the transverse momentum of a high-
energy particle can be described by looking at its density
matrix. For classical effects, however (and even more so
because we are taking the velocity to be v ¼ 1þ �), we
can neglect operator ordering issues and replace the evo-
lution of a density matrix by that of a dipole. We will come
back to operator ordering issues in Sec. VI B.
A high-energy dipole (E � mD) propagates eikonally in

the soft classical background. The collision kernel describ-
ing the evolution of its transverse momentum can thus be
recovered from the Fourier transform of the (long-time
limit of the) dipole propagation amplitude W [29,30,43]:

Wðt; x?Þ � etCðx?ÞþOð1Þ; t ! 1;

Cðq?Þ �
Z

d2x?eip?
x?Cðx?Þ:
(9)

Cðq?Þ is short for ð2�Þ2d�=d2q?, as in Eq. (1). The dipole
amplitude Wðt; x?Þ is given by the trace of a long, thin
rectangular Wilson loop stretching along the light-cone
coordinate xþ, with a small transverse extension x? (see
Fig. 2).
The naive dimensional reduction of the Wilson loop

Eq. (9) yields a Wilson loop stretching along the z axis
of the three-dimensional EQCD theory. It couples to the
linear combination Aþ ¼ ðAz þ A0Þ of the EQCD fields,
reflecting its ultrarelativistic origin. This ‘‘naive’’ dimen-
sional reduction corresponds to keeping only the direct
coupling to the n ¼ 0 modes. As explained in Sec. III B,
this will be justified provided we do not find ultraviolet
divergences.
At the lowest order in perturbation theory, only the

single-gluon exchange diagram (Fig. 3(a)) contributes,

x

x  = x0 3

x

t

FIG. 2. Wilson loop representation of the dipole amplitude.
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Cðq?Þ ¼ g2TCs

Z 1

�1
dz

Z
d2x?eip?
x? ~Gþþðz; x?Þ

¼ g2TCs

�
1

q2?
� 1

q2? þm2
D

�
; (10)

where we have used Eq. (8), with qz ¼ 0 as a result of the z
integration. The compact form Eq. (10) was first obtained
by means of sum rules by Aurenche, Gelis and Zaraket
[18], which is shown in the appendix to be equivalent to the
present approach.

B. Figure 3(b)

At the next-to-leading order (one-loop), self-energy in-
sertions to single-gluon exchange, Fig. 3(b), contribute [we
will often write q? for a three-vector with qz ¼ 0, which

should cause no confusion;
R
p is short for

R d3p
ð2�Þ3 ]:

Cðq?ÞðbÞ
g2TCs

¼ 	�00ðq?Þ
ðq2?þm2

DÞ2
�	�zzðq?Þ

q4?
;

	�00ðqÞ
g2TCA

¼
Z

p

� �ð2q?�pÞ2
p2ððq?�pÞ2þm2

DÞ
þ 3

p2

�
;

	�zzðqÞ
g2TCA

¼
Z

p

� �2p2
z

ðp2þm2
DÞððq?�pÞ2þm2

DÞ
þ 1

p2þm2
D

�

þ
Z

p

��3p2
z �2q2?�p2

p2ðq?�pÞ2 þ 2

p2
þ p2

z

p2ðq?�pÞ2
�
:

(11)

Each bracket includes the contributions of one fish and one
tadpole diagram, while the last one also includes the ghost
loop.

The (linear) ultraviolet divergences in Eq. (11) are to be
canceled by matching counterterms that can be unambig-
uously calculated within the framework of dimensional
reduction [41,42]. They merely represent the (hard thermal
loop) coupling of the n � 0 gluons to the soft n ¼ 0 ones,

e.g., the gluon contribution to the A0 mass squaredm2
D. The

fact that the direct coupling to exchange gluons with q0 ¼
q3 � 0 does not contribute to the divergences can also be
checked explicitly, from the convergence, with respect to
q3, of the real-time integral Eq. (21) (this justifies making
the soft approximation on q0). Thus the divergences in
Eq. (11) do not signal the presence of ‘‘new contributions’’
beyond the EQCD effective theory, as discussed in
Sec. III B.
Employing dimensional regularization, the divergences

simply go away [44] and the counterterms are zero toOðgÞ
[42]. This way we obtain (all our arctangents run from 0 to
�=2)

Cðq?ÞðbÞ
g4T2CsCA

¼ �mD � 2
q2?�m2

D

q?
tan�1ðq?mD

Þ
4�ðq2? þm2

DÞ2
þ 7

32q3?

þmD � q2?þ4m2
D

2q?
tan�1ð q?2mD

Þ
8�q4?

: (12)

C. Figure 3(c)

Figure 3(c) plus its permutation contribute

Cðq?ÞðcÞ
g4T2CsCA

¼
Z

p

�
2

q2?ðp2 þm2
DÞððq? � pÞ2 þm2

DÞ
� 2

ðq2? þm2
DÞðp2 þm2

DÞðq? � pÞ2
�

(13)

¼ �tan�1ðq?mD
Þ

2�q?ðq2? þm2
DÞ

þ tan�1ð q?2mD
Þ

2�q3?
: (14)

In the Feynman gauge there is no contribution involving
only transverse gauge fields because such a contribution
would involve the (trivial) zzz vertex. Equation (13) is
manifestly convergent.

D. Figures 3(d)–3(g)

Our calculation is based on a quasiparticle expansion,
e.g., we simply set on shell the external legs of scattering
diagrams. The relevant expansion parameter is g, e.g., the
ratio of the scattering width �g2T to the scattering’s
natural frequency scalemD. Thus in evaluating the external
state corrections Fig. 3(d) we need only keep those effects
which are not suppressed by the smallness of the width. A
narrow resonance being described by just its position and
the total area under it, this means that Fig. 3(d), at OðgÞ,
produces only mass-shell corrections and wave function
renormalization factors. The (here imaginary) ‘‘mass-
shell’’ corrections have no effects: they are identical for
the initial and final states, so the ‘‘energy’’ (z momentum)
transfer is zero in any case. The wave function renormal-
ization contribution is given by an energy derivative of the

(d)(c)(b)(a)

(g)(f)(e)

FIG. 3. Tree and one-loop diagrams contributing to Cðq?Þ.
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eikonal self-energy, and Fig. 3(e) is unambiguous, yield-
ing, respectively, (including all figures of similar topol-
ogy):

Cðq?ÞðdÞ
g4T2Cs

¼ 2Cs
~Gþþðq?Þ

Z

p

~GþþðpÞ d

dpz

1

pz � i�
;

Cðq?ÞðeÞ
g4T2Cs

¼ 2

�
Cs � 1

2
CA

�
~Gþþðq?Þ

Z

p

~GþþðpÞ
ðpz � i�Þ2 :

(15)

The sum of Figs. 3(d) and 3(e) is proportional to CA and
identically vanishes in the Abelian theory (CA ¼ 0), as
required by Abelian exponentiation [45].

Part of Fig. 3(f) is already included by the exponentia-
tion of Eq. (10) (Fig. 3(a)): this generates the approxima-
tion to Fig. 3(f) in which the intermediate eikonal
propagators are put on shell. To avoid double counting,
this must be subtracted. We must first regulate the associ-
ated ‘‘pinching’’ (qz ! 0) singularity, which we do by
flowing a small external z momentum ! into the Wilson
loop. We then take the limit ! ! 0 after the subtraction.
Figure 3(g) poses no difficulty.

Cðq?ÞðfÞ
g4T2Cs

¼ Cs

Z

p

~GþþðpÞ ~Gþþðq� pÞ

� lim
!!0

�
1

ðpz þ i�Þðpz þ!� i�Þ

þ 2�i	ðpzÞ
!� i�

�
; (16)

Cðq?ÞðgÞ
g4T2Cs

¼ �
�
Cs � 1

2
CA

�Z

q

~GþþðpÞ ~Gþþðq? � pÞ
ðpz � i�Þ2 :

(17)

Equation (16) has a well-defined ! ! 0 limit, as
follows from the identity 1=ðpz þ i�� 1=ðpz � i�Þ ¼
�2�i	ðpzÞ. This limit takes a form identical to Eq. (17)
and the sum is proportional to CA, again as required by
Abelian exponentiation. This confirms that our evaluation
of Fig. 3(f) is indeed correct.
In summary, Figs. 3(d)–3(g) produce

Cðq?ÞðdÞ�ðgÞ
g4T2CsCA

¼
Z

p

~GþþðpÞ ~Gþþðq? � pÞ � 2 ~GþþðpÞ ~Gþþðq?Þ
2ðpz � i�Þ2 ¼ mD

4�ðq2? þm2
DÞ

�
3

q2? þ 4m2
D

� 2

ðq2? þm2
DÞ

� 1

q2?

�
:

(18)

The function ~Gþþ is ~G00 þ ~Gzz as given in Eq. (8). To evaluate the integral we found it convenient to first apply integration
by parts to the 1=ðpz � i�Þ2 denominator, which removes the explicit pz dependence and reduces the integral to a set of
standard isotropic Feynman integrals. This contribution is manifestly infrared- (and ultraviolet-) safe, upon enforcing p $
ðq? � pÞ symmetry.

E. Final formulas

In summary, we have obtained all OðgÞ contributions to the collision kernel Cðq?Þ:

Cðq?ÞðLOÞ ¼ g2TCsm
2
D

q2?ðq2? þm2
DÞ

;

Cðq?ÞðNLOÞ
g4T2CsCA

¼ 7

32q3?
þ�3mD � 2

q2?�m2
D

q?
tan�1ðq?mD

Þ
4�ðq2? þm2

DÞ2
þmD � q2?þ4m2

D

2q?
tan�1ð q?2mD

Þ
8�q4?

� tan�1ðq?mD
Þ

2�q?ðq2? þm2
DÞ

þ tan�1ð q?2mD
Þ

2�q3?

þ mD

4�ðq2? þm2
DÞ

�
3

q2? þ 4m2
D

� 1

q2?

�
: (19)

These expressions are valid for q? � T. The leading order
kernel for q? * T gets slightly modified; see Eq. (21)
below.

The appearance of arctangents with two distinct argu-
ments in Eq. (19) can be understood by looking in the
complex q2? plane: tan�1ðq?=2mDÞ has a branch cut start-

ing at q2? ¼ �4m2
D and represents the exchange of a pair of

two quanta of mass mD (longitudinal gluons), while the
branch cut of tan�1ðq?=mDÞ starts at q2? ¼ �m2

D and

represents the exchange of one longitudinal and one trans-
verse gluon. Both arctangents occur since both of these

pairs of states can be exchanged. Exchange of twomassless

quanta also occurs, and generates 1=
ffiffiffiffiffiffiffi
q2?

q
-type of disconti-

nuities instead of arctangents.

V. EVALUATION OF q̂ðNLOÞ

The effective theory approach we have used so far is
valid for q? � T. As mentioned in Sec. II C, however, the
momentum broadening coefficient q̂ [second moment of
Cðq?Þ] receives contributions from all scales up to a
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process-dependent cutoff qmax. In this section, we will
assume qmax � T.

To separate the soft and hard contributions to q̂, we find
it convenient to introduce an auxiliary scale q� obeying
mD � q� � T:

q̂ ¼
Z q�

0

d2q?
ð2�Þ2 q

2
?Cðq?Þsoft þ

Z qmax

q�

d2q?
ð2�Þ2 q

2
?Cðq?Þhard:

(20)

The soft kernel Cðq?Þsoft is given by Eq. (19). The hard
kernel Cðq?Þhard describes tree-level 2 ! 2 scattering pro-
cesses against plasma constituents, with self-energy cor-
rections omitted on the exchange gluon (since they
represent only �g2 corrections for q? � T). The large
particle energy E � T guarantees that the Mandelstam
invariants s� ET and �t ¼ q2? obey jtj � s, so that the

relevant scattering matrix elements assume the universal
(eikonal) form / s2=t2. The kinematics force q0 ¼ qz for
the momentum transfer q. In fact, these processes are
precisely described by the central cut of (a four-
dimensional version of) Fig. 3(b). Performing the qz in-
tegration in the expression for the collision rate (as done in
[17]; more details can be found in [26]), one obtains

Cðq?Þhard ¼ g4Cs

q4?

Z d3p

ð2�Þ3
p� pz

p
½2CAnBðpÞð1þ nBðp0ÞÞ

þ 4NfTfnFðpÞð1� nFðp0ÞÞ	; (21)

with p, p0 the initial and final momentum of the target

particle; p0 ¼ pþ qz, qz ¼ q0 ¼ q2?þ2q?
p
2ðp�pzÞ . In the regime

q? � T, p0 � p and Eq. (21) reduces (as it must) to the
large q? limit of Eq. (10), Cðq?Þ � g2m2

DCsT=q
4
?.

Integrating Eq. (21) over q to obtain the hard contribu-
tion to Eq. (20), and expanding it in powers of q�=T, yields

q̂hard

g4CsT
3
¼ CA

6�

�
log

�
T

q�

�
þ �ð3Þ

�ð2Þ log
�
qmax

T

�
þ Cb

�

þ NfTf

6�

�
log

�
T

q�

�
þ 3

2

�ð3Þ
�ð2Þ log

�
qmax

T

�
þ Cf

�

þ CA

6�

3

16

q�

T
þ . . . (22)

with the omitted terms suppressed by ðq�=TÞ2 or more. We
have verified by numerical integration the first five signifi-
cant digits of the numerical constants Cg, Cf, as quoted

below Eq. (3) from the results of [26,46]. The�q�=T term
arises from soft bosons with p, p0 � T and can be ob-
tained in the soft approximation nBðpÞ, nBðp0Þ ! T=p,
T=p0; it is also given in [26].

The soft contribution to Eq. (20), e.g., the second mo-
ment of Eq. (19), admits the expansion

q̂soft

Cs

¼ g4T2CAmD

2�

�
� q�

16mD

þ 3�2 þ 10� 4 log2

16�

�

þm2
Dg

2T

2�
log

�
q�

mD

�
þ . . . (23)

with the omitted terms being suppressed by powers of
mD=q

�. The q� dependence of Eq. (22) and (23) cancels
out in their sum, as it must do, producing the claimed
formula Eq. (3). This cancellation is a nontrivial check
on the calculation.
The reader might inquire as to whether we have consis-

tently included all OðgÞ contributions to q̂. Taking q� �
g1=2T, for instance, the omitted terms�ðq�=TÞ2 in Eq. (22)
might naively appear to be OðgÞ, suggesting contributions
from other, omitted terms. Estimates of this kind can be
misleading, however, because q� is not a physical scale in
this problem. The matching region mD � q� � T can be
described equivalently using the low-energy description
(EQCD) or the full theory, ensuring that q� always dis-
appears from final expressions. This is seen explicitly for
the leading truncation errors �q�=T in Eqs. (22) and (23):

instead of producing Oðg1=2Þ corrections, as one would

naively expect setting q� � g1=2T, they cancel against
each other and the leading correction is OðgÞ not

Oðg1=2Þ. Since similar cancellations are bound to occur at
all orders, this simply means that the scale q� should not
enter power-counting estimates. Because higher loop dia-
grams are �g2 when q? � T and because we have in-
cluded all OðgÞ effects when q? �mD, we thus conclude
that we have included all OðgÞ contributions.
Finally, we note that, in the spirit of [47], we could have

used dimensional regularization to separate the q integra-
tion, instead of the sharp cutoff q�. In this scheme, the hard
q�=T term in Eq. (22) disappears: there is no suitable
dimensionful parameter to replace q�. The OðgÞ correc-
tions then come solely from the (unambiguous) dimension-
ally regulated soft integral Eq. (19).

VI. JET EVOLUTION

We now extend the calculation, which so far had been
concerned with momentum broadening, to obtain the col-
lision kernel relevant for bremsstrahlung and pair produc-
tion processes. The new complication is that, except for
QED processes, the relevant object to evolve in the plasma
is no longer a ‘‘dipole’’ but involves three charged states.
For instance, to describe the gluon bremsstrahlung process
c ! gc , one must evolve an operator which annihilates a
quark and creates a quark-gluon pair (see [29–31], which,
however, use somewhat different notations):

O c!c g ¼ jc ; gihc j: (24)

The three color charges in Eq. (24) are paired together to
form a color-singlet state, as dictated by the (DGLAP)
gluon emission vertex which generates this operator.
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Only one transverse momentum suffices to describe the
internal state of Eq. (24), as a consequence both of mo-
mentum conservation and of rotational symmetry: by suit-
ably choosing the z axis it is always possible to ‘‘gauge’’ to
zero one of the transverse momenta [see the discussion
preceding Eq. (6.6) in [31,48]]. In the following, for con-
creteness, we shall gauge to zero the transverse momentum
of particle 1 and q? will refer to the transverse momentum
of particle 2.

At the leading order, the relevant collision kernel is a
sum over two-body contributions [29–31]:

d�3ðq?Þ
d2q?=ð2�Þ2

¼ C2 þ C3 � C1

2
~Cðq?Þ

þ C1 þ C3 � C2

2
~C

�
E1

E2

q?
�

þ C1 þ C2 � C3

2
~C

�
E1

E3

q?
�

(25)

with Ci and Ei, respectively, the Casimir and longitudinal

momenta of the participating particles; ~Cðq?Þ � 1
Cs
Cðq?Þ

denotes a single-particle collision kernel with its Casimir
factor stripped off; we recall that the LO (and NLO)
kernels respect Casimir scaling. In the special limit in
which one of the Ei becomes much smaller than the other
ones, the motion of this particle dominates and the kernel
Eq. (25) reduces to the one for single-particle diffusion,

Cðq?Þ, for i ¼ 2, 3, and CðE1

E2
q?Þ when i ¼ 1.

As we presently show, it turns out that the formula
Eq. (25) also holds at NLO, provided the NLO expression
Eq. (19) for Cðq?Þ is used in it.

A. ‘‘Three-pole’’ propagation at NLO

To keep the discussion simple we will assume that
particle 3 is a gluon (or any color adjoint state), which is
sufficient to cover all splitting processes in QCD (and
N ¼ 4 super Yang-Mills). This ensures that particles 1
and 2 are antiparticles to each other. We denote by jsi the
relevant singlet state in the tensor product of the three
charges; explicitly, jsi is given by the representation ma-
trices ðt1Þaij.

The already-treated ‘‘dipole’’ Figs. 3(a)–3(g) must now
be summed over the three possible pairs of particles, and
we must recompute their group theory factors. Figures 3(a)
and 3(b) involve, in the case the interaction is between
particles 1 and 2 [31],

�hsjta1 � ta2jsi ¼ hsj t
a
1t

a
1 þ ta2t

a
2 � ðt1 þ t2Þaðt1 þ t2Þa

2
jsi

¼ C1 þ C2 � C3

2
; (26)

which reproduces the structure Eq. (25), upon summing
over pairs and using rotational invariance to gauge to zero

particle 1’s ? momentum. Figures 3(c)–3(g) fit the same
structure, as follows from the fact that they organize them-
selves into commutators. For instance,

ðcÞ / ifabchsjta1tb1 � tc2jsi ¼ �CA

2
hsjta1 � ta2jsi;

ðfÞ þ ðgÞ / hsj½ta1 ; tb1	 �
½ta2 ; tb2	

2
jsi ¼ �CA

2
hsjta1 � ta2jsi:

(27)

Here we have used the identities ½ta; tb	 ¼ ifabctc and

fabcfabc
0 ¼ CA	

cc0 .
There are also new diagrams (Fig. 4), which couple

together the three particles nontrivially. In Fig. 4(h), the
Yang-Mills 3-vertex generates a factor fabc and the cou-
pling to the gluon line is given by ðt3Þcde / fcde, whence

ðhÞ ¼ hsjta1tb2tc3jsifabc / Tr1ðtatdtbteÞfabcfdec ¼ 0; (28)

with the trace taken in the representation of the particle 1.
We could prove this identity by making extensive use of
the antisymmetry of the fabc. Figures 4(i) are similar to
Fig. 3(g) treated in Sec. IVD, and the main point is that
there is a sign between the two figures, due to the reversed
middle propagator, thus yielding zero:

ðiÞ / hsjta1 � ½ta2 ; tb2	 � tb3jsi ¼ 0: (29)

Thus the new Figs. 4(h) and 4(i) vanish and the factoriza-
tion formula Eq. (25) remains valid at NLO. We view this
as somewhat surprising and believe it could be an artefact
of the relatively low order in perturbation theory to which
we are working.

B. Operator ordering

We now briefly discuss operator ordering issues, for the
Wilson lines in Eq. (9) and their three-particle general-
ization Eq. (24). Although this is not directly relevant to the
purely classical effects which are the main object of this
paper, because nonperturbative definitions of q̂ have been
used in the literature [19,21] we feel that a discussion of
them can be of interest.
To help clarify the physical significance of these issues,

let us first consider, in QED, the processes of photon

(i)(h)

d e

b

a

c

FIG. 4. Additional diagrams for the evolution of a triplet of
charges.
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bremsstrahlung from a charge, and of pair production from
a photon. These processes differ in that the former takes
place within the electromagnetic field generated by the
initial charge, but the latter takes place in an essentially
undisturbed medium (the induced field being suppressed
by the small size of the produced dipole). The collision
kernels relevant to these two processes could thus be differ-
ent, due to the different backgrounds, and should be de-
fined differently. In the eikonal regime it is the role of the
Wilson lines trailing behind the charges to account for
these effects, which requires however that they be properly
ordered.

The proper ordering can be readily described using the
language of the Schwinger-Keldysh ‘‘doubled fields’’ [49],
in which amplitudes and their complex conjugate are de-
scribed by type-1 and type-2 fields, respectively. For pho-
ton bremsstrahlung, evolving the relevant jc�ihc j matrix
element clearly requires one type-1 c (and �) and one
type-2 �c field, whereas for pair production, evolving
jc �c ih�j requires both charged fields to be type-1 (and �
to be type-2). In the latter case the Wilson lines nearly
cancel against each other (for a small dipole), whereas in
the former case they fail to cancel, due to operator ordering
issues (they live on different branches of the Keldysh
contour): instead they source an electromagnetic field.
This reproduces the expected physics.

The story for QCD must be similar: for instance, evolv-
ing a jc ; gihc j operator, relevant for gluon bremsstrah-
lung, should require type-1 c and g fields, and a type-2 �c
field, with the obvious replacements to be made for other
processes. Thus the strong coupling calculations of the
momentum broadening coefficient in [21,22], strictly
speaking, gives a q̂ applicable to photon bremsstrahlung,
whereas the ‘‘jet quenching parameter’’ defined in [19],
being defined from a spacelike limit of correlators, is by
hypothesis independent of operator ordering.

It is not clear, at least to the author, the extent to which
these effects can be numerically important. Obviously, at
weak coupling, they are suppressed by a power of the
coupling (the preceding subsection shows that the suppres-
sion is at least �g2). Furthermore, in the v % 1 limit
relevant to high-energy jets, an argument based on the
shrinking down of the ‘‘causal diamond’’ enclosing any
two points on the trajectory of the jet might suggest that
these effects disappear—e.g., there is no time available for
the induced field to influence the jet back; a rigorous
analysis, in particular, of quantum effects, will not be
attempted here.
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APPENDIX A: RELATION TO SUM RULES

In this appendix, we consider the problem of calculating,
directly in four dimensions, the collision kernel Eq. (9):

Cðq?Þ=g2Cs ¼
Z dqz

2�
G>þþðq0 ¼ qz; q?Þ (A1)

with q? � T, and Gþþ the full HTL-resummed propaga-
tor [14]. The strategy pursued in this work may be consid-
ered a next-to-leading order extension of the sum rule of
Aurenche, Gelis and Zaraket (AGZ) [18], and here we aim
to show the equivalence, at the leading order, of our
formalisms.

1. Sum rules and causality

First, we relate the AGZ sum rules to Lorentz-covariant
causality, which implies that retarded correlators GRðQÞ
are analytic functions of the four-momentum Q when a
positive timelike or lightlike imaginary four-vector is
added to it. This statement extends, in a Lorentz-covariant
way, the familiar analyticity of GR in the upper-half q0

plane. Lightlike imaginary parts are also allowed because
causality is preserved along light fronts (e.g., GRðxþÞ
vanishes for negative light-cone time xþ).
In the classical approximation nBðq0Þ � T=q0, Eq. (A1)

becomes

ðA1Þ ¼ T
Z dqz

2�

� GRþþðq0 ¼ qz; q?Þ �GAþþðq0 ¼ qz; q?Þ
qz

:

(A2)

To evaluate this by contour integration we first displace the
qz ¼ 0 pole slightly off axis, 1=qz ! 1=ðqz � i�Þ, which
does not change the result since (GR �GA) vanishes at
qz ¼ 0. Next, we note, using the standard HTL expressions

[14], that GR;A
þþ vanishes (like 1=q2z) at large jqzj, making it

possible to close integration contours at infinity. Closing
the contour for GR (respectively, GA) in the upper (respec-
tively, lower) half-plane, one obtains a unique residue
iTGRþþðq0 ¼ qz ¼ 0; q?Þ from GR and nothing from GA,
due to their aforementioned analyticity properties, thus
reproducing Eq. (10):

Eq : ðA1Þ ¼ T

�
1

q2?
� 1

q2? þm2
D

�
: (A3)

Additional poles at the Matsubara frequencies q0 ¼
qz ¼ 2�inT would have appeared in this result, in agree-
ment with the sum Eq. (7), had we kept the full Bose
distribution function nBðq0Þ. In particular this shows that
the classical approximation to distribution functions is
equivalent to keeping only the n ¼ 0Matsubara frequency.
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2. AGZ’s sum rule

AGZ [18] study exactly the integral Eq. (A1), but pa-
rametrized using a different variable, x ¼ q0=q (so that

q0ðxÞ ¼ qzðxÞ ¼ jq?jx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
):

ðA1Þ ¼ jq?j
Z 1

�1

dx

2�ð1� x2Þ3=2 G
>þþðx; q?Þ: (A4)

A key observation in [18] is that the HTL propagators,
viewed as a function of x with q? fixed and q0 ¼ qz, are
analytic in the whole complex x plane, apart from a branch
cut at real x 2 ½�1; 1	. Using methods of complex analy-
sis, they could then derive the result Eq. (A3).

To show that this analyticity property in x is equivalent
to the analyticity in qþ that we have just used (e.g., to
causality), we rewrite the change of variable above
Eq. (A4) as

q0ðxÞ ¼ qzðxÞ ¼ ijq?j xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p ; (A5)

and choose to put the branch cut of the square root at real
x 2 ½�1; 1	. Thus q0 ! ijq?j as jxj ! 1 in any direction.
This choice of branch cut ensures that GRðq0ðxÞ; qzðxÞ; q?Þ
goes into the standard retarded function as Imx ! 0þ, and
is consistent with the conventions of [18], e.g., this func-

tion has the same analytic structure as the GRðx; q?Þ of
[18]. Careful inspection of Eq. (A5) then reveals that the
imaginary part of q0 is positive for all x, establishing the
analyticity in x (for q0 ¼ qz and fixed q?). It thus applies
to any propagator, extending the claim of [18].
The authors of [18] worked in the Coulomb gauge and

found, at intermediate steps, contributions from the large
circle at jxj ¼ 1 [proportional to 1=ðq2? þ 1

3m
2
DÞ], which

in the end, precisely canceled out between the longitudinal
and transverse channels. These terms did not appear in our
calculations, but for a good reason: they are mere gauge
artefacts. To see this, we note that the residue at jxj ! 1
corresponds to a pole at q0 ¼ qz ¼ iq?, which is an ordi-
nary point in the upper-half qþ plane: it is thus forbidden
by causality. But since a gauge like the Coulomb gauge
does not respect causality in a Lorentz-covariant sense (its
A0 field mediates an instantaneous Coulomb interaction),
such poles are not forbidden in individual, gauge-
dependent terms. They are bound, however, to cancel out
in physical quantities like Cðq?Þ. Our approach assumes
Lorentz-covariant causality from the start and cannot de-
tect such unphysical contributions. A simple solution is to
stick to covariant gauges.
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