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Relativistic current carrying strings moving axisymmetrically on the background of a Kerr black hole

are studied. The boundaries and possible types of motion of a string with a given energy and current are

found. Regions of parameters for which the string falls into the black hole, is trapped in a toroidal volume,

or can escape to infinity, are identified, and representative trajectories are examined by numerical

integration, illustrating various interesting behaviors. In particular, we find that a string can start out at

rest near the equatorial plane and, after bouncing around, be ejected out along the axis, some of its internal

(elastic or rotational kinetic) energy having been transformed into translational kinetic energy. The

resulting velocity can be an order unity fraction of the speed of light. This process results from the

presence of an outer tension barrier and an inner angular momentum barrier that are deformed by the

gravitational field. We speculatively discuss the possible astrophysical significance of this mechanism as a

means of launching a collimated jet of magnetohydrodynamics plasma flux tubes along the spin axis of a

gravitating system fed by an accretion disk.
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I. INTRODUCTION

In this paper we study the motion of an axisymmetric,
current carrying relativistic string loop in the background
of a Kerr black hole. This interesting dynamical system has
been studied before in its own right [1,2]), and our goal
here is to better understand its behavior.

Our investigation is loosely motivated by the problem of
the production of collimated astrophysical jets of matter.
Systems that exhibit collimated jets range from accreting
young stars, neutron stars, and black holes to supermassive
black holes in quasars and active galactic nuclei [3].
Magnetized plasmas interacting with an accretion disk
are believed to play a central role in jet production, but
despite much work and many proposals for the mechanism,
the process is still not yet well understood. Such plasmas
are governed by magnetohydrodynamics (MHD), a com-
plicated nonlinear field theory. Under some circumstances,
plasmas exhibit associated stringlike behavior, either via
the dynamics of magnetic field lines embedded in the
plasma [4–6], or in the dynamics of relatively thin isolated
flux tubes of plasma which can be approximately described
by an effective one-dimensional string [7]. In either of
these cases, the string would be described by an energy
density and a tension and might be carrying currents of
mass and/or charge. The hope is that some essential aspects
of the physics could be captured by string dynamics, which
is tremendously simpler than MHD.

The dynamical formalism for describing relativistic cur-
rent carrying strings is well developed [8–11], and a gen-
eralization to a wider variety of equations of state is given
in Ref. [12]. Here we restrict attention to a relatively simple
class of strings, namely, axisymmetric loops characterized
by a constant tension and a conserved mass current on the
string world sheet, in order to begin developing some in-

sight into the factors influencing the string dynamics. This
could be generalized in future work to allow for different
equations of state, coupling of a charge current to an
external electromagnetic field [13,14], and deviations
from axisymmetry [15–18].
The string tension prevents a string loop from expanding

beyond some radius, and the world sheet current can
produce an angular momentum barrier preventing the
loop from collapsing into the black hole. Thus, depending
on its energy and current, a string may be trapped in a
toroidal region surrounding the black hole, or its motion
may be confined to a cylindrical shell that extends to
infinity. In the latter case, one can envisage processes
wherein internal energy of the string is converted into
translational kinetic energy via the propagation on the
black hole background. This is one of the phenomena we
aim to understand. The other key question is what role may
be played by the spin of the black hole, as a result of the
associated dragging of inertial frames.

II. CURRENT CARRYING STRING IN CURVED
SPACETIME

The string world sheet is described by giving its space-
time coordinates X�ð�aÞ (� ¼ 0, 1, 2, 3) as functions of the
two world sheet coordinates �a (a ¼ 0, 1). The induced
metric on the world sheet is

hab ¼ g��X
�
;aX�

;b; (1)

where g�� is the ambient spacetime metric, for which we

adopt the signature (�þþþ). To describe the current
we introduce a scalar field ’ð�aÞ living on the world sheet.
We consider dynamics generated by the action
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S ¼ �
Z

d2�
ffiffiffiffiffiffiffi�h

p ð�=cþ hab’;a’;bÞ; (2)

where the constant � denotes the string tension, and c is
the speed of light which is hereafter set to unity. We assign
the line element g��dx

�dx� the dimensions of length

squared, and take the world sheet coordinates to be dimen-
sionless, so that the dimensions of hab are length squared,
those of � are energy over length, and those of ’ are
square root of action.1

The action is the integral of a world sheet scalar density,
hence it is independent of the choice of world sheet coor-
dinates. Note that the part of the action involving the scalar
field ’ is invariant under conformal rescalings of the
metric. One could of course consider other scalar functions
of the invariant hab’;a’;b in the Lagrangian, but for the

exploratory purposes of the present investigation the sim-
ple choice in (2) is sufficient. In any case, one ultimately
wants to generalize the system to allow for a wider class of
equations of state that are perhaps more suitable for MHD
applications.

Varying the action with respect to hab yields the world

sheet stress-energy tensor density ~�ab
,

�hS ¼ 1

2

Z
d2�~�ab�hab; (3)

where

~� ab ¼ ffiffiffiffiffiffiffi�h
p ð2jajb � ð�þ j2ÞhabÞ; (4)

and

ja ¼ ’;a; ja ¼ habjb; j2 ¼ habjajb: (5)

The tilde on ~�ab
is a reminder that this quantity has density

weight one with respect to world sheet coordinate trans-
formations. Because of the conformal invariance, the

j-dependent part of ~�ab
is traceless. The contribution

from the string tension is proportional to the metric, and
with �> 0 has a positive energy density and an opposite,
negative pressure, i.e. a tension. The contribution from the
current is traceless, due to the conformal invariance of that
part of the action. It can be viewed as a 1þ 1 dimensional
massless radiation fluid, with positive energy density and
equal pressure.

Varying the action with respect to X� yields the equation
of motion2

ð~�abg��X
�
;aÞ;b � 1

2
~�abg��;�X

�
;aX�

;b ¼ 0: (6)

Varying the action with respect to ’ yields the 1þ 1
dimensional wave equation,

ð ffiffiffiffiffiffiffi�h
p

hab’;aÞ;b ¼ 0; (7)

which also implies that the current is divergenceless,

ð ffiffiffiffiffiffiffi�h
p

jaÞ;a ¼ 0. The world sheet stress-energy tensor is

also divergenceless, ~�ab
;b ¼ 0, with respect to the

hab-compatible covariant derivative. (To verify this di-
rectly one must use ja;b ¼ jb;a, which follows from ja ¼
’;a. Conversely, ð

ffiffiffiffiffiffiffi�h
p

jaÞ;a ¼ 0 and ~�ab
;b ¼ 0, together

imply that ja ¼ ’;a for some scalar field ’.)

III. AXISYMMETRIC DYNAMICS IN A
STATIONARY, AXISYMMETRIC SPACETIME

A. Conformal gauge

Every two dimensional metric is conformal to a locally
flat metric, hence in particular

hab ¼ �2�ab; (8)

where �ab is locally flat and � is a world sheet scalar
function. We can always adopt coordinates �a ¼ ð�;�Þ
such that the coordinate components of �ab are ��� ¼ 0
and ��� ¼ ���� ¼ �1, i.e. the constant Minkowski met-
ric. This ‘‘conformal gauge’’ choice is equivalent to requir-
ing h�� ¼ 0 and h�� þ h�� ¼ 0, which as conditions on
X� read

g��X
�
;�X�

;� ¼ 0 ¼ g��ðX�
;�X�

;� þ X�
;�X�

;�Þ: (9)

In this gauge h ¼ ��4, and the metric components satisfyffiffiffiffiffiffiffi�h
p

hab ¼ �ab, where �ab is the inverse of the
Minkowski metric. The conformal gauge conditions (9)
do not completely fix the coordinates: the lightlike combi-
nations �� � may be replaced by any smooth monotonic
functions of themselves.
We aim to study axisymmetric string motion in an

axisymmetric, stationary spacetime. Such a spacetime is
described by a metric, written in coordinates ðt; r; �;	Þ, of
the general form

ds2 ¼ gttdt
2 þ 2gt	dtd	þ g		d	

2 þ grrdr
2 þ g��d�

2;

(10)

where all the metric components are independent of t
and 	.
It is tempting to choose the world sheet coordinate � to

be equal to the spacetime coordinate 	, in which case a
general axisymmetric world sheet would take the form
X�ð�; �Þ ¼ ðtð�Þ; rð�Þ; �ð�Þ; �Þ. However, this would im-
ply h�� ¼ gt	t;�, which does not satisfy the conformal

gauge condition if gt	 � 0. We therefore allow for a �

dependent relative shift 	 ¼ �þ fð�Þ, so that

X�ð�; �Þ ¼ ðtð�Þ; rð�Þ; �ð�Þ; �þ fð�ÞÞ: (11)

The gauge condition h�� ¼ 0 then becomes

1Strings described by action (2) were originally introduced
[19] as an effective description of ‘‘superconducting strings,’’ a
type of topological defect that might occur in a theory with
multiple scalar fields undergoing spontaneous symmetry
breaking.

2One could rewrite Eq. (6) in terms of the Christoffel symbols
of g��, however it is more convenient to work with the explicit
form (6).
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g�	
_X� ¼ gt	 _tþ g		

_f ¼ 0; (12)

which determines f via

_f ¼ �ðgt	=gttÞ _t; (13)

where the dot stands for d=d�. Equation (12) means that
_X�, and thus the world sheet vector @�, are orthogonal to
the axial rotation Killing vector @	. That is, the curves of

constant � are zero angular momentum (ZAMO) world-
lines. For later reference we note that this same gauge
condition yields the useful relation

g�t
_X� ¼ ðgtt � g2t	=g		Þ _t: (14)

The second gauge condition h�� þ h�� ¼ 0 becomes

ðgtt � g2t	=g		Þ _t2 þ grr _r
2 þ g�� _�2 þ g		 ¼ 0: (15)

The conformal factor�2 is determined in this gauge by the
equation h�� ¼ �2��� ¼ �2, i.e.

�2 ¼ g		: (16)

B. Equations of motion

In the conformal gauge (8) the equation of motion (7) for
’ takes the simple form

’;�� � ’;�� ¼ 0: (17)

The general solution is ’ ¼ ’þð�þ �Þ þ ’�ð�� �Þ,
where ’� are arbitrary functions. On the other hand, the
assumption of axisymmetry implies that the current is
independent of �. Thus ja;� ¼ 0, which implies ’;�� ¼
’;�� ¼ 0. Together with (17) this implies that ’ must be

linear in both � and �,

’ ¼ j��þ j��; (18)

where j� and j� are constants.
3 Then j2 ¼ ��1ðj2� � j2�Þ,

and the components of ~�ab
(4) become

~� �� ¼ g�1
		ðj2� þ j2�Þ þ�; (19)

~� �� ¼ g�1
		ðj2� þ j2�Þ ��; (20)

~� �� ¼ �2g�1
		j�j�: (21)

The quantity ~���
in the conformal gauge is equal to the

string energy density as measured by observers comoving
with the string at constant �. These are the comoving
ZAMO observers mentioned in the discussion following
Eq. (13). To verify the claim about the relation between

~���
and the string energy density, note that since the 2-

velocity ua of those observers is orthogonal to the constant
� surfaces, we have ua ¼ �@a�, the prefactor � being
determined by the unit normalization of ua. Also h ¼
��4. The energy density is thus given by

ð�hÞ�1=2 ~�abuaub ¼ ~���
. In particular, � is the contribu-

tion form the string tension, and ðj2� þ j2�Þ=g		 is the

energy density of the current.
The equations of motion (6) can now bewritten out more

explicitly in our chosen gauge. Using the gauge conditions
and the axisymmetry, they take the form

ð~���g��
_X� þ ~���g	�Þ;�

� 1
2ð~���g��;�

_X� _X� þ ~���g		;� þ ~���gt	;� _tÞ ¼ 0: (22)

For � equal to 	 this equation is identically satisfied. For
� ¼ t, it yields [using (14)] the energy conservation law

~� ��ðgtt � g2t	=g		Þ _tþ ~���gt	 ¼ �E; (23)

where E is a constant to be identified below with the total
Killing energy of the string (divided by 2
). For � equal to
r or � it yields

ð~���grr _rÞ;� � ð~���g��;r
_X� _X� þ ~���g		;rÞ ¼ 0; (24)

ð~���g�� _�Þ;� � ð~���g��;�
_X� _X� þ ~���g		;�Þ ¼ 0: (25)

The dynamics depends on the current only through the
world sheet stress tensor (19)–(21), in which the current
enters only in the two quadratic combinations j2� þ j2� and
j�j�, both of which are symmetric under interchange of j�
and j�. Note that j�j� appears only via _t, through the
energy conservation law (23), and then only when gt	 � 0.

To parametrize the solutions, we will later use the first of
these combinations, together with the ratio of the current
components,

J2 � j2� þ j2�; (26)

! � �j�=j�: (27)

(The minus sign is included so that positive ! will corre-
spond to positive angular momentum. Note that�j�=j� ¼
j�=j�.) The product j�j� can be expressed in terms of J
and ! as j�j� ¼ �!J2=ð1þ!2Þ. Since the dynamics is
symmetric under interchange of j� and j�, the range�1 �
! � 1 covers all distinct cases. The extreme values ! ¼
�1 correspond to null currents.

C. Conserved quantities

Suppose �� is a spacetime Killing vector. If the space-
time coordinates are chosen so the components of �� are

3Note that while js is single-valued, the scalar ’ is multi-
valued. When the string action is taken to be an effective
description of a field theory defect [19], ’ is a phase defined
modulo 2
, which implies that the possible values of the current
are quantized.
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constant everywhere, then Killing’s equation implies
g��;��

� ¼ 0. Contracting (6) with �� then yields a con-

served Killing current. That is, the world sheet vector
density

J b
� ¼ ~�abX�

;ag���
� (28)

satisfies

J b
�;b ¼ 0: (29)

Although we argued for its conservation using an adapted
coordinate system, J b

� is manifestly spacetime coordinate

independent. Note that it is just the world sheet energy-
momentum tensor contracted with the pullback of the
Killing one-form to the world sheet. Thus integrating it
over any closed cross section of the world sheet gives the
conserved quantity associated with the Killing vector,

Q� ¼
Z

J b
�dSb: (30)

If we take the integral over a surface of constant � and use
the axisymmetry, the integral becomes simply

Q� ¼ 2
J �
� ¼ 2
~�a�X�

;ag���
�: (31)

When �� is the Killing vector @t corresponding to t
translation symmetry, then (11) and (14) yield

�Q@t ¼ E ¼ 2
E; (32)

where E is the constant introduced in Eq. (23). Thus E is in
fact the Killing energy of the string divided by 2
. When
�� is the Killing vector @	 corresponding to 	 translation

symmetry (rotation), then using (11), (12), and (21) we find
the angular momentum L of the string

Q@	 ¼ L ¼ �4
j�j�: (33)

This is manifestly constant for the solutions (18) under
consideration. Without the current, the string carries no
angular momentum, since the stress tensor is then propor-
tional to hab, which is boost invariant along the world
sheet.

D. Effective potential

We can solve (23) for _t and substitute into the gauge
condition (15), yielding

ðg2t	=g		 � gttÞð~���Þ2ðgrr _r2 þ g�� _�2Þ þ Vðr; �Þ ¼ 0;

(34)

where

Vðr; �Þ ¼ �ðEþ gt	
~���Þ2 þ ðg2t	 � gttg		Þð~���Þ2

(35)

is what we call here the ‘‘effective potential.’’ The motion
outside the horizon is confined to the region where
Vðr; �Þ � 0, since the first term in (34) is non-negative
outside the horizon.4 More explicitly, the motion is
bounded by the contour5

E ¼ Eb � ðg2t	 � gttg		Þ1=2 ~��� � gt	
~���

(36)

¼ Aðr; �Þ�þ Bðr; �; !ÞJ2; (37)

where A and B are functions determined by the metric
components and, in the case of B, the value of !. The
initial conditions and the value of the current determine E
through (15) and (23), and the subsequent motion is con-
fined to the region contained within the contour (36). We
shall determine that motion in several representative cases
by numerical integration.

IV. NEWTONIAN ELASTIC RING

Before presenting the results for the relativistic string,
we develop a Newtonian analogue of the system, to help
interpret the dynamics. Indeed, it turns out that most of the
salient features are independent of relativistic effects.
Consider a Newtonian elastic ring of total mass m,

moving axisymmetrically in the gravitational field of a
point mass M. Using cylindrical coordinates ð�; z; 	Þ, the
conserved Newtonian energy of the system is given by

EN ¼ 1
2mð _�2 þ _z2 þ �2!2Þ þ 1

2k�
2 �GMm=ð�2 þ z2Þ1=2;

(38)

where ! is the angular velocity and k the elastic constant.
The angular momentum l ¼ m�2! about the axis is con-
served. Using l, energy conservation can be expressed as

1
2mð _�2 þ _z2Þ þ VNð�; zÞ ¼ 0; (39)

with

VNð�; zÞ ¼ �EN þ l2

2m�2
þ 1

2
k�2 � GMmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ z2
p : (40)

The motion of the ring is confined to the region VNð�; zÞ �
0 and thus bounded by the contour VNð�; zÞ ¼ 0, i.e. the
curve in the �-z plane given by

EN ¼ l2

2m�2
þ 1

2
k�2 � GMmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ z2
p : (41)

4The determinant of the metric (10) is ðgttg		 � g2t	Þgrrg��,
which must be negative for a Lorentzian metric. For the metrics
we consider, g�� > 0 everywhere and grr, g		 > 0 outside the
horizon, so evidently g2t	=g		 � gtt is positive outside the
horizon.

5To obtain this we have taken a square root, but the root is
unique since, according to (23) the combination Eþ gt	

~���
is

positive for trajectories outside the horizon.
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The bounding contour is given in Fig. 1 for different
values of the angular momentum and energy, in units with
m ¼ k ¼ GM ¼ 1. The angular momentum term / ��2

dominates at small � and makes an inner � wall, while the
elastic energy term / �2 dominates at large � and makes
an outer �. The gravitational potential well deforms the
inner wall inward toward the center and the outer wall
outward. The figure illustrates that, depending on the en-
ergy and angular momentum, the ring can either oscillate
in a confined toroidal region around the equatorial plane or
escape to infinity confined to a channel along the azimuthal
direction. In the exceptional case of zero angular momen-
tum, the ring can be confined to a spherical region includ-
ing the origin.

V. STRING DYNAMICS

A. String in flat background

In order to demonstrate the effect of the current on the
motion of the string in a simplified setting and to obtain a
useful formula for the string energy far from the black hole,
let us first consider the case in which the background is just
flat spacetime. We use cylindrical coordinates ðt; �; z; 	Þ,
so g�� ¼ diagð�1; 1; 1; �2Þ, and we consider axisymmet-

ric motion. The effective potential (35) then takes the form

Vð�Þ ¼ �E2 þ �2ð~���Þ2: (42)

The motion is confined to the region where Vð�Þ � 0.
The bounds of the motion are defined by Vð�Þ ¼ 0, i.e.

E ¼ Eb ¼ �~��� ¼ ��þ J2=�: (43)

The right-hand side is 1=2
 times the Killing energy of the
string when _r ¼ _� ¼ 0. Since the string is then at rest and
there is no redshift factor in flat spacetime, this is the same
as the energy measured in the rest frame of the string. The
first term represents the elastic energy of the string, while
the second term is the angular momentum barrier arising
from the current circulating in both directions around the
string. Alternatively, it can be viewed as a variable ‘‘rest
mass’’ of the string, arising from the energy density J2=�2

of the current. In the presence of the current, the string
oscillates between two � values, the roots of (43), never
collapsing to a point.
The elastic energy and angular momentum play similar

roles in the relativistic case (43) and the Newtonian case
(41), but with different powers of �. The relativistic elastic
energy is proportional to the string length rather than its
square, and the angular momentum barrier comes from a
kinetic energy that is linear rather than quadratic in the
momentum. A more important difference between the
Newtonian elastic ring and the relativistic string is that in
the latter the current can circulate in either direction. Both
directions can simultaneously contribute to the angular
momentum barrier, so the barrier is not determined by
the net angular momentum. Indeed it is present even
when the net angular momentum vanishes, which is the
case when either j� or j� vanishes.

B. String in Kerr background

1. General setting

Next we consider the full problem, i.e. the motion of the
string in Kerr spacetime, with line element (in Boyer-
Lindquist coordinates)

ds2 ¼ �
�
1� 2Mr

R2

�
dt2 � 4Mrasin2�

R2
dtd	

þ
�
r2 þ a2 þ 2Mra2

R2
sin2�

�
sin2�d	2

þ R2

�2
dr2 þ R2d�2: (44)

HereM and a ¼ J=M are the mass and the specific angular
momentum of the black hole, respectively,

R2 ¼ r2 þ a2cos2�; �2 ¼ r2 � 2Mrþ a2; (45)

and we are using units in which G ¼ c ¼ 1. (Below we
shall instead choose units with GM ¼ 1.) The event hori-
zon is located where � ¼ 0, at
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0
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FIG. 1. Newtonian elastic spinning ring of total mass m,
moving axisymmetrically in the gravitational field of a point
mass M. Contour plots of the boundaries on the motion for
different energies and for angular momentum l ¼ 0, 0.12, 1.5, 2
(in units with m ¼ k ¼ GM ¼ 1). Both bound trajectories and
escape trajectories can be present, depending on the energy.
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rh ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
; (46)

and the boundary of the ergoregion lies where the coeffi-
cient of dt2 vanishes, at

re ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2cos2�

p
: (47)

We consider only motion outside the horizon, so this
coordinate system is adequate.

The explicit form of the effective potential (35) is too
complicated to be illuminating, unlike the flat background
case. A given orbit is determined once js, jt, and initial
conditions are specified. The initial conditions determine
the values of the energy E and angular momentum L, and
the subsequent motion is confined to the region contained
in the contour (36). The equations of motion can be inte-
grated numerically to explore the detailed behavior of the
string motion.

We will present here only results for the string motion
around a rapidly spinning black hole, with a ¼ 0:99. This
is complementary to the a ¼ 0 case presented by Larsen
[1]. The role of the black hole spin is addressed below in
subsection VB5. We consider just two sets of initial con-
ditions for several different values of J2 and !, which
appear to be adequate for understanding the features of
the motion. For both sets the string starts out at rest, _r0 ¼
_�0 ¼ 0. The initial polar angle is fixed in both cases at
�0 ¼ 
=2þ 0:02, just below the equatorial plane. The two
cases differ only in the initial value of r. The two values we
will explore are (somewhat arbitrarily) r0 ¼ rh þ
1:25M � 2:39M and r0 ¼ rISCO � 1:45M, where rISCO is
the radius of the innermost stable corotating circular orbit
(ISCO) which is given in terms of M and a in, e.g.,
Ref. [20].

In Fig. 2 the two sets of initial conditions correspond to
points P1 and P2, respectively. Each point in this figure
other than those on the y axis corresponds to a circular ring
in space. The coordinates x and y, used as labels in this and
later graphs of the ðr; �Þ plane, are defined by

x ¼ r sin�; (48)

y ¼ r cos�: (49)

The grey area indicates the region inside the horizon, the
dotted red line marks the equatorial plane, and the dashed
black curve is the boundary of the ergoregion. For ! we
consider only the three values ! ¼ 0,�1, since these span
the full dynamical range and can be expected to frame the
full picture. Note that changing the sign of ! is equivalent
to changing the sign of a, since ! appears always multi-
plied by a (via gt	) in the equations of motion, and

all other occurrences of a are via a2. Positive ! corre-

sponds to corotation, while negative ! corresponds to
counterrotation.

2. Boundaries of motion

By studying the boundaries of the motion we can clas-
sify the types of dynamics and determine how they depend
on the current, energy, and initial conditions. These
boundaries are determined by Eq. (36). For a given initial
condition and current, a particular boundary is determined.
These boundaries are the relativistic version of the con-
tours plotted in Fig. 1 for a Newtonian elastic spinning ring
and, as we will see shortly, they share many qualitative
characteristics with their Newtonian counterparts. At the
end of this subsection we give examples of such bounda-
ries, but first we present some graphs, deduced from the
potential, that allow one to see which ranges of current or
energy will correspond to different qualitative types of
boundaries.
To begin with, in Fig. 3 we have plotted Eb as a function

of J ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2� þ j2�

p
and r for fixed � ¼ 
=2þ 0:02, which

corresponds to our initial conditions, and for three different
values of !. In this and all subsequent plots we adopt units
with GM ¼ c ¼ � ¼ 1. That is, in terms of the gravita-
tional radius rg ¼ GM=c2, what is plotted is Eb=�rg and

J
ffiffiffiffiffiffiffiffiffi
c=�

p
=rg vs r=rg.

In the cases ! ¼ 0, �1, where there is a maximum
outside the horizon for any given value of J, the motion
has an outer boundary in r but no inner boundary if either
E< Emin

b or E> Emax
b , where Emin

b and Emax
b correspond to

P1P2

0 1 2 3 4
2

1

0

1

2

x

y

FIG. 2 (color online). Graphical representation of the initial
conditions, in units with GM=c2 ¼ 1. The area inside the hori-
zon is covered in grey, the dotted red line marks the equatorial
plane, and the dashed black curve is the boundary of the
ergoregion. P1 corresponds to r ¼ rh þ 1:25 and P2 to r ¼
rISCO. At both points, � ¼ 
=2þ 0:02, and we choose _r ¼ _� ¼
0. The specific angular momentum is a ¼ 0:99 and, therefore, P2

lies within the ergoregion (rISCO < re).
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the minimum and the maximum of Eb, respectively. If
Emax
b > E > Emin

b then there will be three solutions to

Eq. (36), corresponding to an inner and an outer boundary
and yet another outer boundary at low values of r. In the
corotating case ! ¼ 1, where there is no maximum, the
role of Emax

b is played by Eh
b, the value of Eb at r ¼ rh. For

both an inner and an outer boundary to exist, the energy
must fall in the range Eh

b > E> Emin
b . Notice that in this

case no string can exist outside the horizon with energy
E< Emin

b .

So far we have been discussing bounds in the radial
direction near the equatorial plane. There is also a bound-
ary in the motion along the axis if the total energy of the
string is less than the energy of a string at rest at infinity,
since the string must have at least this much energy in order
to be able to escape. We call this energy Eesc. To determine
how it depends on J, we can use the flat background
example of Sec. VA. Equation (43) gives Eb ¼
��þ J2=�, whose minimum lies at EescðJÞ ¼ 2J

ffiffiffiffi
�

p
.

Figure 4 presents plots that allow one to see how the
qualitative properties of the motion depend on J, for spe-
cific values of ! and the initial r as indicated, and for � ¼

=2þ 0:02. The solid black curve, which can be thought
of as constant r slice of the graphs in Fig. 3, is the energy
(36) of the string at rest at the given radius r and is the only
curve on the graph which depends on the value of the initial
r. The dependence on ! comes in only through the gt	
term in (36). Increasing ! acts to raise the energy for a
given J. The dashed red line corresponds to the energy of a
string at rest at infinity (the escape energy). The shaded
region is the area between the curves corresponding to the
minimum and the maximum of Eb for each J (cf. Fig. 3),
with the exception of the ! ¼ 1 cases where the dotted-
dashed black curve corresponds to the value of Eb at the
horizon.6

We now demonstrate how one can infer all the qualita-
tive information about the boundaries of the motion from
Fig. 4. For a given energy or value of J, there is a corre-
sponding point on the solid black curve. This point can lie
in several distinct regions of the graph, which correspond
to qualitatively different types of boundary:
(i) A region outside the shaded area and above the

dashed red line. In this case there is just an outer

0
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FIG. 3 (color online). Plots of the energy of a string at rest (or
energy at the boundary of motion) as a function of r (plots

starting at r ¼ rh) and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2� þ j2�

p
, for three values of the ratio

between the components of the current ! ¼ �j�=j� and at � ¼

=2þ 0:02 (GM ¼ c ¼ � ¼ 1). All graphs possess minima,
which implies that bound motion is possible for energies greater
than Emin

b , the energy associated with the minimum. However,

only for ! ¼ 0, �1 is there a maximum located outside the
horizon.

6It is rather surprising to have a string (instantaneously) at rest
at the horizon with nonzero Killing energy. This comes about as
a singular limit whose nature is hidden by a singular gauge. The
first term in Eq. (36) vanishes on the horizon, so we have there
Eb ¼ �gt	

~��� ¼ 2ðgt	=g		Þj�j�, using Eq. (21) in the last
step. The metric factors are finite and nonzero as long as the
black hole is spinning, in which case the energy is nonzero as
long as both j� and j� are nonzero. But if the string is instanta-
neously static at the horizon, then the world sheet is null on that
slice, rather than being timelike, so the conformal gauge is not
accessible. In the limit as such a configuration is approached, the
conformal gauge tangent vector X

�
;� approaches the null horizon

generator, becoming infinitely stretched since the gauge condi-
tion requires that it has a nonzero timelike norm. Thus the
current 4-vector j� ¼ X

�
;�j� þ X

�
;�j� itself diverges as long as

j� ¼ h��j� ¼ g�1
		j� is nonzero. A nonzero Killing energy con-

figuration of an instantaneously static string at the horizon arises
from this singular limit of the current, but only, as seen above,
provided the black hole has spin. The underlying reason for this
last requirement is that only in the presence of spin is the Killing
vector @t, with respect to which the energy is defined, distinct
from the null Killing vector that is normal to the horizon.
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boundary, i.e. there is only one value of r outside the
horizon that yields a solution to Eq. (36) for each �
for given E and J. The string can potentially escape
in the y direction, as its energy is higher than the
Eesc.

(ii) A region outside the shaded area and below the
dashed red line. Again, there is just an outer bound-

ary. However, now the string cannot escape in the y
direction as its energy is lower than the Eesc.

(iii) A region inside the shaded area and above the
dashed red line. In this case there are always outer
and inner boundaries, and for the examples with
! ¼ 0,�1 there is yet another outer boundary at a
lower value of x. That is, Eq. (36) has up to three

FIG. 4 (color online). Plots of the energy of a string at rest (or at the boundary of motion) as a function of J ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2� þ j2t

p
for specific

values of ! and r as indicated, and for � ¼ 
=2þ 0:02 (GM ¼ c ¼ � ¼ 1). The solid black curve, which can be thought of as a
constant r slice of the graphs in Fig. 3, is the energy of the string at rest at the given radius r and is the only curve on the graph that
depends on the value of r. The dashed red line corresponds to the energy of a string at rest at infinity (the escape energy). The shaded
region is the area between the curves corresponding to the minimum and the maximum of Eb for each J (cf. Fig. 3), with the exception
of the ! ¼ 1 cases where the dotted-dashed black curve corresponds to the value of Eb at the horizon. These graphs allow one to infer
the properties of the motion. For a given energy or value of J, there is a corresponding point on the solid black curve. If this point lies
outside the shaded area and above the dashed red line then the motion has just an outer boundary in the x direction, but the string has
enough energy to potentially escape (there is no boundary in the y direction). If the point lies outside the shaded area and below the
dashed red line then the motion is bounded in all directions. If instead the point lies within the shaded region, then the motion has
boundaries both at low and high values of x. Additionally, if the point lies above the dashed red line then there is no boundary on the y
motion and the string can potentially escape. If the point lies below the dashed red line then the motion can be trapped in some toroidal
volume. Notice that for ! ¼ �1 and inside the ergosphere, Fig. 4(f), there can never be an inner boundary.
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solutions for r outside the horizon each value of �
and for given E and J. However, there is no bound-
ary on the y motion and the string can potentially
escape.

(iv) A region inside the shaded area and below the
dashed red line. The boundaries of the motion are
the same in number as in the previous case, but with
a qualitative difference: the inner and the outer
boundaries at higher values of x meet at a certain
value of y and together form a closed curve.
Therefore, there is also effectively a boundary in
the y motion and the string can be trapped in some
toroidal volume.

There is a subtle point that should not pass unnoticed:

depending on the initial conditions, a string with given E
and J which corresponds to a point in the shaded region in
Fig. 4 can either be moving in between the inner and outer
boundary at higher x’s, or it can be inside the second outer
boundary at smaller x’s. Finally it should be stressed that a
second outer boundary at small x’s can only exist when
there Eb has a maximum outside the horizon.
Next we give in Fig. 5 a few examples of plots of the

boundaries of motion corresponding to given initial con-
ditions and current (or energy), for r ¼ rh þ 1:25. The
qualitative nature of these boundary plots can be read off
from Fig. 4. For example, with E ¼ 50 there exist both
inner and outer boundaries in the x direction for all values
of!, corresponding to the fact that the solid black curve in
Figs. 4(a)–4(c) falls inside the shaded region when E ¼ 50.
Additionally, for! ¼ 1, 0 there is no boundary along the y
direction, whereas for ! ¼ �1 there is such a boundary,
corresponding to the fact that in the latter case the E ¼ 50
point on the solid black curve lies below the dashed red line
in Fig. 4(c). In Fig. 6, one can see the region closer to the
black hole: for the ! ¼ 0, �1 cases, there exists a third
boundary, which is an outer boundary. This is in accor-
dance with the form of Eb in Figs. 3(b) and 3(c) and
highlights the subtlety discussed above right after outlining
the various regions of Fig. 4. For E ¼ 17 on the other hand,
only the ! ¼ 1 choice allows motion which is unbounded
in the y direction. For ! ¼ 0 the string is trapped in a
toroidal volume, and for ! ¼ �1 there is only an outer
boundary. Figure 7 is similar to Fig. 5, but for r ¼ rISCO.
(We do not plot the ! ¼ �1 case since there is no energy
for which there will be an internal boundary for the mo-
tion.) In this case, the inner boundary of motion lies within
the ergoregion.
Before closing this section it is worth stressing once

more the similarity between the contour plots of the
boundaries of motion for a Newtonian elastic spinning
ring presented in Fig. 1 and the boundaries of motion for
the relativistic strings presented in this section.

FIG. 5 (color online). Boundaries of motion for different val-
ues of the energy and the ! parameter, for string starting at rest
at r ¼ rh þ 1:25 and � ¼ 
=2þ 0:02. The grey area represents
the region inside the event horizon, the dashed black curve the
boundary of the ergoregion, and the dashed red line the bounda-
ries of motion. The form of the boundaries is exactly what one
could have predicted by using Figs. 4(a)–4(c).

FIG. 6 (color online). Magnified segments of Figs. 5(c) and
5(e) which demonstrate the existence of yet a third boundary of
motion for ! ¼ 0, �1. This acts as a second outer boundary,
therefore forbidding any string starting from inside the region
bounded by the innermost red dotted curve to ever leave this
region.
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3. Trajectories

In this subsection we look at examples of individual
trajectories, and, in particular, we exhibit processes
whereby a string is ejected along the axis, with some of
the initial internal energy of the string converted to trans-
lational kinetic energy. To this end, we employed numeri-
cal integration with MATHEMATICA 6.0 to solve the
equations of motion. As already mentioned we consider
here two different initial conditions: one for which the
string starts outside the ergoregion, and one for which the
string starts at r ¼ rISCO, which lies well within the ergo-
region (points P1 and P2 in Fig. 2, respectively). Starting at
rest from these initial positions, there are three types of
trajectories, as indicted by the types of boundaries of
motion: those that are trapped inside an outer boundary

with no inner boundary and simply fall in across the
horizon, those that are trapped in some toroidal volume,
and those that can reach spatial infinity along the direction
of the axis. The trajectories of the first type display no
interesting features so we do not present any explicit
examples of them here.7

We begin by discussing bound trajectories. The energies
we considered previously do not lead to confined motion
for a string starting at P1. This can be seen in Fig. 5: For
the cases where there can be confined motion, namely,
Figs. 5(d) and 5(e), our initial position lies on the inner-
most outer boundary. Thus the string would fall straight
into the black hole. However, for other energies there can
be confined motion for a string starting at P1. Also, accord-
ing to Fig. 7(b) we have already found an example where
the string’s motion is confined when it starts from P2, i.e.
inside the ergoregion. In Fig. 8 we present the motion of a
string starting from P1 with E ¼ 9 and that of a string
starting from P2 with E ¼ 8 for qualitative comparison.
Both cases refer to ! ¼ 1 (corotation). In both cases the

FIG. 7 (color online). Boundaries of motion for different val-
ues of the energy and the ! parameter, for string starting at rest
at r ¼ rISCO and � ¼ 
=2þ 0:02. The form of the boundaries is
exactly what one could have predicted by using Figs. 4(d)–4(f).
Figures 7(c) and 7(d) focus on the region close to the black hole
of Figs. 7(a) and 7(b), respectively. Clearly, the inner boundary
of motion lies within the ergoregion.

FIG. 8 (color online). Confined trajectories of the string for
different initial positions and different energies. The blue con-
tinuous line corresponds to the trajectory of a point on the string
(	 dimension suppressed). No qualitative difference seems to
exist between the motion of a string starting inside the ergore-
gion and one starting outside. In both cases the motion seems to
follow no clear pattern.

7Note that one can have trajectories of this type even if there
exists an inner boundary, provided that an outer boundary at
smaller x’s exists as well, as discussed earlier. This is the case,
for instance, when the boundaries of motion are those of
Fig. 6(a) or Fig. 5(d) and the string starts at rest at r ¼ rh þ 1:25.
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strings move somewhat randomly, without following any
clear pattern. Figures 8(b) and 8(d) focus on the area inside
and around the ergoregion. The string is sometimes pulled
by gravity rather sharply back toward the equatorial plane
after reflecting from the inner boundary. We have moni-
tored the accuracy by running the code backward in time
from the point the forward run ended and checking how
closely this backward run approaches the initial conditions.
In the plots presented we stop the simulation before the
accuracy becomes lower than 10�4.8

Before proceeding further to trajectories that can reach
spatial infinity, there is another interesting feature of con-
fined motion which should not be missed. In Fig. 9 we
present confined trajectories starting from P1 with E ¼ 8
and from P2 with E ¼ 5:5, always for ! ¼ 1. There is
evidently some remarkable ‘‘focusing’’ of the motion close
to the equatorial plane in both cases, and a very regular
pattern is generated. In Figs. 9(b) and 9(d) we have dis-
torted the aspect ratio in order to make manifest the pattern
that arises in the motion. We do not understand why these

cases are so different from those shown in Fig. 8. The
focussing cannot be explained by considering only the
boundary of allowed motion (dotted curve) as inferred
using the effective potential. The appearance of a
Lissajous-like pattern indicates that when the string stays
close to the equatorial plane the motion becomes similar to
complex periodic oscillation.
Finally, we discuss trajectories that can reach spatial

infinity.9 In Fig. 10(a) we have plotted the trajectory of a
string starting from P1 with E ¼ 17 and ! ¼ 1. After a
couple of oscillations around the equatorial plane, which
are exhibited more clearly in Fig. 10(b), the string escapes
along the z direction. The behavior of a string starting from
P2 with E ¼ 38 and ! ¼ 1 is quite similar. In both cases,
there is some conversion of internal energy of the string
into kinetic energy along the y axis.
Another interesting class of nonconfined trajectories are

the scattering trajectories found by Larsen in Ref. [1]. An
example of such a trajectory for a string with E ¼ 11:2929,
! ¼ 1, and initial conditions r0 ¼ 200, �0 ¼ 3:11, _r0 ¼
�3:4, and _�0 ¼ �0:007 is shown in Fig. 11(a). The string
comes in along the axis and after a couple of bounces
around the black hole, which can be better appreciated in
Fig. 11(b), escapes to infinity out the other side. The

FIG. 9 (color online). Focusing of the trajectories. In this case
a pattern seems to be arising. In Figs. 9(b) and 9(d) we have
distorted the aspect ratio in order to make this manifest.

FIG. 10 (color online). Escape trajectories for strings of differ-
ent energy and angular momentum, starting at P1 and P2,
respectively. After some oscillations around the equatorial plane
the strings escape to infinity along the axis of symmetry. Clearly
there is some conversion of internal to kinetic energy.

8Using only the default settings of MATHEMATICA, we were
able to run the simulation for �� 150–200 for trajectories
starting from P1 and for �� 50–100 for trajectories starting
from P2 (provided that the string did not end up in the inside the
horizon before that time) before dropping below the required
accuracy. Remarkably, for the ‘‘focused’’ trajectories, such as
those in Fig. 9, the accuracy was still 2 orders of magnitude
higher than our minimum requirement at � ¼ 500. Note that � is
the coordinate time on the world sheet.

9These trajectories are similar to the time-reversed version of
Larsen’s adiabatic capture trajectories found in Ref. [1].
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scattering in this case reduces the mean radius in the x
direction, signaling a conversion of internal energy to
kinetic energy along the y direction, as explained below
in the next subsection VB4.

In Figs. 11(c) and 11(d) we show a case where the string
actually falls into the black hole instead if getting scattered.
For this case, E ¼ 11:8417, ! ¼ 1, and the initial condi-
tions are r0 ¼ 200, �0 ¼ 3:11, _r0 ¼ �2:4, and _�0 ¼
�0:007. In this case the string has more energy than a
string at rest on the horizon and, hence, its motion has no
inner boundary close to the equatorial plane (cf. the dis-
cussion in Sec. VB 2 about Figs. 3(a) and 4].

4. Ejection energy

As noted, on some trajectories internal energy of the
string can be converted to translational kinetic energy
along the axis. To characterize this energy we may asso-
ciate a relativistic boost factor � ¼ E=E0 with the asymp-
totic string, where E0 is the energy of the string in its center
of mass frame at infinity. In the center of mass frame, all
velocities vanish at the inner and outer boundaries � ¼ �i;o

of oscillation, so we may use (43) to obtain E0 ¼
�þ J2=�. Eliminating J we find E0 ¼ �i þ �o. Thus,
using the present notation x for the cylindrical radius, we

have

� ¼ E

xi þ xo
: (50)

With this relation the � factors corresponding to the pro-
cesses shown in the previous examples can be computed.
For example, for the E ¼ 17 case in Fig. 10 we find � �
1:01, or v=c � 0:15, and for the E ¼ 38 case we find � �
1:09, or v=c � 0:39. We expect that these mildly relativ-
istic boost factors are typical of what one can expect in
generic cases.

5. The role of black hole spin

The black hole spin enters the string dynamics via the a
dependence of the various metric coefficients. While the
value of a certainly affects the boundaries of motion and
dynamics when other quantities are held fixed, we do not
see any systematic qualitative effect that can be attributed
uniquely to the spin. That is, by varying the current, energy,
and location of the string similar effects can be produced.
This statement is based both on examining cases (not
explicitly reported here) for which a ¼ 0, as well as by
comparing the behaviors for different values of !. The
dynamics only depends on ! when a is nonzero, but the
effect of changing ! can also generally be reproduced by
changing other quantities.
The one exception to this statement concerns the issue of

negative Killing energy states. In the presence of black
hole spin, there is an ergoregion, inside of which such
states exist for point particles. The same is true for the
string, though the mechanism is a bit different.
For a particle, negative angular momentum orbits in the

ergoregion have negative Killing energy. Longitudinal mo-
tion of a string is meaningless, so it is not the ‘‘orbital’’
motion, but rather the current on the world sheet that can
access negative energy states. In particular, the second term

on the right-hand side of the energy (36), i.e. �gt	
~��� ¼

jgt	=g		jL=2
, is negative there when the angular mo-

mentum L ¼ 4
!J2=ð1þ!2Þ is negative. The first term
in Eq. (36) vanishes at the horizon, so the energy is
certainly negative there when L < 0. The negative energy
states extend out a certain distance (which depends on the
values of ! and J) from the horizon into the ergoregion.
For example, one can see in Fig. 4(f) the negative energy
states at rISCO in the case ! ¼ �1, except for the smallest
values of J. (For the limiting case of zero tension and ! ¼
�1, there are negative energy states everywhere in the
ergoregion.)

VI. RELEVANCE TO ASTROPHYSICS?

As stated in the introduction, although our primary aim
in this paper was to study the motion of a current carrying
strings in a Kerr background as an interesting dynamical
system, our investigation was also loosely motivated by the

FIG. 11 (color online). Scattering and collapse on the black
hole of strings coming from spatial infinity. The scattering can
lead to energy conversion, as can be seen from Fig. 11(a) by the
fact that the average radius of oscillation along the x direction
has been slightly reduced after the scattering. On the other hand,
if the inner boundary of motion lies within the horizon close to
the equatorial plane, then instead of a scattering there can be a
collapse, see Figs. 11(c) and 11(d).
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problem of the production of collimated jets in astrophys-
ics. We would therefore like to comment on what might be
the relevance of our findings to astrophysical systems.

First of all, the current carried by the string in the model
need not represent an electric current, but it can just serve
to model the role of angular momentum. In this sense, a
current carrying string can serve as an idealization of some
MHD matter configuration with tension and angular mo-
mentum, as mentioned in the introduction. Simplistic as it
may be, this allows for the identification of a mechanism
that might conceivably be relevant: the tension sets a
barrier for the motion that keeps the string within a certain
radius from the axis of symmetry, while the angular mo-
mentum sets a barrier that keeps the string outside a certain
radius. Gravity deforms these barriers creating either a
closed region in which the string is trapped, or a ‘‘restricted
path’’ that leads to motion along the symmetry axis. If
some physical process were to ‘‘feed’’ such a system with
strings close to the equatorial plane, then under the right
circumstances one might end up with a very well-
collimated stream of strings moving out along the axis of
symmetry. Of course, the axisymmetry we are imposing
might be too restrictive, and, in particular, even if a string
started out approximately axisymmetric, it might wobble
or twist and reconnect. Perhaps the tension could act to
suppress such effects, but this requires further
investigation.

Still, one may speculate that the general flavor of the
mechanism exhibited by the strings might generically be
present in a class of astrophysical systems. For instance,
given a system with an accretion disk, plasma leaving the
inner edge of the disk would carry some angular momen-
tum, and plasma flux tubes do possess a significant tension
(which however is not constant but grows in proportion to
the length). It might even be that differential rotation can
stretch such a tube, storing in it a large amount of electro-
magnetic energy before launching it towards the axis.
External magnetic fields, which have been left out of
consideration in our initial study, might also play an im-
portant role in the subsequent dynamics. It remains to be
seen whether aspects of this picture could actually be
astrophysically relevant.

Regarding the energetics, it should be noted that the
mechanism described here does not lead to significant
(ultrarelativistic) acceleration of the strings. While internal
energy of the string can be converted to kinetic energy of
motion along the axis of symmetry, the resulting � factors
in the examples we studied are rather close to unity, the
largest velocity we reported being 0:39c. Therefore, even if
the mechanism we have found is somehow relevant to
collimation, it does not appear able to explain the accel-
eration of relativistic jets. The acceleration would have to

occur due to the presence of electromagnetic fields, or to
some other mechanism. In particular, the process discussed
here does not tap into the rotational energy of the black
hole, which is a prime candidate for the source of ultra-
relativistic jet energy.
On the contrary, the collimation effect we find persists

even at the Newtonian level, which may be advantageous:
collimated jets seem to be present not only around black
holes, but also around objects with significantly weaker
gravitational fields, such as accreting young stars, for in-
stance [3]. Therefore, if there is a common mechanism for
the collimation, it should not depend on relativistic effects.
Hence, the effects described here could perhaps be part of a
more involved process that collimates and drives astro-
physical jets.

VII. CONCLUSIONS

We have studied the motion of relativistic, current carry-
ing strings moving axisymmetrically on the background of
a Kerr black hole. First the equations of motion and con-
served quantities in the conformal gauge were found. Next,
we determined how the energy of a string that is instanta-
neously at rest depends on the current and the position of
the string. Contours of this quantity determine boundaries
of the possible motion of a string with that energy and
current. We compared this analysis with that for a
Newtonian elastic ring moving around a point mass and
found that system to be qualitatively similar.
By considering a number of examples and various plots

of the relevant functions, the possible types of motion were
mapped out. Regions of parameters for which the string
falls into the black hole, is trapped in a toroidal volume, or
can escape to infinity, were identified. After this general
analysis, we examined representative trajectories found by
numerical integration, illustrating various interesting be-
haviors. In particular, we found that a string can start out at
rest near the equatorial plane and, after bouncing around,
be ejected out along the axis, some of its internal (elastic or
rotational kinetic) energy having been transformed into
translational kinetic energy. The resulting velocity can be
an order unity fraction of the speed of light.
Finally, we addressed the question of possible astrophys-

ical significance of this system as a simple model of MHD
plasma flux tubes, which might conceivably play a role in
jet formation and collimation.
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