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Based on the choice of a special gauge, in which a useful form of scaling invariance holds, a new

method is suggested for the analytic, nonperturbative calculation of the n-point functions of QED. A

modified functional analysis is employed in configuration space, where the dressed electron and photon

propagators (in quenched approximation) are each found to be simple products of the relevant free

propagator with an appropriate function of configuration space variables containing all powers of the

square of the coupling constant.
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I. INTRODUCTION AND THE ELECTRON
PROPAGATOR

This paper is a somewhat amplified version of a recent
workshop presentation [1], describing a new method of
attack on gauge field theories, which should have extension
to QCD. The essence of the method is here illustrated by an
estimation of the 2-point functions of QED, and consists of
the choice of a special, relativistic gauge, which provides
an invariance under a rescaling of relevant functional in-
tegrals; and this, in turn, leads to a surprising, computa-
tional simplification, in configuration space, for the sum of
all perturbative contributions. The electron propagator is
defined in quenched approximation as the sum over all
possible emitted and reabsorbed virtual photons, while the
photon propagator is restricted to all possible virtual pho-
tons exchanged inside a closed-electron loop, including
self-energy corrections on the electron lines which com-
prise the closed loops. Gauge invariance, or, more properly,
strict current conservation, is an essential, second part of

the method when applied to the calculation of gauge
invariant objects. It should be noted that our treatment of
the photon propagator is approximate in the sense that we
are only interested in obtaining, for the sum of all such
perturbative corrections, the general form of that sum as a
function of the square of the virtual photon 4-momentum,
fðk2Þ; the present, simplified analysis can serve to specify
the exact value of fðk2Þ at a particular value of k2, while
displaying the generic form of the answer for other k2

values.
This analysis is in four dimensions, using theMinkowski

metric, and begins with a modified Schwinger representa-
tion [2] for the dressed electron propagator in quenched
approximation:

S0cðx� yÞ � eDAGcðx; yjAÞ e
L½A�

hSi ! eDAGcðx; yjAÞjA!0

(1.1)

where

DA ¼ � i

2

Z �

�A�

D
��
c

�

�A�

; ½m0 þ � � ð@x � igAðxÞÞ�Gcðx; yjAÞ ¼ �ð4Þðx� yÞ;

~D��
c ðkÞ ¼ 1

k2 � i"

�
��� � �

k�k�

k2 � i"

�
; L½A� ¼ Tr ln½1� ig� � ASc�;

Sc ¼ Gc½A�jgA!0; hSi � eDAeL½A��jA!0:

One then introduces the exact Fradkin representation [3] for the Green’s function Gðx; yjAÞ corresponding to the
propagator of a relativistic electron in a 4-vector potential field AðxÞ:
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The existence of the ordered exponential (OE) in (1.2) is the main reason why it has never been possible to formulate in
configuration space an analytic, nonperturbative mechanism for solving QED, for analytic approximations to general OEs
have only been given in adiabatic and stochastic limits [4], which are not applicable to the requirements of (1.2). It will be
useful to apply a functional translation operator to the OE of (1.2) in order to extract its A dependence, and so be able to

perform the linkage operation of (1.1). With the convenient variable change to uðs0Þ ¼ R
s0
0 ds00vðs00Þ, and with z ¼ x� y,

uðsÞ þ z ¼ 0, uð0Þ ¼ 0, and with S0cðzÞ ¼ “ðm� � � @Þ”S0
cðzÞ, one obtains:
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(1.3)

where �� ¼ u�ðs1Þ � u�ðs2Þ � �u�ðs1; s2Þ, hðs1; s2Þ ¼
1
2 ðs1 þ s2 � js1 � s2jÞ, N0 is a normalization constant de-
pending on the �s partitions of the functional integral, and
a is a real, positive number to be set equal to 1 at the end of
the calculation. The notation ‘‘(m� � � @)’’ means that a
mass-renormalization �m has been defined (Appendix A),
but suppressed for this presentation, since the object of true
interest is the remaining S0

cðzÞ.
One may now make a first, and somewhat remarkable

observation: because of the nature of the Dirac ��� ¼ 1
4 �

½��; ���, and the asymmetry of the ��� one can prove

(Appendix B) that, to all g2 order:
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0
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(1.4)

Equation (1.4) was a surprise, first seen in simple demon-
strations that its terms of order g2, g4, g6 all vanished by
algebraic cancellation. However, the u0 . . . ðOEÞ linkages
do not appear to vanish in a similar way, but generate log
divergent terms in every g2 order; and the question of how
to handle these in a nonperturbative way remains.

A second and most useful observation may now be
made: as written following (1.1), a general relativistic
gauge for the bare photon propagator may be defined by
the choice of a parameter, �, with � ¼ 0, 1 and �2 defin-
ing the Feynman, Landau and Yennie gauges, respectively:
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:

In configuration space, this becomes
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:

A most useful, special gauge is here defined by the
choice: � ¼ 2. Why is this gauge useful? Because the
u0 . . . u0 term of (1.3) may then be rewritten in the form:
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with Z ¼ M2½ð�uÞ2 þ i"�, � ¼ g2=4
2, and M an arbi-
trary (for the moment) mass parameter introduced for
dimensional reasons. This is almost a perfect (double)
differential, but not quite; we can, however, rewrite it as
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(1.6)

in which the first term of (1.6) is a perfect differential, and
as such, its u-fluctuations of the functional integral all
cancel away, and its value is given by the endpoint uðsÞ ¼
�z, uð0Þ ¼ 0 quantities as

exp
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:

(1.7)

Evaluation of the second term of (1.6) was first attempted
by approximation: since the " of lnZ acts as a cutoff
parameter in configuration space (in momentum space, " ’
��2), one expects that lnZ should be ‘‘slowly varying,’’
and the second term of (1.6) could reasonably be approxi-
mated by

exp

�
��hlnZi

ZZ s

0
ds1ds2

@2

@s1@s2
lnZ

�
; (1.8)

where the haveragei is taken over s1;2 and over the

u-fluctuations. The integrals of (1.8) are now perfect differ-
entials, which can be evaluated immediately:

ZZ s
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@2

@s1@s2
lnZ ¼ �2 ln

�
z2 þ i"

i"

�
(1.9)

and the remaining functional integral is trivial, yielding the
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free particle result: I0 ¼ 1
ð4
asÞ2 e

iz2=4as. This procedure was

originally thought to be the beginning of a strong-coupling
approximation; but one can do much better, as follows.

Add and substract to the second term of (1.6) the quan-
tity

� � lnQ
ZZ s

0
ds1ds2

@2

@s1@s2
lnZ; (1.10)

where Q is a real, positive number >1; in the remaining
functional integral
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This replaces the term exp½��
RR
ds1ds2 lnZ
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But lnðZ=QÞ can be written as lnðM2 ð�uÞ2þi"
Q Þ ¼ lnðM2½ð�uÞ2Q þ i"�Þ, and rescaling the dummy variables u�ðsiÞ ¼ffiffiffiffi

Q
p

�u�ðsiÞ consistently in (1.11) produces the scaling statement:
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where R is, by construction, explicitly independent of Q, and
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Because of the 1=Q dependence of the u0 . . . OE term,
this is not a useful scaling relation. But if Q is taken as
arbitrarily large—on the order of a dimensionless cutoff
associated with the logarithmically divergent u0 . . . OE
perturbative terms—then all of those terms are removed
from the integrand, and their sum appears in the exponen-
tial factor exp½2� lnQ � lnðz2þi"

i" Þ�.
Perturbatively, every g2 order of the original u0 . . . OE

cross-terms, when calculated in momentum space, has a
log divergence; and the Fourier transform of our final
result, (1.20), displays exactly this property. Therefore,
although we cannot (yet) prove rigorously our claim that
in the large Q limit the effect of the u0 . . . OE term in the
integrand of Iðz2=Q; a=Q; 1=QÞ is given by the multipli-
cative form Q�2 expð2� lnQÞ of (1.13), we can point to the
effective realization of this limit. Functionally, what has
occurred is that the ‘‘free-field‘‘ portion of the complete
functional integral yields the function I0ððz2=QÞ=ða=QÞÞ ¼
I0ðz2=aÞ, independent of Q, while the ‘‘interaction‘‘ part
of the functional integrand mixes the z2, a, Q, ", and
M2 dependence to produce (1.20). Each term of the per-
turbation expansion must be sequentially renormalized,
whereas the complete renormalization of our result is
performed directly in the steps leading to (1.20) and to
(1.21) and (C3).

This represents a magnificent calculational tool, for now
the OE dependence, which has always blocked nonpertur-
bative estimations (except in Bloch-Nordsieck approxima-
tions, where such terms are neglected), has been effectively
summed. And now, with Rðz2; aÞ independent of Q, one
has a useful scaling relation

Rðz2; aÞ ¼ 1

Q2
e2� lnQ�lnððz2þi"Þ=ði"ÞÞI

�
z2

Q
;
a

Q

�
; (1.15)

where Iðz2Q ; aQÞ denotes the functional integral (1.14) with-

out the u0 . . . OE term. It should be noted that the OE terms
are themselves gauge invariant, since they stem from an
initial F�� dependence; but this special gauge provides the

framework for their summation. This procedure of rescal-
ing and taking the limit of arbitrarily large Q is seemingly
reasonable.
One can question whether this procedure is really valid.

For example, since the scaling replacement u� ! ffiffiffiffi
Q

p
�u�

leaves �u with the dimensions of length, and with the
condition that �uðsÞ þ z=

ffiffiffiffi
Q

p ¼ 0, and since z� is the only

4-vector present, could it not be possible that the �u�ðsiÞ,
0< si < s could eventually be expressed as proportional to
z=

ffiffiffiffi
Q

p
, so that the final u0 . . . OE term ends up independent

ofQ? The answer would seem to be: probably not, because
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(i) the ‘‘proper-time’’ variables si essential to the compu-
tation, carry the dimension of ðlengthÞ2; and (ii) although
the uðs0Þ variables in the integrand of the functional inte-
gral may be considered as continuous, the FI process of
integration destroys that continuity, so that there is no
obvious reason why the proportionality of uðsÞ to z may
be transferred to the other uðsiÞ, si < s. Such questions
must be answered definitively, before this procedure can be
considered as valid; and it is here presented as a conjecture,
but one which, if true, can lead to spectacular results. In the
following, we shall assume that this conjecture is true.

Renormalization group methods can now be employed

to provide a differential equation for Iðz2Q ; aQÞ, by consider-

ing small variations of the very large Q, and calculating
0 ¼ Q @

@QRðz2; aÞ:

0 ¼
�
2� ln

�
z2 þ i"

i"

�
� 2

�
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Q
;
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�
�
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@

@z2
þ a

@

@a

�
I

�
z2

Q
;
a

Q

�
: (1.16)

It is simplest to rescale z2 ! z2Q, a ! aQ, to obtain the
differential equation:

�
2� lnQþ 2� ln

�
z2 þ i"

i"

�
� 2

�
Iðz2; aÞ

¼
�
z2

@

@z2
þ a

@

@a

�
Iðz2; aÞ: (1.17)

We look for a solution of form Iðz2; aÞ ¼ I0ðz2; aÞJðz2; aÞ,
where I0ðz2; aÞ ¼ S0

cjg!0, because out of the ‘‘landscape’’

of possible solutions to the functional Schwinger equa-
tions, this is the one desired. Further, one can demand
that Jðz2; aÞja!1;z2!0 ¼ 1 so that the equal time, anti com-

mutation relations originally assumed for free and dressed
fermion field operators remain the same. With J ¼ exp�,
(1.17) becomes

�
z2

@

@z2
þ a

@

@a

�
�ðz2; aÞ ¼ 2�

�
lnQþ ln

�
z2 þ i"

i"

��
;

(1.18)

and this is the relation one must now solve.
Inspection shows that to any solution of (1.18) satisfying

the above ‘‘boundary conditions’’ can be added an almost
arbitrary function of z2=a, which sum will produce another
solution to (1.18). This lack of mathematical uniqueness,
however, is not detrimental to our physical description, for
there is yet one more condition which must be applied and
interpreted; and the final result will have a satisfactory
‘‘physical uniqueness’’. At this point one can realize that,
whatever the solution chosen, the essence of this special
gaugeþ rescaling method is that the nonperturbative so-
lutions to this dressed propagator are essentially multi-
plicative in coordinate space. In contrast, Feynman
graphs in higher orders of perturbation theory involve

horrendous and overlapping integrals in momentum space.
This special gauge is the bridge that leads to analytically
obtainable, exact solutions in configuration space. Of
course, Fourier transforms must finally be taken; but that
is separate matter.
At the end of this calculation, the parameter a ! 1, and

any a-dependence in the solution becomes a constant (a
general constant will be chosen below). Since there is no
a-dependence on the RHS of (1.18), one may take as the
simplest solution that obtained by assuming � ¼ �ðyÞ,
y ¼ ln½M2ðz2 þ i"Þ�, and (1.18) then becomes d�

dy ¼
2�½yþ lnð Q

i"M2Þ�, with solution �ðyÞ ¼ �y2 þ
2�y lnðQ=i"M2Þ þ �, with � constant, so that

Jðz2; aÞ ¼ exp½�ln2ðM2ðz2 þ i"ÞÞ þ 2� lnðM2ðz2 þ i"ÞÞ
� lnðQ=i"M2Þ þ �� (1.19)

Remembering to rescale: z2 ! z2=Q (in order to undo the
passage from (1.16) to (1.17), and including the previous,
perfect differential term of (1.7),

�

2

ZZ s

0
ds1ds2

@2

@s1@s2
ln2Z ¼ ��ln2

�
z2 þ i"

i"

�

� 2� ln

�
z2 þ i"

i"

�
lnði"M2Þ

the entire answer becomes

S 0
cðzÞ ¼ I0ðz2; 1Þ exp

�
2� ln

�
z2 þ i"

i"

�
ln

�
Q

i"M2

�

þ 2� lnQ lnði"M2Þ � �ln2ði"M2Þ þ �

�
:

If the exponential factor multiplying I0 is to become unity
when z2 ! 0, then the constant of this solution must be
chosen as � ¼ �ln2ði"M2Þ � 2� lnQ lnði"M2Þ � is�m2,
where the term �is�m2 has been included in this constant
(obtained from our previous, suppressed knowledge of �m)
so as to renormalize the bare mass sitting in the exponential
factor of (1.2). The entire result, with m0 everywhere
replaced by m, is then

S 0
cðzÞ ¼ I0ðz2; 1Þ exp

�
2� ln

�
z2 þ i"

i"

�
ln

�
Q

i"M2

��
;

(1.20)

where the result of all interactions is, in configuration
space, simply a multiplicative, log divergent, exponential
factor multiplying the free-field propagator.
Without actually performing the Fourier transform into

momentum space (Appendix C), let us try to guess the
electron’s wave function renormalization (WFR) constant.
Going to the mass shell in momentum space corresponds to
taking the limit z2 ! 1 in coordinate space. This can be
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represented as an infrared limit in momentum space, if z2 is
represented by 1=�2; also, as noted above, "���2 can be
thought of as an UV cutoff in momentum space. The
argument of the multiplicative exponential factor of
(1.20) then becomes

2�

�
�
�



2

�
2 þ ln

�
�2

�2

�
ln

�
Q�2

M2

��
� i
� ln

�
�4Q

�2M2

�
;

and in order for the Z2 of this solution to be real, one must

choose ð �4Q
�2M2Þ ¼ 1, or M2 ¼ Q �4

�2 , so that

Z2 ¼ exp

�
�2�

��



2

�
2 þ ln2

�
�2

�2

���
(1.21)

is not only real, but is bounded between 0 and 1, as
expected from the formal theory.

Finally, one can argue that the lack of mathematical
uniqueness of the solution (1.19) is really not physically
relevant, because the only task of the dressed electron
propagator is to produce a WFR constant which can be
identified as needed in every n-point function, so as to
cancel with an equal Z1, and help provide a gauge inde-
pendent renormalization of the electron’s charge; Z2 is not
a measurable quantity. Any other solution chosen in place
of (1.19), which the above g2 ! 0 and z2 ! 0 require-
ments, will just correspond to a change in the unmeasu-
rable Z2. The really relevant points of this analysis are that
(i) it provides a straightforward method of choosing a non
perturbative Z2 which can be used in conjunction with a
similar analysis of higher n-point functions to produce
gauge invariant, nonperturbative results; and (ii) this analy-
sis of the two-point function suggests that one will, in other
n-point functions, find a simple description of nonpertur-
bative Physics in configuration space, with the use of the
special gaugeþ rescaling.

II. THE PHOTON PROPAGATOR

This second expectation is almost realized by the related
computation of the dressed photon propagator, where the
sum over all virtual photons exchanged across a closed
electron loop is provided by the gauge invariant, functional
expression:

K��ðzÞ ¼ �ig2eDA tr½��Gcðx; yjAÞ��Gcðy; xjAÞ�jA!0;

(2.1)

where again, z ¼ x� y. In lowest order g2 approximation,
an additional limiting process must be employed [5] to
maintain the essential requirement of current conservation,
@�K�� ¼ 0; and in a somewhat less dramatic way, this is

also true in the calculation of the fourth order term [6];
subsequent orders of the conventional perturbative calcu-
lations should automatically satisfy this requirement. The

present treatment will suggest an alternate method, to all g2

orders, based on the functional representation of the pre-
vious Section, in which strict current conservation is a
necessary part of the procedure. The extension of these
arguments to include the sum of all such connected bub-
bles, and more generally to the entire sum of all functional,
cluster coefficients [6], is a nontrivial exercise best left for
future consideration.
The present procedure requires the following steps.
(1) Insert a functional representation for each propaga-

tor, in its modified Fradkin form, which we indicate
by

i
Z 1

0
dse�ism2

0

Z
d½u��ð4Þðz

þ uðsÞÞ . . . i
Z 1

0
dte�itm2

0

Z
d½w��ð4Þðzþ wðtÞÞ:

(2) Perform the linkage operations on each Gc½A� and
the connections between them, using the special

gauge. Note that all g2
R

�
�� ð ~@Dc@QÞ �

�� contributions

exactly vanish, as in the previous section.
(3) Perform mass renormalization within each func-

tional integral, so that m0 ! m, everywhere.
Rewrite the functional integrands as in Sec. I, by
extracting those parts which are total, double de-
rivatives, dependent upon z and not upon the fluc-
tuating u, w variables.

(4) Add and substract exponential factors of those ex-
ponential terms which would become total, double
derivatives, were the relevant Z factors replaced by
averaged constants

exp

�
�� lnQ

�ZZ
ds1ds2

@2

@s1@s2
lnZð�ðuÞÞ

þ
ZZ

dt1dt2
@2

@t1@t2
lnZð�ðwÞÞ

þ 2
ZZ

ds1dt1
@2

@s1@t1
lnZðuðs1Þ � wðt1ÞÞ

��

so that the complete representation is independent of
Q.

(5) Move the lnQ total derivative terms—which are
independent of the uðsiÞ and wðtiÞ—outside of the
functional integrals; and absorb the remaining lnQ
terms by rescaling the variables u ! ffiffiffiffi

Q
p

�u, w !ffiffiffiffi
Q

p
�w, with Q � 1.

(6) Observe that ALL total derivative terms cancel, and
the remainder, in the limit of arbitrarily large Q, can
be succinctly written, suppressing the factors of

i
R1
0 dse�ism2

i
R1
0 dte�itm2

as:
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i

�
g2

Q4

�
e�ð1=2Þ Tr lnð2ða=QÞhÞN0 Z d½ �u�eði=2Þ

RR
�uð2ða=QÞhÞ�1 �ue�ð1=2Þ Tr lnð2ða=QÞhÞN0 Z d½ �w�eði=2Þ

RR
�wð2ða=QÞhÞ�1 �w�ð4Þ

�
z

Q
þ �uðsÞ

�

� �ð4Þ
�
z

Q
þ �wðtÞ

�
½4m2��� þ ðu0ðsÞ; w0ðtÞÞ�� þ g2½z����

� exp

�
� �

2


ZZ
ds1ds2 ln �Z

@

@s1

@

@s2
ln �Z� �

2


ZZ
dt1dt2 ln �Z

@

@t1

@

@t2
ln �Z� �




ZZ
ds1dt1 ln �Z

@

@s1

@

@t1
ln �Z

�
; (2.2)

where ½z��� ¼ 2

2 ½ ���

z2þi"
� 2

z�z�
ðz2þi"Þ2�, and the �Z de-

notes the appropriate function of the rescaled �u, �w.
The bracketed terms of (2.2) arise from the action of

tr

�
��

�
m� � � �

�u0ðsÞ
�
��

�
m� � � �

�w0ðtÞ
��

(2.3)

upon the u0 and w0 dependence of the original func-
tional integrals, before rescaling. Upon rescaling and
permitting Q to become arbitrarily large, a set of
terms produced by the trace operator of (2.3) is
removed, and those which remain appear in (2.2)
(in an unscaled fashion).

The combination ðu0ðsÞ; w0ðtÞÞ�� represents a symmetric

(in �, �) pair of basically divergent terms that violate
gauge symmetry (and current conservation), and have pre-

viously been defined [4] in such fashion that Kð2Þ
�� and Kð4Þ

��

have a vanishing 4-divergence. Because these objects are
not directly calculable, and must be redefined, rescaling
has not been applied to them. An alternate way of writing
(2.2) is

K��ðzjs; tÞ ¼ ig2½4m2��� þ hðu0ðsÞ; w0ðtÞÞ��i

þ g2½z���� 1

Q4
C

�
z2

Q
;
a

Q

�
; (2.4)

where Cðz2=Q; a=QÞ=Q4 denotes the complete, rescaled
functional integrals of (2.2), and the notation
hðu0ðsÞ; w0ðtÞÞ��i defines an ‘‘averaged’’ redefinition of

those basically divergent quantities. One should note an
implicit, simplifying assumption made at this point, that
such an averaged redefinition is essentially independent of
g2, for all orders higher than g2. This assumption allows us
to require gauge invariance in a simple way but only at the
price of generating a qualitatively correct form for the sum
of all such radiative corrections.

Because K��ðzjs; tÞ is independent of Q, one can apply

the RG analysis with the statement that 0 ¼ ð@=@QÞK��

produces the requirement

�
4þ z2

@

@z2
þ a

@

@a

�
C

�
z2

Q
;
a

Q

�
¼ 0: (2.5)

To understand how (2.5) can be satisfied, consider the g ¼
0 limit of C, called C0, which, after performing the ele-
mentary functional integrals, yields

C0

�
z2

Q
;
a

Q

�
¼ Q4

a4
eiz

2=4a�s;
1

�s
¼ 1

s
þ 1

t
: (2.6)

In this way, with a normalization factor from each integral
of 1=a2, and as a function of z2=a, C=Q4 is independent of
Q. We shall now assume that every g2n order of C, called
C2n contains the same normalization factor of 1=a4, as well
as the combination expiz2=4a�s. With such an assumption,
Cðz2; aÞ ¼ P1

n¼0 g
2nC2nðz2; aÞ, and

C2nðz2; aÞ ¼ e�im2ðsþtÞ

ð4
aÞ4s2t2 C2nðz2=aÞeiz2=4a�s

� 
ðs; tÞeiz2=4a�s 1

a4
C2nðz2=aÞ (2.7)

so that every term of this expansion, when rescaled, sat-
isfies (2.5) identically. With this notation, the quantity
called C0 of (2.6) has had its normalizing factors removed,
and is now simply: C0 ¼ 1.
In contrast to (1.17), there is no ‘‘inhomogeneous’’ term,

a term dependent only upon z2, in (2.5), and there is no
further input from this RG-like relation; by construction, it
is satisfied identically. The parameter Q may be chosen to
be arbitrarily large, but the g2 expansions of C are inde-
pendent of Q; and if so, it is surely simplest to consider
Q ¼ 1 in subsequent manipulations. And since the pa-
rameter a is eventually to be set equal to 1, it can be
done at this stage; at the end of the calculation, one may
multiply all terms by 1=a4, and divide every z2 factor by a,
and the result will be independent of Q.
An alternative way of understanding this simplification

is to observe that the functional integrals defining
Q�4Cðz2=Q; a=QÞ, for very large Q, may have their
�uðs0Þ, �wðt0Þ variables rescaled by a real, positive number
P such that: �uðs0Þ ! 1

P
��uðs0Þ, �wðt0Þ ! 1

P
��wðt0Þ. All that will

then change are the normalization factors, where the Q
dependence of (2.2) is everywhere replaced byQ=P. But P
is arbitrary; and if we choose P ¼ Q, all such scaling
factors disappear from (2.2). And since the parameter a
is eventually to be set equal to 1, that limit may now be
adopted; and the result is the same as that of the preceding
paragraph.
Our problem then reduces to finding such perturbative

solutions—and then the sum of all such perturbative
terms—to the functional integral representation for
K��ðzjs; tÞ of (2.4) where
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Cðz2js; tÞ ¼ X1
n¼0

g2n
ðs; tÞeiz2=4�sC2nðz2js; tÞ (2.8)

with 
ðs; tÞ ¼ e�im2ðsþtÞ
ð4
Þ4s2t2 . Of course, one could have written

down such a representation before introducing the lnQ
factors and the rescaling procedure; but then it would not
have been clear how all the gauge dependent terms origi-
nating from the electron propagators exactly cancel away.
We still must require the solutions of (2.4) to be strictly
gauge invariant, and can turn that requirement into a cal-
culational tool, as follows.

Starting from (2.4), now written as

K��ðzjs; tÞ ¼ ig2½4m2��� þ hðu0ðsÞ; w0ðtÞÞ��i
þ g2½z����Cðz2js; tÞ (2.9)

and with the understanding of (2.8), let us now write the

corresponding relations for every Kð2nÞ
�� ðzjs; tÞ of

K��ðzjs; tÞ ¼
P

Kð2nÞ
�� ðzjs; tÞ, beginning with

Kð2Þ
��ðzjs; tÞ ¼ ig2½4m2���

þ hðu0ðsÞ; w0ðtÞÞ��i�
ðs; tÞeiz2=4�sC0: (2.10)

As it stands, (2.10) gives no information, because, as noted
above, a definition built from the requirement of current
conservation must be given for the divergent factors u0ðsÞ,
w0ðtÞ. The proper definition, given in different contexts [4]
a half century ago, can be written in the present context as

Kð2Þ
��ðzjs; tÞ ¼ 8ig2
�2ð���@

2 � @�@�Þeiz2=4�s (2.11)

with�2 ¼ �s=ðsþ tÞ; that is, the Fourier transform of (2.11)

exactly reproduces the correct ~Kð2Þ
��ðkÞ, before

renormalization.
Returning to (2.9), the g4 contribution may be written as

Kð4Þ
��ðzjs; tÞ ¼ ig2½4m2��� þ hðu0ðsÞ; w0ðtÞÞ��i�
eiz

2=4�sC2

þ ig4½z���
eiz
2=4�s (2.12)

or, by a comparison of (2.12) and (2.10), as

Kð4Þ
��ðzjs; tÞ ¼ C2ðz2js; tÞKð2Þ

��ðzjs; tÞ þ ig4½z���
eiz
2=4�s:

(2.13)

[At this point, one should reemphasize the remarks made in

the paragraph after (2.4)]. Since both Kð2Þ
�� and Kð4Þ

�� are to
have a zero divergence, the application of

P
�@� to both

sides of (2.13) generates a first order differential equation
(DE) for C2ðzjs; tÞ, and when this is solved, one has the

solution for Kð4Þ
��. (As it turns out, it is the choice of the

constant of integration for C2 which is determined by the

input of Kð4Þ
��).

Repeating the process for the g6 expansion of (2.9), one
writes

Kð6Þ
��ðzjs; tÞ ¼ C4ðz2js; tÞKð2Þ

��ðzjs; tÞ
þ ig4½z���C2ðz2js; tÞ
eiz

2=4�s: (2.14)

Again, because Kð6Þ
�� must be divergence-free, application

of
P

�@� to (2.14) generates a DE for C4, which can be

solved to within a constant of integration; and when C4 is

known, Kð6Þ
�� has been determined. This procedure can be

continued indefinitely, and can be applied to the sum of all

such Kð2nÞ
�� : if Cðz2js; tÞ ¼ P

ng
2nC2nðz2js; tÞ, one can write

Kð2nÞ
�� ¼ C2ðn�1ÞK

ð2Þ
�� þ ig4½z���C2ðn�2Þ
eiz

2=4�s

so that

ðC� 1ÞKð2Þ
�� þ ig4½z���C
eiz

2=4�s ¼ X1
n¼2

Kð2nÞ
��

or

CKð2Þ
�� þ ig4½z���C
eiz

2=4�s ¼ X1
n¼1

Kð2nÞ
�� ¼ K��: (2.15)

Requiring
P

�@�K�� ¼ 0, the DE for C follows: ðT þ
UÞC0 þ RC ¼ 0, where R, T and U are functions of z2,

defined by: z�T ¼ z�K
ð2Þ
��, z�U ¼ ig4z�½z���
eiz

2=4�s,

z�R ¼ ig4@�ð½z���
eiz
2=4�sÞ, and with solution

C ¼ exp

�
�

Z z2

z20

du
RðuÞ

UðuÞ þ TðuÞ
�
; (2.16)

where z20 is a constant to be determined. Since the lowest g2

order dependence of R, T, U are R ¼ Oðg4Þ, T ¼ Oðg2Þ,
U ¼ Oðg4Þ, the exponential factor of (2.16) begins as
Oðg2Þ; and therefore, z20 is to be determined by a compari-

son with theOðg2Þ term of C; that is from C2 or from Kð4Þ
��.

Finally, when C is known, then from (2.15), the complete
K�� is known as well; but, as stressed above, since for a

particular choice of C2, ~Kð4Þ
��ðkÞ will be exact at only one

value of k2, that statement is also true for the final ~K��ðkÞ
obtained from (2.17) below.
The thrust of the present argument is that the complete

K��, to all orders in g
2, is given in configuration space, by

z2 dependence built from the z dependence of the functions

which define Kð2Þ
��, K

ð4Þ
��, and ½z���. Renormalization has

not yet been performed; and the Fourier transform to
momentum space is needed for applications to practical
problems; but if this simple, procedural analysis is correct,
it suggests a tremendous simplification by performing the
analysis in configuration space, where the result is essen-
tially multiplicative, as in (2.15), or the equivalent

K��ðzjs; tÞ ¼ Cð1� C2ÞKð2Þ
�� þ CKð4Þ

��: (2.17)
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III. SUMMARY

Work is now beginning on the application of these
techniques to the vertex function of QED; but before any
detailed study is begun, one can foresee certain relevant
properties of its nonperturbative representation. It has al-
ways seemed somewhat suggestive that eikonal represen-
tations of the QED vertex function [7], as well as the sum
of its leading perturbative contributions [8] should produce
an exponential of either a log or a log2 dependence upon
momentum transfer (depending upon the way in which
large momentum transfers are limited); but this has now
become clear from the forms found using the special
gauge. What will surely happen in this coming calculation
of the QED vertex, to all orders of its coupling constant, is
that the gauge dependent exponential factors will cancel
away, leaving—after Fourier transforms into momentum
space are performed—the exponential of finite, logarith-
mic dependence upon relevant momentum transfer.

Finally, a word on the extension to QCD. Color compli-
cations may be expected, compared to the simpler, Abelian
QED, but there are both approximations and additional
Gaussian integrals which can be employed to bring a
measure of success to the enterprise. One must use func-
tional techniques which avoid integration over gauge cop-
ies, as well as introduce techniques to handle the ever
present ordered exponentials of the theory; and one expects
that such complications can be overcome. The non Abelian
gauge groups will require current conservation relations
between functional representations of different n-point
functions, rather than involving only the same n-point
function, as in the QED photon propagator. But as long
as the (bare) gluons are massless, a special gauge can be
found for their propagator’s coordinate space representa-
tions; and the main structure of the QED analysis sug-
gested above should be possible. This direct approach to
nonperturbative solutions of 4-dimensional QCD may well
be worth trying.

APPENDIX A

Mass renormalization in the present framework can be
understood by returning to (1.3) with the correct factor of
ðm0 � � � �

�u0ðsÞÞ inserted under the functional integral.

Using the representation hs1jh�1js2i ¼ ~@
@s1

�ðs1 � s2Þ @Q
@s2

,

the exponential factor i
2

RR
s
0 uð2ahÞ�1u can be rewritten as

i
4a

R
s
0 ds

0u02ðs0Þ. By inspection, the operator @
@u0ðsÞ will then

generate a factor of

i

2
u0�ðsÞ þ ig2

Z s

0
ds0D��

c ðuðsÞ � uðs0ÞÞ

�
�
u0�ðs0Þ þ i@Q	

�

��	�ðsÞ
�

(A1)

under the FI.

Upon rescaling, with Q arbitrarily large, the integral of
(A1), will become arbitrarily small, and can be discarded,
effectively removing the divergences inherent in those
terms, as s0 approaches s. But the u0ðsÞ term cannot be
scaled away; and quite apart from any scaling considera-
tion, this term requires a definition which can only be given
precisely in momentum space, as done in conventional
perturbation theory; in configuration space, it is inherently
meaningless, and requires a definition external to the FI
itself. For example, if one introduces a ‘‘momentum’’
variable q, conjugate to uðsÞ, by inserting a factor
exp½iquðsÞ� under the FI, and computes hu0ðsÞi, using the
normalized expression of (1.3) as probability distribution,
with g ¼ 0 for simplicity, one finds and indeterminate
result, of form q=s, in the limit as both q and s vanish.
(A similar situation is presented by the factors u0ðsÞw0ðtÞ of
Sec. II, a doubly meaningless combination whose proper
definition is given by the requirement of current conserva-
tion, or gauge invariance). The needed definition is
straightforward in momentum space, but in the present
context it can only be formally defined, as follows.
Since u0�ðsÞ has the dimensions of a four momentum,

and in momentum space the only relevant four momentum
is that of the physical particle p�, where p

2 þm2 ¼ 0, it is

reasonable to assume that, in momentum space, u0ðsÞ must
be proportional to p, which proportionality constant we
write as 1þ �. The parameter �, which in momentum
space is a log divergent quantity, here represents an effec-
tive mass renormalization, since this term enters in the
combination m0 � ið1þ �Þ� � p, and when touching a
Dirac spinor (constructed with the physical mass m) can
be rewritten as the combination m0 þ �m� i� � p, with
�m ¼ �m, and m0 þ �m ¼ m. With this understanding,
the quantity S0cðzÞ ¼ ðm� � � @ÞS0

cðzÞ, and the Fourier
transform of (1.20), near its mass shell, is given by Z2ðm�
i� � pÞðm2 þ p2Þ�1 as required. While this definition is not
particularly appealing, it is only meant to suggest in con-
figuration space what can only be properly obtained in
momentum space.

APPENDIX B

The twice differentiated propagator of (1.4) appears in a
gauge invariant combination, and its value can be calcu-
lated most simply in the Feynman gauge, where one finds
the exponential of (1.4) to be

ZZ s

0
ds1ds2

�

��	�ðs1Þ�	�ðzÞ �

����ðs2Þ ;

�	�ðzÞ ¼
�
g




�
2 1

ðz2 þ i"Þ2
�
��� � 4

z�z	

ðz2 þ i"Þ
� (B1)

with z� ¼ �u� ¼ u�ðs1Þ � u�ðs2Þ. The action of this

operator upon the ordered exponential of (1.4) is to exhibit
an arbitrary number of ��� matrices in some well defined

si-order, yielding for any such operation a quantity of the

H.M. FRIED AND Y. GABELLINI PHYSICAL REVIEW D 79, 065035 (2009)

065035-8



form

ZZ s

0
ds1ds2�	�ðzÞð. . .�	� . . .��� . . .Þ; (B2)

where the triple dots of (B2) denote other ��� matrices

which have been arranged before, between, and after the
�	� and ��� displayed; the precise ordering depending on

the s-labels of the �abðsiÞ and the �
����ðs2Þ , in such a manner

that all arrangements correspond to the (proper) time or-
dered expansion of (B2). There will be an appropriate�ab

term linking each such pair of � matrices comprising the
triple dots of (B2); and we here focus attention on one such
pair, as written in (B2), and will prove that this combina-
tion vanishes for any number, including zero, of matrices
which lie between �	� and ���.

Summing over 	, �, � of (B2), with z6 ¼ � � z, leads to
�
g

2


�
2 1

ðz2 þ i"Þ2
X
	;�

�
��	�� � � ����	

þ 4z6 �� � � ���z6 1

ðz2 þ i"Þ
�
: (B3)

If the triple dots refer to no matrices at all, (B3) obviously
vanishes, since z6 z6 ¼ z2 and

P
��

2
� ¼ 4. If the triple dots

denote a single ���, then we have
X
�

������� ¼ ���: (B4)

Inserting (B4) into the remaining operations of (B3) gives
zero. Apparently, if the

P
� operation of (B3) generates a

number, rather than a matrix, insertion of that number into
the remaining

P
	 of (B3) will produce an algebraic zero.

That the
P

� operation will always lead to a pure number
when the triple dots between �	� and ��� contain any

products of �, or any even number of matrices, can be seen
by writing the general expression for any 4� 4 Dirac
matrix in the form

M ¼ M0 þM��� þM����� þM5�5 þM5��5��;

where sums over all repeated indices are understood, and
where the �5 terms are irrelevant to these considerations
and may be discarded. The numerical coefficientsM0,M�,
M�� are obtained from the traces

M0 ¼ 1
4 TrM; M� ¼ 1

4 Tr½��M�;
M�� ¼ 1

4 Tr½���M�:
Because the trace of an odd number of � matrices must
vanish, M� ¼ 0; and we have seen above that M0 and
M����� inserted into the

P
of (B3) do vanish; and there-

fore all such quantities of the form of (B2) are zero.
Were this peculiar algebraic property not true, examina-

tion of the perturbative divergences which would result
from such terms suggests that singularities more divergent
than logarithmic would appear in higher orders of QED,

although the large Q cancellation conjecture suggests that
each of these terms would vanish under rescaling, propor-
tional to Q�2. Another peculiarity of terms of the form of
(B2) is that they vanish upon integration over a four
dimensional euclidian volume [8].

APPENDIX C

Rewriting S0
cðzÞ in terms of the assumed Z2 of (1.21)

S 0
cðzÞ ¼ Z2

ð4
Þ2
Z 1

0

ds

s2
e�ism2þiz2=4se�� lnð�2z2Þ; (C1)

where � ¼ �
2
 ½lnð�

2

�2Þ þ i 
2�, one then calculates the Fourier
transform

~S 0
cðpÞ ¼

Z
d4ze�ip�zS0

cðz2Þ: (C2)

The computation is most simply performed by continuing
the real z0 integration

Rþ1
�1 dz0 to run along the imaginary

z0 axis
R�i1
þi1 dz0, so that

R
d4z ! �i

R
E d

4z. With this
change from Minkowski to Euclidean space, one may use
the convenient 4D angular integral

Z
d�4e

�ip�z ¼ 4
2

pz
J1ðpzÞ

together with the well-known, ‘‘proper-time’’ integral

Z 1

0

ds

s2
e�ism2þiz2=4s ¼ 4i

�
m

z

�
K1ðmzÞ

to reduce the four-fold integral of (C2) to a single integral

S 0
cðzÞ ¼

�
m

p

�
Z2

Z 1

0
zdzJ1ðpzÞK1ðmzÞð�2z2Þ��: (C3)

Now expand the ð�2z2Þ�� factor of (C3) in powers of �

ð�2z2Þ�� ¼ 1� � lnð�2z2Þ þ � � � (C4)

and consider the leading term on the RHS of (C4). Using
the formula [9]

Z 1

0
xdxJ1ð	xÞK1ð�xÞ ¼

�
	

�

�
1

	2 þ�2
;

this leading term produces exactly Z2=ðp2 þm2Þ, so that
multiplying this term by p2 þm2 yields just Z2. The
integral of (C3) over each of the ð� lnð�2z2ÞÞq, q > 1
corrections to this result is finite, and will, in general,
produce a result different from that of the leading term,
without the factor ðp2 þm2Þ�2; so that when p2 is con-
tinued back to its Minkowski form, and each of these
corrections is multiplied by (p2 þm2) in the mass shell
limit, each of these higher g2 terms vanishes, as in con-
ventional perturbation theory. That is, under mass shell
amputation, the Z2 guessed in Sec. I is the correct wave
function renormalization constant of that solution.
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