
Apparently noninvariant terms of nonlinear sigma models in lattice perturbation theory

Koji Harada,* Nozomu Hattori,† and Hirofumi Kubo‡

Department of Physics, Kyushu University, Fukuoka 810-8560 Japan

Yuki Yamamotox

Hiyoshi Department of Physics, Keio University, Yokohama 223-8521 Japan
(Received 12 February 2009; published 30 March 2009; corrected 8 July 2009)

Apparently noninvariant terms (ANTs) that appear in loop diagrams for nonlinear sigma models are

revisited in lattice perturbation theory. The calculations have been done mostly with dimensional

regularization so far. In order to establish that the existence of ANTs is independent of the regularization

scheme, and of the potential ambiguities in the definition of the Jacobian of the change of integration

variables from group elements to ‘‘pion’’ fields, we employ lattice regularization, in which everything

(including the Jacobian) is well defined. We show explicitly that lattice perturbation theory produces

ANTs in the four-point functions of the pion fields at one-loop and the Jacobian does not play an important

role in generating ANTs.
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I. INTRODUCTION

There has been a long time since apparently chiral non-
invariant, divergent contributions were noticed in the loop
calculations of nonlinear sigma (NLS) models. It is im-
portant to realize that there are two kinds of such contri-
butions. The first kind, which produces the mass term of
the pion field, leads to the violation of the soft-pion theo-
rem. The second kind is more subtle. It does not violate the
soft-pion theorem and is claimed to vanish on shell. It is
well understood that the first kind of contributions are
canceled by those from the Jacobian [1–3]. (They had
been overlooked at that time.) In the dimensional regulari-
zation, this kind of noninvariant contributions are absent; it
is consistent with the absence of the nontrivial Jacobian in
this regularization scheme. As for the second kind contri-
butions, although they have been discussed in the literature
[4–8], there still seems to be unclear points, of which we
are going to discuss in this paper.

The prescriptions of how to avoid the second kind have
been proposed. Tătaru [5] showed, using dimensional regu-
larization, that the second kind contributions are propor-
tional to the (classical) equations of motion and do not
contribute to the S matrix, following the argument by
’t Hooft [9]. Honerkamp [4] and Kazakov, Pervushin,
and Pushkin [6] proposed to use the background field
method. This is essentially to modify the theory.
Appelquist and Bernard [8] pointed out that a field redefi-
nition removes such contributions. The most popular and
practical method is to consider not the pion field but the
currents [10,11]. In recent papers Ferrari et al. [12–15]
reconsidered the renormalization problem emphasizing the

symmetry point of view, heavily relying on the Ward-
Takahashi identities, and gave the subtraction procedure
consistent with them. They claim that the use of the di-
mensional regularization, in which the tadpole contribu-
tions are absent, is essential.
In this paper, we instead use lattice regularization for the

following reasons: (i) Since everything is well defined in
the lattice regularization, it is obvious that there is no
source of the violation of chiral symmetry (up to a ‘‘spu-
rion’’ mass term), if we start with a symmetric partition
function. This fact is important for establishing that chiral
symmetry is not lost despite the appearance of ANTs.
Hence the name; they do not violate chiral symmetry,
though they appear to be noninvariant. (ii) In the case of
the first kind contributions, the Jacobian plays an essential
role. It is interesting to see if the Jacobian plays any role in
the second kind. The logarithm of the Jacobian is propor-
tional to �4ð0Þ, thus in the dimensional regularization it is
trivially set to zero, while in other continuous regulariza-
tion schemes it is ill-defined. In the lattice regularization,
on the other hand, it is regularized and well defined, so that
one can carefully examine the effects of the Jacobian. One
might suspect that the (naive) Jacobian is actually the latent
source of the violation of chiral symmetry, and that a
properly defined Jacobian should contain momentum-
dependent terms in order for the theory to be chiral invari-
ant, which eventually cancel the ANTs produced by loop
diagrams. It is therefore important to see what happens
with the well-defined, momentum-independent Jacobian in
the manifestly chiral invariant theory. (iii) Lattice regulari-
zation is completely different from dimensional regulari-
zation. It is therefore useful to see if the existence of ANTs
is independent of the regularization scheme. To our best
knowledge, ANTs in four dimensions have never been
calculated by using lattice regularization in the literature.
(In 2þ � dimensions, Symanzik [16] obtained ANTs in the
lattice regularization.)

*harada@phys.kyushu-u.ac.jp
†hattori@higgs.phys.kyushu-u.ac.jp
‡kubo@higgs.phys.kyushu-u.ac.jp
xyamamoto@phys-h.keio.ac.jp

PHYSICAL REVIEW D 79, 065037 (2009)

1550-7998=2009=79(6)=065037(8) 065037-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.065037


The purpose of this paper is to establish the existence of
ANTs in the lattice perturbation theory at one-loop pre-
serving chiral symmetry manifestly. This implies that
ANTs are compatible with chiral symmetry. We also see
that the Jacobian does not play an important role in gen-
erating ANTs and that the appearance of ANTs is inde-
pendent of regularization schemes.

Our calculation is a straightforward generalization of
Shushpanov and Smilga [17], who calculated only the
self-energy contributions. We consider the four-point (am-
putated) Green functions at low momenta (p � 1=a) to
orderOðp4Þ at one-loop level. A mass term is introduced in
order to regularize the IR singularities. Unlike the self-
energy calculation, the IR regularization with the mass
term plays an important role for the calculations of the
four-point functions. We find that the divergent part of it
contains ANTs, which cannot be removed by a symmetric
counterterms. We also find that the Jacobian does not play
an essential role. The ANTs vanish on the mass shell.

In the next section, we establish the existence of the
ANTs by an explicit one-loop calculation. In Sec. III, we
summarize the results and give a discussion. Appendix A
contains some integration formulae.

II. LATTICE PERTURBATION THEORY

A. Setup

In this section, we give an explicit one-loop calculation
for the four-point amputated Green function in the
SUð2Þ � SUð2Þ NLS model in four dimensions. In the
NLS as an effective theory there are infinitely many terms
with increasing number of derivatives. We are however
interested only in whether there arises an ANT of Oðp2Þ
or of Oðp4Þ at the one-loop level. [Note that, unlike the
dimensional regularization, there are contributions of
Oðp2Þ from the one-loop diagrams in the lattice regulari-
zation.] To see this, we will consider the one-loop contri-
butions only with vertices of Oðp2Þ and examine whether
the contributions ofOðp2Þ and ofOðp4Þ can be absorbed in
the symmetric terms. There may be other ANTs involving
higher derivative vertices, but they are not related to the
lower order contributions by the symmetry, and cannot
cancel the ANTs that may arise to this lowest order.

In the continuum, the action of Oðp2Þ is given by

L 2 ¼ F2

4
Trð@�Uy@�UÞ � F2m2

4
TrðUþUyÞ; (2.1)

where U is an SUð2Þ-valued field and F is the coupling
constant. (In the dimensional regularization, it is the pion
decay constant in the chiral limit.) We also introduce the
mass term to regularize the IR singularities.

On the hypercubic lattice with a being the lattice con-
stant, the action may be written as

Slat2 ½U� ¼ F2a2

4

X
n

�X
�

Trð2�Uy
nUnþ� �Uy

nþ�UnÞ

�m2a2 TrðUy
n þUnÞ

�
; (2.2)

which is obtained by the simple replacement

@�UðxÞ ! ðUnþ� �UnÞ=a: (2.3)

There are many other discretization methods, but the
choice does not make a crucial difference in the following
discussions, so we stick to this simplest choice.
The partition function is given by

Z ¼
Z Y

n

DUne
�Slat2 ½U�; (2.4)

where DUn stands for the invariant measure under the
global SUð2ÞL � SUð2ÞR transformations

Un ! gLUng
y
R; (2.5)

where gL and gR are SUð2ÞL;R elements. Note that if the

mass term is treated as a ‘‘spurion’’ field [10], and trans-
formed properly, the theory is manifestly invariant under
SUð2ÞL � SUð2ÞR.
We introduce pion fields to do perturbation theory. We

employ the following parameterization:

Un ¼ �n þ i�a
n�

a=F; �n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�a

nÞ2=F2
q

: (2.6)

There are of course other parameterizations. But the main
results are independent of the choice.
In terms of the pion fields, the measure is written asY

n

DUn ¼ e�Slatt
Jacob

Y
n;a

D�a
n; (2.7)

with [18]

SlatJacob ¼ � 1

2
a4
X
n

1

a4
Tr ln

�
�ab þ �a

n�
b
n

F2 � ð�c
nÞ2

�
: (2.8)

Note that the �4ð0Þ is regularized as 1=a4 on the lattice. It is
important to note that the vertices from the Jacobian is
momentum independent.
Expanding Slatt2 and SlattJacob in terms of the pion fields �,

we obtain

Slat2 ¼ a2

2

X
n

�X
�

ð�a
nþ���a

nÞ2þm2a2ð�a
nÞ2

�

� a2

4F2

X
n;�

ð�a
nÞ2ð�b

nþ�Þ2þ
a2

8F2
ðm2a2þ 8ÞX

n

½ð�a
nÞ2�2

� a2

16F4

X
n;�

ð�a
nÞ2ð�b

nþ�Þ2½ð�c
nÞ2þð�c

nþ�Þ2�

þ a2

16F4
ðm2a2þ 8ÞX

n

½ð�a
nÞ2�3þ��� ; (2.9)
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SlatJacob ¼
X
n

�
� 1

2

ð�a
nÞ2
F2

� 1

4

½ð�a
nÞ2�2
F4

þ � � �
�
; (2.10)

where we retain only the terms that contribute to the two-
and four-point Green functions up to including Oðp4=F4Þ.
Note that, because of the discretization, it is difficult to
count the power of momenta buried, say, in 1� cosðapÞ.
Instead, we count the power of 1=F. There are no terms
with positive power of F.

The Feynman rules are obtained in the usual way, treat-
ing all the contributions from SlatJacob as interactions. (They
are of higher order in 1=F.) The propagator is the usual
one,

h�a
n�

b
mi0 ¼ �ab

Z
h

d4k

ð2�Þ4
eikðn�mÞa

m2 þ ½k�2a
; (2.11)

where
R
h d4k stands for the integration over the hypercube

fkjk� 2 ½��=a;�=a�; � ¼ 1; � � � ; 4g; (2.12)

and we have introduced a useful notation

½k�2a � 2

a2

X
�

ð1� cosðk�aÞÞ; (2.13)

which goes to k2 in the continuum limit a ! 0. Slatt2 leads
to the following four-point and six-point vertices

� 1

F2

X
�

f�ab�cdð½kaþkb�2aþm2Þþ�ac�bdð½kaþkc�2aþm2Þ

þ�ad�bcð½kaþkd�2aþm2Þg; (2.14)

and

� 1

F4
f�abð½ka þ kb�2a þm2Þ½�cd�ef þ �ce�df þ �cf�de�

þ 14 similar termsg; (2.15)

respectively. See Figs. 1 and 2.

B. Self-energy

Shushpanov and Smilga [17] calculated the self-energy
contribution from the four-point vertex with a massless
propagator. We do the same calculation with a finite
mass (See Fig. 3),

� �abðpÞ ¼ ��ab�ðpÞ

¼ � �ab

2F2

Z
h

d4k

ð2�Þ4

� ½kþ p�2a þ ½k� p�2a þ 5m2

m2 þ ½k�2a
: (2.16)

Note that this leading order contribution is of order 1=F2.
Following their calculations, we find

�ðpÞ ¼
�

1

2F2a2

�
1þm2a2

8

�
½p�2a þ 3m2

4F2a2

�
I0

� 1

8F2a2
½p�2a þ 1

F2a4
; (2.17)

where we have introduced I0,

I n �
Z 1

0
dssne�ðs=2Þðm2a2þ8Þ½I0ðsÞ�4; (2.18)

and I0ðsÞ is the modified Bessel function,

I0ðsÞ ¼
Z �

��

dk

2�
es cosk: (2.19)

The last term of Eq. (2.17) is quartically divergent, and it
is cancelled by the Oð1=F2Þ contribution from SlatJacob, giv-
ing no ANTs. This cancellation mechanism is well known
[1–3].
Note that modified Bessel function behaves for s � 1 as

I0ðsÞ ¼ esffiffiffiffiffiffiffiffiffi
2�s

p
�
1þO

�
1

s

��
; (2.20)

and for 0< s � 1 as

I0ðsÞ ¼ 1þOðs2Þ; (2.21)

a

dc

bka
k

kd
kc

b

FIG. 1. Four-point vertex from Slat2 . The indices a; � � � ; d stand
for the isospin of the pion field, and ka; � � � ; kd are corresponding
incoming momenta.

de

c

f

a b

FIG. 2. Six-point vertex from Slat2 . The indices a; � � � ; f stand
for the isospin of the pion field. The momentum labels are
omitted.

FIG. 3. Self-energy contribution from the four-point vertex
from Slat2 .
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so that the integral In is finite as far as m is kept finite.
Although it is finite, but is not analytic at m2a2 ¼ 0. One
cannot expand the result in terms of m2a2. This kind of
singularity at m2a2 ¼ 0 persists in the calculations of the
four-point functions, which we discuss in the next subsec-
tion. We therefore keep the mass terms in the exponents
(which come from the propagators) intact.

It is instructive to compare the cutoff integral (for m �
�)

2�2
Z �

0

k3dk

ð2�Þ4
1

k2 þm2
� c2�

2 þ c0m
2 ln

�
m2

�2

�
; (2.22)

where c2 and c0 are numerical constants, with the corre-
sponding lattice version

Z
h

d4k

ð2�Þ4
1

½k2�a þm2
¼ 1

2a2
I0: (2.23)

By identifying �� 1=a, we see

I 0 � ~c2 þ ~c0ðm2a2Þ lnðm2a2Þ (2.24)

for ma � 1, where ~c2 and ~c0 are other numerical con-
stants. The second term causes the nonanalyticity of I0.

Similarly for I1, we have

I 1 � ~d2 þ ~d0 lnðm2a2Þ; (2.25)

with some numerical constants ~d2 and ~d0.

C. Four-point function

There are two kinds of contributions to the four-point
function besides the ones from SlatJacob: the ones involving a

six-point vertex (Fig. 4) and the ones involving two four-
point vertices (Fig. 5).
In general, the four-point function in the continuum has

the following structure:

�ab�cdAðpa; pb; pc; pdÞ þ �ac�bdAðpa; pc; pb; pdÞ
þ �ad�bcAðpa; pb; pd; pcÞ: (2.26)

It has the same structure on the lattice. Since the amplitude
is symmetric under the crossing, it is sufficient to calculate
only the contributions ALðpa; pb; pc; pdÞ on the lattice that
correspond to the first term Aðpa; pb; pc; pdÞ of Eq. (2.26).
From Fig. 4, we have the contribution

ALðpa; pb; pc; pdÞFig: 4 ¼ � 1

2F4

Z
h

d4k

ð2�Þ4
1

m2 þ ½k�2a
�
10½pa þ pb�2a þ

X
i¼a;b;c;d

ð½kþ pi�2a þ ½k� pi�2aÞ þ 21m2

�
;

(2.27)

and from Fig. 5,

ALðpa; pb; pc; pdÞFig: 5 ¼ 1

2F4

Z
h

d4k

ð2�Þ4
1

m2 þ ½k�2a
1

m2 þ ½pa þ pb � k�2a
ð3ð½pa þ pb�2a þm2Þ2 þ 2ð½pa þ pb�2a þm2Þ

� ð½kþ pd�2 þ ½k� pa�2 þ 2m2ÞÞ þ 1

2F4

Z
h

d4k

ð2�Þ4
1

m2 þ ½k�2a
1

m2 þ ½pa þ pc � k�2a
� 2ð½pa � k�2a þm2Þð½kþ pb�2a þm2Þ þ 1

2F4

Z
h

d4k

ð2�Þ4
1

m2 þ ½k�2a
1

m2 þ ½pa þ pd � k�2a
� 2ð½pa � k�2a þm2Þð½kþ pb�2a þm2Þ: (2.28)

Note that these are of Oð1=F4Þ.
If we set all the external momenta and the mass m to be zero, we have

FIG. 4. Contribution from the six-point vertex from Slat2 to the
four-point function.

FIG. 5. Three s-, t-, u-channel contributions from the four-
point vertex from Slatt2 to the four-point function.
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ALðpa; pb; pc; pdÞFig: 4jpi¼m¼0 ¼ � 4

F4a4
; (2.29)

ALðpa; pb; pc; pdÞFig: 5jpi¼m¼0 ¼ 2

F4a4
: (2.30)

The sum of them exactly cancels theOð1=F4Þ contribution
from the Jacobian, 2=F4a4. Thus, the amplitude satisfies

the soft-pion theorem. There is no momentum (or mass)
independent ANT. Note that all the Jacobian contributions
are used up to cancel the momentum (and mass) indepen-
dent contributions to this order. The vertices from the
Jacobian are now shown not to produce ANTs.
A straightforward but tedious calculation leads to the

following result for the one-loop contributions:

ALðpa; pb; pc; pdÞ ¼ � 3I0

4F4a2
ð2sþ 3m2Þ þ s

8F4a2

�
1� 1

2
ð8þm2a2ÞI0

�

þ I1

24F4
½9ðsþm2Þ2 � 3ðsþm2Þð2s� �Þ þ 2Zðpa; pb; pc; pdÞ�

þ I0

288F4

�
9ðsþm2Þð2s� �Þ � 8Zðpa; pb; pc; pdÞ

þ 48
X
�

ðpaÞ�ðpbÞ�ðpcÞ�ðpdÞ�;
�
; (2.31)

where s ¼ ðpa þ pbÞ2, t¼ðpaþpcÞ2, and u¼ðpaþpdÞ2
expanded in powers of the external momenta up to includ-
ing Oðp4=F4Þ. Here, we have introduced the notation

� � sþ tþ u;

Zðpa; pb; pc; pdÞ � 1
2½sðtþ uÞ þ 2ðt2 þ u2Þ
� 2ðtþ uÞ�þ 2ð�ac�bd þ �ad�bcÞ
� �ab�cd�;

�ij � p2
i þ p2

j : (2.32)

Some useful formulae to calculate Eq. (2.31) are given in
Appendix A.

The terms proportional to 1=a2 correspond to quadrati-
cally divergent ones. The chiral logarithms are contained in
In. The last term in Eq. (2.31) is not rotational invariant. It
is not a surprise, because the lattice regularization breaks
rotational invariance.

In order to see if the result is manifestly chiral invariant,
we need to relate the expression to local operators. The
terms in the first line of Eq. (2.31) are proportional to 1=a2

(i.e., quadratically divergent) and quadratic in external
momenta. It is important to notice that they depend only
on s except for the mass m. Note that there is only one
chiral invariant operator of Oðp2Þ; Eq. (2.1) in the contin-
uum. It produces terms of exactly the same form as those in
the first line, and thus may cancel the divergence. That is,
the terms in the first line do not contain ANTs.

A vigilant reader may notice that we have already con-
sidered the same counterterm to cancel the divergence in
the self-energy contribution, thus its coefficient has been
fixed. Here comes an important feature of the perturbation
theory; in terms of U; there is only one parameter, i.e., the
coupling constant F. On the other hand, when we introduce
the pion field, we have another parameter, the wave func-
tion renormalization constant. Introducing the renormal-
ized coupling constant FR and the renormalized field �a

Rn,

we have

�a
n

F
¼

�
1þ ��

1þ �F

�
�a

Rn

FR

: (2.33)

By tuning only the parameter ��, one can cancel the
divergence in the self-energy contribution. The parameter
�F is now determined to cancel the divergence in the first
line of Eq. (2.31).
Note that we consider the continuum action in order to

see if ANTs emerge. In momentum space, the difference
between the continuum and the lattice regularized ones is
of higher order in momenta, and is not rotational invariant.
In order to cancel the divergence coming from the differ-
ence, we need more counterterms, which are of higher
order in momenta. Since they are not rotational invariant,
the existence of such counterterms do not interfere with the
following argument for the existence of ANTs, which, as
we will see shortly, are rotational invariant.
The terms in the second and third lines of Eq. (2.31) are

quartic in momenta (and the mass). The terms in the second
line contain logarithmic divergence due to I1, while those
in the third line are finite. There are only three chiral
invariant operators of Oðp4Þ available in the continuum;

O 1 ¼ Trð@�Uy@�UÞTrð@�Uy@�UÞ; (2.34)

O 2 ¼ Trð@�Uy@�UÞTrð@�Uy@�UÞ; (2.35)

O 3 ¼ Trð@2�Uy@2�UÞ: (2.36)

[Note that for SUð2Þ there are some nontrivial relations
which reduce the number of independent operators. For
example, Tr½ð@�Uy@�UÞ2� is proportional to O1.] If the

terms in the second and third lines of Eq. (2.31) are of the
same form as those produced by some linear combinations
of these operators, then these divergences may be can-
celled by manifestly chiral invariant operators. Let
Ciðpa; pb; pc; pdÞ=F4 (i ¼ 1, 2, 3) denote the contributions
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of these operators to the amplitude, ALðpa; pb; pc; pdÞ, to
Oðp4=F4Þ. They are given by

C1ðpa; pb; pc; pdÞ ¼ ðs� �abÞðs� �cdÞ; (2.37)

C2ðpa; pb; pc; pdÞ ¼ ðt� �acÞðt��bdÞ
þ ðu� �bcÞðu� �adÞ; (2.38)

C3ðpa; pb; pc; pdÞ ¼ s2; (2.39)

respectively. In the massless limit, the terms in the square
bracket in the second line of Eq. (2.31) may be written as

� C1ðpa; pb; pc; pdÞ þ 2C2ðpa; pb; pc; pdÞ
þ 3C3ðpa; pb; pc; pdÞ þ 3s�; (2.40)

and those in the third line as

4C1ðpa; pb; pc; pdÞ � 8C2ðpa; pb; pc; pdÞ
þ 18C3ðpa; pb; pc; pdÞ � 9s�: (2.41)

It is important to note that the last terms of Eqs. (2.40) and
(2.41) cannot be expressed as a contribution of chiral
invariant operators. We have thus established the existence
of ANTs.

We remark that the terms that correspond to the loga-
rithmic divergence, Eq. (2.40), are different from those in
the continuum. Compare Eq. (2.40) with Eq. (3.3) in
Ref. [8].

It is interesting to note that the ANTs are rotational
invariant. We also note that these are proportional to �,
i.e., the ANTs vanish if the (massless) on-shell conditions
are imposed for all the external momenta.

The term in the fourth line of Eq. (2.31) is finite. It is
manifestly chiral invariant, though it is not rotational in-
variant. Actually, it can be obtained from the chiral invari-
ant operator of the form

X
�

Trð@�Uy@�U@�U
y@�UÞ: (2.42)

Even though it is uneasy to have such a rotational non-
invariant term, it has nothing to do with ANTs. We add the
operator (2.42) with the coefficient I0=96 as the counter-
term to cancel the term in the fourth line of Eq. (2.31) so
that the amplitude is rotational invariant.

III. CONCLUSION

In this paper, we have established the existence of ANTs
in lattice chiral perturbation theory. Since the definition of
the partition function regularized on a lattice is manifestly
chiral invariant (up to the mass which regularizes the
infrared singularities), and the calculations are consistent
with chiral symmetry, the symmetry is not broken at all.
Nevertheless the one-loop diagrams generate ANTs. ANTs
are compatible with chiral symmetry. The existence has
been known in the literature. Our contribution is the first
demonstration of it in the explicit lattice calculation.

On a lattice the Jacobian is well regularized, and we
have shown that it is not responsible for the appearance of
ANTs. The role played by the Jacobian is just to cancel the
momentum-independent, chirally noninvariant contribu-
tions of the first kind mentioned in the introduction.
The result of the present paper has also given support for

that the appearance of ANTs is independent of regulariza-
tion scheme.
We find that the ANTs vanish when all the external

momenta are on-shell, consistent with the results obtained
with dimensional regularization. It means that the ANTs do
not contribute to the Smatrix for the two-pion scattering at
least at the one-loop level.
Finally, we discuss a few points concerning ANTs,

which are still unclear to us.
Our original motivation for this study is related to setting

up the Wilsonian renormalization group calculation for the
nonlinear sigma model. The appearance of ANTs would
cause a problem to the standard program of the approach,
even though they are compatible with chiral symmetry. It
would be desired to have a better statement of symmetry
than just the manifest invariance of the Wilsonian effective
action. In other words, we should seek for the combination
of the Wilsonian program and the Ward-Takahashi
identities.
It is not clear to us if the ANTs in general [i.e., in higher

order, and/or in nð>4Þ-point functions] do not contribute to
the S matrix. Ferrari et al. [13] discussed general forms of
ANTs in the effective action, which is the generating
function of the one-particle irreducible Green functions.
In order to see how these terms contribute to the S matrix,
one needs to examine the effects of one-particle reducible
diagrams.
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APPENDIX: SOME INTEGRATION FORMULAE

In this appendix, we give some useful integration for-
mulae for the evaluation of ALðpa; pb; pc; pdÞ up to and
including Oðp4=F4Þ discussed in Sec. II.
The basic technique that we make use of is Schwinger

parameterization of the propagator

1

m2 þ ½k�2a ¼
Z 1

0
dse�sðm2þ½k�2aÞ: (A1)

To illustrate the method, let us consider the simple example

Z
h

d4k

ð2�Þ4
1

m2 þ ½k�2a
1

m2 þ ½kþ p�2a
: (A2)

By using Eq. (A1), it can be written as
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Z 1

0
du

Z 1

0
dv

Z
h

d4k

ð2�Þ4 e
�uðm2þ½k�2aÞe�vðm2þ½kþp�2aÞ: (A3)

Here, we insert the identity

1 ¼
Z 1

0
ds�ðs� u� vÞ; (A4)

and making a change of variables, v ¼ s�, k ! k=a, and
s ! sa2=2, we have

1

4

Z 1

0
d�

Z 1

0
sds

Z �

��

d4k

ð2�Þ4

� e
�sðM�P

�

cosk�Þ
e
s�ðP

�

cosðk�þp�aÞ�
P
�

cosk�Þ
; (A5)

where M � ð8þm2a2

2 Þ is introduced.
In this way, all the necessary integrals may be written as

the form

Z 1

0
dse�sMhhXðp; kÞii; (A6)

where we have introduced a useful notation hhXðp; kÞii,

hhXðp; kÞii �
Z �

��

d4k

ð2�Þ4 e
s
P
�

cosk�

Xðp; kÞ; (A7)

with Xðp; kÞ being a function of the external momentum p
and the dimensionless (i.e., rescaled) loop momentum k.

The diagrams we are interested in contain either a single
propagator or two propagators. For those involving a single
propagator, the following two integrals are relevant:

Z
h

d4k

ð2�Þ4
1

m2 þ ½k�2a
¼ 1

2a2

Z 1

0
dse�sMhh1ii; (A8)

Z
h

d4k

ð2�Þ4
1

m2 þ ½k�2a
ðm2 þ ½kþ p�2aÞ

¼ 1

a4

Z 1

0
dse�sM

��
M�X

�

cosðk� þ p�aÞ
		

: (A9)

There are three types of integral that are relevant for one-
loop diagrams involving two propagators:

Z
h

d4k

ð2�Þ4
1

m2 þ ½k�2a
1

m2 þ ½kþ p�2a
¼ 1

4

Z 1

0
d�

Z 1

0
sdse�sMhhe�s�Nðp;kÞii; (A10)

Z
h

d4k

ð2�Þ4
1

m2 þ ½k�2a
1

m2 þ ½kþ p�2a
ðm2 þ ½kþ q�2aÞ

¼ 1

2a2

Z 1

0
d�

Z 1

0
sdse�sM

�
��

e�s�Nðp;kÞ
�
M�X

�

cosðk� þ q�aÞ
�		

; (A11)

Z
h

d4k

ð2�Þ4
1

m2 þ ½k�2a
1

m2 þ ½kþ p�2a
ðm2 þ ½kþ q�2aÞ

� ðm2 þ ½kþ l�2aÞ
¼ 1

a4

Z 1

0
d�

Z 1

0
sdse�sM

��
e�s�Nðp;kÞ

�
M�X

�

cosðk�

þ q�aÞ
��
M�X

�

cosðk� þ l�aÞ
�		

; (A12)

where Nðp; kÞ is defined as

Nðp; kÞ � X
�

½ð1� cosðp�aÞÞ cosk� þ sinðp�aÞ sink��:

(A13)

We can calculate hh� � � ii’s, by expanding e�s�Nðp;kÞ in
powers of external momenta and using the following for-
mulae:

hh1ii ¼ I40 ; (A14)

hhcosk�ii ¼ I00I
3
0 ; (A15)

hhcosk� cosk�ii ¼ ���

�
I40 �

1

4s
ðI40Þ0 � I20ðI00Þ2

�
þ I20ðI00Þ2;

(A16)

hhsink� sink�ii ¼ 1

4s
ðI40Þ0���; (A17)

hhcosk� sink� sink	ii ¼ 1

s
��	

�
���

�
I40 �

1

2s
ðI40Þ0

� I20ðI00Þ2
�
þ I20ðI00Þ2

�
; (A18)

hhsink� sink� sink	 sink
ii ¼ 1

s2
����	


�
��	

�
I40 �

1

2s
ðI40Þ0 � I20ðI00Þ2

�
þ I20ðI00Þ2

�
þ 1

s2
��	��


�
���

�
I40 �

1

2s
ðI40Þ0

� I20ðI00Þ2
�
þ I20ðI00Þ2

�
þ 1

s2
��
��	

�
��	

�
I40 �

1

2s
ðI40Þ0 � I20ðI00Þ2

�
þ I20ðI00Þ2

�
; (A19)

where I0ðsÞ is the modified Bessel function given in
Eq. (2.19). The prime stands for a derivative with respect

to s. Note that a bracket hh� � �ii containing an odd number
of ( sink�)’s vanishes because of parity.
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It is important to notice that all integrands in
Eqs. (A10)–(A12) contain the exponential suppression
factor e�sM with M> 4. It justifies the expansion of

e�s�Nðp;kÞ in powers of (ap�) within the integrals even

though Nðp; kÞ is multiplied by s, since it effectively cuts
off the domain of integration where s is large.

Now Eqs. (A10)–(A12) can be expressed in terms of In

defined in Eq. (2.18). In doing so, we extensively use the
identity

I000 ðsÞ ¼ I0ðsÞ � 1

s
I00ðsÞ; (A20)

which is nothing but the modified Bessel differential equa-
tion satisfied by I0ðsÞ.

Finally we obtain the integrals involving a single propa-
gator,

Z
h

d4k

ð2�Þ4
1

m2 þ ½k�2a
¼ 1

2a2
I0; (A21)

Z
h

d4k

ð2�Þ4
1

m2 þ ½k�2a
ðm2 þ ½kþ p�2aÞ

¼ 1

a4

�
MI0 þ 1

4
ð1�MI0Þ

X
�

cosðp�aÞ
�
; (A22)

and those involving two propagators,

Z
h

d4k

ð2�Þ4
1

m2 þ ½k�2a
1

m2 þ ½kþ p�2a
¼ 1

4
½I1 þOððapÞ2Þ�; (A23)

Z
h

d4k

ð2�Þ4
1

m2þ½k�2a
1

m2þ½kþp�2a
ðm2þ½kþq�2aÞ¼ 1

2a2

�
I0þ1

8

X
�

a2ðp�q��q2�ÞðI0�MI1ÞþOððapÞ4Þ
�
;

Z
h

d4k

ð2�Þ4
1

m2þ½k�2a
1

m2þ½kþp�2a
ðm2þ½kþq�2aÞðm2þ½kþ l�2aÞ¼ 1

a4

�
1�a2

8
½p�ðqþ lÞ�2að1�MI0Þþ1

4
I1

X
�

a4

�fp2
�q�l��p�ðq�l2�þ l�q

2
�Þþq2�l

2
�g

þ 1

144
ðMI0þð4�M2ÞI1Þ

X
�;�

a4f3p2
�q�l�þp2

�

�ðq�l�Þ�4ðp�q�Þðp�l�Þ�3p�ðq�l2�þ l�q
2
�Þ

þ3ðp�q�Þl2�þ3ðp�l�Þq2�þ3ðq2�l2��q2�l
2
�Þg

þOððapÞ6Þ
�
; (A24)

where only the necessary terms to calculate ALðpa; pb; pc; pdÞ to order Oðp4=F4Þ are retained.
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