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In-medium Yukawa theory is part of the thermodynamics of the standard model of particle physics and

is one of the main building blocks of most effective field theories of fermionic systems. By computing its

pressure we investigate the nonperturbative thermodynamics at finite temperature and density using the

optimized perturbation theory framework. Our calculations are valid for arbitrary fermion and scalar

masses, temperature, chemical potential, and not restricted to weak coupling. The model is considered in

the presence as well as in the absence of condensates. Comparison with nonperturbative results shows that

second-order perturbation theory fails in the first case but performs rather well when condensates are

absent, even at high-temperature regimes.
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I. INTRODUCTION

Matter under extreme conditions often requires the use
of effective field theories in the description of its thermo-
dynamical properties, independently of the energy scale
under consideration. For instance, in the phenomenon of
spontaneous symmetry breaking and temperature depen-
dence of antiferromagnetic order in high Tc superconduc-
tors described by a field-theoretic version of the Hubbard
model [1] at relatively low energies, one has to incorporate
the interaction of fermions with the crystal lattice via
phonons, in a coarse graining of quantum electrodynamics.
Moving up in energy scale, the phase structure of strong
interactions and the quark-gluon plasma [2], investigated
in high-energy heavy-ion collisions experiments [3] and in
the observation of compact stars [4], often demands sim-
plifications of quantum chromodynamics, producing a va-
riety of low-energy effective models [5].

Besides the major role it plays in the mechanisms of
spontaneous symmetry breaking and mass generation in
the standard model of particle physics, the Yukawa inter-
action stands out as one of the main ingredients in the
construction of simplifying effective field theories to study
the thermodynamics of systems under extreme conditions,
especially if one imposes renormalizability. Although an
effective theory does not require renormalizability to be
consistent, a physically motivated cutoff being usually
more than satisfactory in this case, this feature can prove
to be useful in the study of scale dependence and running
via renormalization group methods [6].

In this paper we investigate the full nonperturbative
thermodynamics of the Yukawa theory at finite tempera-
ture and density by computing its pressure using the opti-
mized perturbation theory (OPT) framework. In our

evaluations we consider contributions up to two loops,
which include direct (Hartree-like) as well as exchange
(Fock-like) terms, so that the Yukawa thermodynamics can
be investigated in the presence of condensates and also in
their absence. In the first case, besides OPT and ordinary
perturbation theory (PT) we shall also perform a mean field
theory (MFT) evaluation. This is an important step in
establishing the OPT reliability since the reader will see
that when exchange contributions are neglected OPT ex-
actly reproduces MFT results, which can be considered
‘‘exact’’ in this (large N) limit.1 We present results that are
valid for arbitrary fermion and scalar masses, temperature,
chemical potential, and coupling. The region of large
values of the coupling is particularly interesting and useful,
since several effective field theory models in particle and
nuclear physics exhibit Yukawa coupling constants that are
much larger than 1, as is the case, for instance, in the linear
sigma model [8], frequently used in the description of the
chiral phase transition [9–15], and in pion-nucleon models
extracted from chiral Lagrangians [16,17].
When condensates are present we show that, as ex-

pected, PT has a poor performance since it cannot resum
direct (tadpole) contributions associated with symmetry
breaking. On the other hand, OPT improves over MFT
by also incorporating exchange terms in a nonperturbative
fashion.
In the absence of condensates and in the regime of very

small coupling our numerical findings can be verified in the
limit of vanishing temperature by comparison to exact
analytic two-loop perturbative results previously obtained
by some of us for the equation of state of cold and dense

Yukawa theory within the MS scheme [6]. In Ref. [6], the
two-loop momentum integrals were computed analytically
for arbitrary fermion and scalar masses, the final result
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1The reliability of the OPT framework applied to symmetric
and broken phases was studied previously in the context of �4

scalar theories (see for instance Ref. [7]).
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being expressed in terms of well-known special functions,
which provides us with a solid and clear reference in this
limit.

Furthermore, this comparison also provides another way
of testing the idea that perturbation theory at high density
and zero temperature in the symmetric phase is much
better behaved than its converse [6,18–22], which has
well-known severe infrared problems [23]. Our analysis
shows that, surprisingly, second-order PT agrees quite well
with the OPT nonperturbative results up to values of the
coupling of order one in the case of cold and dense as well
as hot and dense Yukawa theory.

The framework of OPT [24], also known as the linear
delta expansion, is an example of a variational method that
implements the resummation of certain classes of Feynman
diagrams, incorporating nonperturbative effects in the
computation of the thermodynamic potential (for related
methods, see Ref. [25]). It has been successfully applied to
the study of many different physical situations, such as
mapping the phase diagram of the 2þ 1 dimensional
Gross-Neveu model [26], where a previously undeter-
mined ‘‘liquid-gas’’ phase has been located, and determin-
ing the critical temperature for Bose-Einstein condensation
in dilute interacting atomic gases [27]. Some early appli-
cations at finite temperature can be found in Ref. [28].

The paper is organized as follows: In Sec. II, we present
the in-medium Yukawa theory and set up the notation of
the paper. Section III contains a sketch of the derivation of
the perturbative thermodynamic potential at finite tempera-
ture and chemical potential. In Sec. IV, we apply the OPT
machinery to the evaluation of the nonperturbative ther-
modynamic potential in the Yukawa theory. The thermo-
dynamics of the Yukawa theory, in the presence of
condensates, is considered in Sec. V where the results
from PT, OPT, and MFT are contrasted. In Sec, VI, we
consider the symmetric case, where condensates are ab-
sent. Comparing the results from OPT and PT, we show
that the latter performs well also for extreme temperature
values up to two-loop order. Section VII contains our
conclusions. Technical details involved in the calculation
of the vacuum contributions and direct terms in the two-
loop thermodynamic potential are left for the appendices.2

II. IN-MEDIUM YUKAWATHEORY

In what follows, we consider a gas of NF flavors of
massive spin-1=2 fermions whose interaction is mediated
by a massive real scalar field,�, with an interaction term of
the Yukawa type, so that the Lagrangian has the following
general form:

L Y ¼ Lc þL� þLint; (1)

where

L c ¼ XNF

�¼1

�c �ði@6 �mÞc �; (2)

L � ¼ 1
2ð@��Þð@��Þ � 1

2m
2
��

2 � �3�
3 � ��4; (3)

L int ¼
XNF

�¼1

g �c �c ��: (4)

Here, m and m� are the fermion and boson masses, re-

spectively, assuming all the fermions have the same mass,
for simplicity. The Yukawa coupling is represented by g;
�3 and � are bosonic self-couplings allowed by renorma-
lizability. Here we choose �3 ¼ � ¼ 0 disregarding bo-
sonic self-interactions, which will be treated in a future
work [29].
We work in the imaginary-time Matsubara formalism of

finite-temperature field theory, where the time dimension is
compactified and associated with the inverse temperature
� ¼ 1=T [23]. In this approach, one has to impose peri-
odicity (antiperiodicity) for the bosonic (fermionic) fields
in the imaginary time �, in order to satisfy the spin-
statistics theorem. Therefore, only specific discrete
Fourier modes are allowed, and integrals over the zeroth
component of four-momentum are replaced by discrete
sums over the Matsubara frequencies, denoted by !B

n ¼
2n�T for bosons and!F

n ¼ ð2nþ 1Þ�T for fermions, with
n integer. Nonzero density effects are included by incor-
porating the constraint of conservation of the fermion
number via a shift in the zeroth component of the fermionic
four-momentum p0 ¼ i!F

n � p0 ¼ i!F
n þ�, � being

the chemical potential.
From the partition function written in terms of the

Euclidean action for the Lagrangian (1), ZYðT;�Þ ¼
Tr expð�SYÞ, one derives the perturbative series for the
thermodynamic potential �Y � �ð1=�VÞ lnZY [23]

�Y ¼ � 1

�V
lnZ0 � 1

�V
ln

�
1þ X1

‘¼1

ð�1Þ‘
‘!

hS‘inti0
�
; (5)

where V is the volume of the system, Z0 is the partition
function of the free theory, and Sint represents the
Euclidean interaction action. Notice that Wick’s theorem
implies that only even powers in the above expansion
survive, yielding a power series in �Y � g2=4�.
However, at finite temperature the perturbative expansion
also contains odd powers of g coming from resummed
contributions of the zeroth Matsubara mode for bosons,
such as in the case of the plasmon contribution [23]. In the
zero-temperature limit this is not the case and, even in-
cluding hard-dense-loop corrections, only g2‘ terms are
modified [20]. Since we restrict our analysis to two loops
(the resummed OPT calculation also departs from a two-

2The technicalities concerning Matsubara sums, renormaliza-
tion, and the analytic evaluation of in-medium momentum
integrals in the calculation of the medium contributions up to
two loops were extensively addressed in the appendix of Ref. [6].
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loop perturbative setting), we are not concerned with this
issue. Omitting the diagrams representing counterterms,
the perturbative thermodynamic potential is shown, dia-
grammatically, in Fig. 1. The first two diagrams correspond
to the free gas, while the last two represent interaction
terms: the third diagram is a contribution of the direct type
and the fourth is of the exchange type. Notice that the third
diagram, which contains tadpoles, belongs to the one-
particle-reducible class, that does not contribute in the
absence of condensates. It will therefore be neglected in
Sec. IV, where only the symmetric case is considered.

III. PERTURBATIVE THERMODYNAMIC
POTENTIAL AT FINITE � AND T

Considering the thermodynamic potential only up to the
first non trivial (two-loop) contribution, which corresponds
to direct plus exchange terms, one must evaluate the fol-
lowing Oðg2Þ quantity:

�Y ¼ i

2

ZX
K
ln½K2 �m2

�� þ i
ZX

P
Tr ln½P6 �m�

� i

2

ZX
P
Tr

�
�dirð0Þ þ�excðPÞ

ðP6 �mÞ
�
; (6)

where the trace is to be performed over the Dirac structure,
and the four-momenta are given in terms of the Matsubara
frequencies and the three-momenta for fermions, P ¼
ðp0 ¼ i!F

n þ�;pÞ, and bosons, K ¼ ðk0 ¼ i!B
‘ ;kÞ. We

choose the metric tensor signature g�� ¼
diagðþ;�;�;�Þ, and the following shorthand notation
for sum-integrals:

ZX
P
¼ T

X
n

Z d3p

ð2�Þ3 : (7)

The direct contribution is given by

�dirð0Þ ¼ �i

�
g

m�

�
2ZX

Q
Tr

1

½Q6 �m� ; (8)

and, the exchange self-energy is given by the following
sum-integral over fermionic momenta:

�excðPÞ ¼ ig2
ZX

Q

1

½Q6 �m�½ðP�QÞ2 �m2
��

: (9)

Computing the traces at � � 0 and T � 0 (see Ref. [6]
for details concerning the exchange term), one can write

the thermodynamic potential as�Y ¼ �vac
Y þ�med

Y ðT;�Þ,
where the vacuum contribution prior to renormalization
has the form

�vac
Y ¼ 1

2

Z d3k

ð2�Þ3 !k � 2NF

Z d3p

ð2�Þ3 Ep

� g2N2
F

2m2
�

�
2m

Z d3p

ð2�Þ3
1

Ep

�
2

� g2
NF

4

Z d3p1

ð2�Þ3
d3p2

ð2�Þ3
�J�ðEþ �!12Þ
!12Ep1

Ep2

¼ �Bðm�Þ þ 4NFBðmÞ þ�dir
vacðm;m�Þ

þ�exc
vacðm;m�Þ; (10)

where !k ¼ ðk2 þm2
�Þ1=2, Ep ¼ ðp2 þm2Þ1=2, E� �

Ep1
� Ep2

, !12 � ðjp1 � p2j2 þm2
�Þ1=2, and we have de-

fined

�J � � �2
m2 � p1 � p2 � Ep1

Ep2

E2� �!2
12

¼ 1� 4m2 �m2
�

E2� �!2
12

:

(11)

Notice that Eq. (10) contains zero-point energy divergent
terms, which are T- and�- independent only within the PT
approach in which case they can be conveniently absorbed
by the usual vacuum subtraction, which normalizes the
pressure so that it vanishes at� ¼ 0. In practice this means
that, as done in Ref. [6], one does not have to care to their
explicit evaluation and renormalization. However, within
the other approaches (OPT and MFT) considered here the
PT bare mass m is replaced by effective (T- and �-
dependent) masses within the same diagrams. Therefore,
we must renormalize those contributions appropriately.

Within the MS subtraction scheme, the fully renormalized
vacuum term can be written as (see Appendices A and B
for details)

�vac
Y ¼ �BRENðm�Þ þ 4NFB

RENðmÞ þ�dir;REN
vac ðm;m�Þ

þ�exc;REN
vac ðm;m�Þ; (12)

where we have defined the following functions of the
masses:

BRENðMÞ � M4

64�2

�
3

2
þ log

�
�2

M2

��
; (13)

FIG. 1. Perturbative thermodynamic potential for the Yukawa theory to two loops. Solid lines represent fermions and dashed lines
stand for bosons. Here we omit the diagrams containing counterterms. The third (tadpole) contribution can be neglected when we
consider the symmetric case.
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�dir;REN
vac ðm;m�Þ � � g2N2

F

2m2
�

�
m3

ð2�Þ2
�
1þ ln

�
�2

m2

���
2
; (14)

�exc;REN
vac ðm;m�Þ � NF

g2

2

m4

64�4

�
v1

�m2
�

4m2

�
þ

�
	þ log

�
�2

m2

��
v2

�m2
�

4m2

�

þ 1

2

�
	þ log

�
�2

m2

��
2
v3

�m2
�

4m2

�
þ 6�ðm2Þ �m4

�

m4

�
1� 6

m2

m2
�

�
�ðm2

�Þ
�
: (15)

Here 	 is the Euler constant, � is the renormalization scale in the MS scheme, and the functions viðzÞ and �ðm2Þ are
defined in Appendices A and B.

Adding the direct term to the free gas plus exchange medium-dependent terms evaluated in Ref. [6] one obtains

�med
Y ðT;�Þ ¼ T4

2�2

Z 1

0
z2dz log½1� e�!z� � T4 NF

�2

Z 1

0
z2dzflog½1þ e�ðEz��=TÞ� þ log½1þ e�ðEzþ�=TÞ�g

� g2T2 N2
Fm

4

ð4�4Þm2
�

�
1þ ln

�
�2

m2

���Z 1

0
z2dz

1

½z2 þm2=T2�1=2
�

1

½1þ eðEz��=TÞ� þ
1

½1þ eðEzþ�=TÞ�
��

� g2T4 N2
Fm

2

ð2�4Þm2
�

�Z 1

0
z2dz

1

½z2 þm2=T2�1=2
�

1

½1þ eðEz��=TÞ� þ
1

½1þ eðEzþ�=TÞ�
��

2

� g2T2m2 NF

ð2�Þ4 �1

Z 1

0
z2dz

�
Nfð1Þ
Ez

�
� g2T2 NF

ð2�Þ4 ð�2 þ 3�3Þ
Z 1

0
z2dz

�
nbð!zÞ
!z

�

þ g2T4 NF

2ð2�Þ4
Z 1

0
z2dzy2dy

Z 1

�1
duzy

1

EzEy

½ ~Jþ�1 þ ~J��2�

þ g2T4 NF

ð2�Þ4
Z 1

0
z2dzx2dx

Z 1

�1
duzx

1

!xEzEzx

½ ~K� ~Eþ � ~Kþ ~E��nbð!xÞNfð1Þ; (16)

where, in order to perform numerical investigations, we
have defined the following dimensionless quantities:!2

z ¼
z2 þm2

�=T
2, E2

z ¼ z2 þm2=T2, ~E� ¼ Ez � Ezx, E2
zx ¼

x2 þ z2 þ 2xzuzx þm2=T2, and

~J � ¼ 1þ 4ðm=TÞ2 � ðm�=TÞ2
ðEz � EyÞ2 �!2

zy

; (17)

~K� ¼ 1þ 4ðm=TÞ2 � ðm�=TÞ2
~E2� �!2

x

; (18)

Nfð1Þ ¼ nfðEz þ�=TÞ þ nfðEz ��=TÞ; (19)

�1 ¼ nfðEz þ�=TÞnfðEy þ�=TÞ
þ nfðEz ��=TÞnfðEy ��=TÞ; (20)

�2 ¼ nfðEz þ�=TÞnfðEy ��=TÞ
þ nfðEz ��=TÞnfðEy þ�=TÞ; (21)

�1 ¼ �4
m�

m

�
1� m2

�

4m2

�ð3=2Þ�
tan�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4m2

m2
�

� 1

vuuut
�

þ tan�1

� 1
2 �

m2
�

4m2ffiffiffiffiffiffi
m2

�

4m2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

�

4m2

r
��

þ 7

2
� m2

�

2m2
� 3

2
log

�
m2

�2

�

þm2
�

m2

�
3

2
� m2

�

4m2

�
log

�
m2

m2
�

�
; (22)

�2 ¼ m2 � 1
6m

2
�; (23)

�3 ¼ 2

3

�
2m2 � 5

12
m2

�

�
� 1

3
m2

�

�
4m2

m2
�

� 1

�ð3=2Þ

� tan�1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2

m2
�

� 1
r

�
�

�
m2 �m2

�

6

�
log

�
m2

�2

�
; (24)

with !2
zy ¼ z2 þ y2 þ 2zyuzy þm2

�=T
2, x ¼ k=T, z ¼

p1=T, y ¼ p2=T, nbðxÞ ¼ ½expðxÞ � 1��1, and nfðxÞ ¼
½expðxÞ þ 1��1.
Given the perturbative expressions obtained in this sec-

tion, we can compute the thermodynamic potential �Y in
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the OPT framework, which corresponds to resumming all
dressed diagrams of the direct and exchange types, gen-
erating in practice an effective mass for the fermions.

IV. NONPERTURBATIVE THERMODYNAMIC
POTENTIAL IN THE OPT FRAMEWORK

Following the standard procedure, the OPT framework
[24] can be implemented in the Yukawa theory as

LOPT ¼ �c �½i@6 � ðmþ 
�Þ�c � þ �

�
1
2ð@��Þ2 � 1

2m
2
��

2

�

þ �g� �c �c �; (25)

where a sum over flavors is implied, and 
� ¼ 
ð1� �Þ.
As one can easily notice from the deformed Lagrangian
above, at � ¼ 0 the theory is an exactly solvable theory of
massive fermions even in the case when, originally,m ¼ 0.
In this particular case, the arbitrary mass parameter, 
,
works as an infrared regulator which proves to be very
useful in studies related to chiral symmetry breaking. We
should remark that, due to our choice, the meson sector
disappears at � ¼ 0 since there is no need for their media-
tion in this case. Finally, when � ¼ 1 the original, inter-
acting theory is recovered, so that our LOPT interpolates
between a free (exactly solvable) fermionic theory and the
original one.

The Feynman rules generated by the interpolating theory
are trivially obtained from the original ones:m � mþ 
�,
g � �g, and the bosonic propagator receives a 1=� factor.
It is important to notice that the interpolation does not
change the polynomial structure of the original theory
and hence does not spoil renormalization, as proved in
Ref. [30]. Now, a physical quantity such as �OPT

Y is per-
turbatively evaluated in powers of the dummy parameter �,
which is formally treated as small during the intermediate
steps of the evaluation. At the end one sets � ¼ 1, in a
procedure that is analogous to the one used within the
large-N approximation, where N is formally treated as a
large number and finally set to its finite value at the end.
The result, however, depends on the arbitrary parameter, 
,
which can be fixed by requiring that �OPT

Y be evaluated at
the point where it is less sensitive to this parameter [31]
(principle of minimal sensitivity, PMS). This can be ac-
complished by requiring

d�OPT
Y

d


��������
¼ �
;�¼1
¼ 0: (26)

In general, the optimum value �
 becomes a function of the
original couplings via self-consistent equations, generating
nonperturbative results.

Now we can apply the method to the case of the two-
loop perturbative �Y given in Eq. (6). Using the OPT
replacements for the Feynman rules and expanding 
� to
order �, one obtains the first nontrivial result

�OPT
Y ¼ �

i

2

ZX
K
ln½K2 �m2

�� þ i
ZX

P
Tr ln½P6 � ðmþ 
Þ�

þ �i
ZX

P
Tr

�



½P6 � ðmþ 
Þ�
�

� �
i

2

ZX
P
Tr

�
�dirð0; 
Þ þ�excðP;
Þ

½P6 � ðmþ 
Þ�
�
; (27)

where

�dirð0; 
Þ ¼ �i

�
g

m�

�
2ZX

Q
Tr

1

½Q� ðmþ 
Þ� (28)

and

�excðP;
Þ ¼ ig2
ZX

Q

1

½Q6 � ðmþ 
Þ�½ðP�QÞ2 �m2
��

:

(29)

Notice that, when compared to the second-order perturba-
tive result, Eq. (27) displays an extra contribution given by
the third term on its right-hand side, which represents a
one-loop graph with a �
 insertion. Now, using Eq. (26)
one arrives at

0 ¼ �i
ZX

P
Tr

�
1

½P6 � ðmþ �
Þ�
�

þ �i
ZX

P
Tr

�
1

½P6 � ðmþ �
Þ�
�

þ �i
ZX

P
Tr

�
�


½P6 � ðmþ 
Þ�2
�

� �i
ZX

P
Tr

�
�dirð0; �
Þ þ �excðP; �
Þ

½P6 � ðmþ �
Þ�2
�
; (30)

where, to obtain the last term, we have used a redefinition
of momenta p � q, q � p at an intermediate step. Setting
� ¼ 1, one has a nontrivial, coupling-dependent self-
consistent integral relation for the optimum mass parame-
ter involving the self-energy given by

i
ZX

P
Tr

�
�
��dirð0Þ � �excðP; �
Þ

½P� ðmþ �
Þ�2
�
¼ 0: (31)

Since the OPT propagator has an infinite number of 

insertions, one can see that the optimization will resum
exchange graphs in a nonperturbative way. It is very inter-
esting to notice that when exchange terms are neglected
�
 ¼ �dirð0Þ ¼ �gh�i0, where h�i0 represents the scalar
condensate, satisfying the MFT self-consistent relation for
the effective mass (obviously, when g ! 0 the OPT results
agree with the free gas case). This type of result is con-
sistent with applications of OPT to different types of
theories [32] and illustrates the way OPT works. Notice
that within the Hartree approximation one also adds and
subtracts a mass term that is determined self-consistently.
The basic difference is that the topology of this term is
fixed from the start: direct terms in the Hartree approxi-
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mation, direct plus exchange in the Hartree-Fock approxi-
mation. Within OPT the effective mass mþ 
 is arbitrary
from the start, its optimum form being determined by the
topology of the contributions considered in the perturbative
evaluation of a physical quantity such as the thermody-
namic potential considered here.

In the next two sections we shall study the pressure
numerically, using different approximations in several dif-
ferent situations. With this aim we set m ¼ 0:1�MS,m� ¼
m=2 in our numerical routines.3 The temperature and
chemical potential ranges considered cover 0 ! 10m,
while the coupling values cover 0 ! �.

V. RESULTS IN THE PRESENCE OFA SCALAR
CONDENSATE

In this section we compare the results generated by PT,
OPT and MFT when the scalar condensate represented by
the direct (one-particle reducible) terms are considered.
This case is also interesting because one can use the
well-established MFT to analyze the results provided by
OPT and PT. As already mentioned, when exchange con-
tributions are not considered in OPT, MFT results are
exactly reproduced since in this case both theories employ
the same effective mass Meff ¼ mþ �MFT

dir ð0Þ ¼ mþ �
.
Each approximation considers different two-loop contribu-
tions: PT takes all graphs shown in Fig. 1 into account,
while OPT considers all plus the extra one-loop fermionic
graph with the �
 insertion. In practice, as shown in the
previous section, the MFT result is quickly recovered from
the OPT one by neglecting the exchange term. Figure 2
shows the pressure as a function of� at T ¼ 0. As one can
see, PT predicts very high values for the pressure as �
increases, in disagreement with MFT and OPT results.
Since OPT agrees exactly with MFTwhen exchange terms
are neglected, one can also see in this figure the effects of
resumming exchange contributions: they yield slightly
higher values of the pressure for increasing �. Figure 3
shows the same situation but at a high temperature. In this
case, the OPT-predicted pressure values are smaller than
the MFT ones as � increases.

In Fig. 4 we analyze the pressure as a function of the
coupling for low (0:5m) and high (5m) values of � and T.
As expected, all methods agree with the free gas case when
g ! 0. Also, at high T,� valuesMFTand OPT results tend
toward the free gas since one approaches the Stefan-
Boltzmann limit, while PT has a completely different
behavior in this situation. Finally, let us study the behavior
of the OPTand MFTeffective masses as functions of T and
�, as shown in Fig. 5 for g ¼ �. Both quantities have a
quantitatively as well as qualitatively different behavior at
small T, � values but, as seen in the previous figures, this
effect does not manifest itself in the pressure, probably

being compensated by the presence (absence) of exchange
terms within the OPT (MFT). As T or � increases the
qualitative behavior of both effective masses becomes the
same, although there are still quantitative differences.
These results clearly illustrate how PT is not appropriate
to deal with this kind of situation since it cannot resum the
condensate that arises from the interaction between the
scalar field and fermions and which is related to symmetry
breaking. Our application nicely illustrates the reliability
of the OPT results since they exactly agree with MFT at
largeN (when exchange terms are neglected), while allows
us to improve over this approximation by resumming
exchange contributions.

VI. RESULTS IN THE ABSENCE OF A SCALAR
CONDENSATE

Let us now follow Ref. [6] and neglect the one-particle-
reducible two-loop diagrams containing tadpoles. In this
case, which is relevant for the situation where symmetry
breaking is not present, one expects that PT will perform
better than in the previous case where the tadpole contri-
butions have been considered, especially in the zero-
temperature limit. Clearly MFT is not applicable in this
situation, and we will restrain our analysis to OPT and PT
results. At this stage, the reader should be convinced that,
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FIG. 2 (color online). The pressure, P=�4
MS

, as a function of
�=�MS at T ¼ 0. Top: results from PT (continuous line), MFT

(dashed line), and OPT (dotted-dashed line). Bottom: differ-
ences, due to exchange terms, between OPT and MFT.

3The valuem� ¼ 0, which is of particular interest in situations
motivated by QCD, will also be considered in Sec. VIA.
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as explicitly shown in the previous section, the former
method is able to generate nonperturbative results, which
can be used to access the eventual breakdown of PT.

A. Cold and dense case with m� ¼ 0

In this subsection, the order-� OPT results will be
compared to the second-order perturbative predictions of
Ref. [6]. The case m� ¼ 0 is of particular interest since in

this situation one can write the thermodymanic potential
�Y ¼ �vac

Y þ�med
Y ðT ¼ 0; �Þ in a simple and compact

analytic form, in terms of the vacuum part

lim
m�!0

�vac
Y ¼ 4NFB

RENðmÞ þ lim
m�!0

�exc;REN
vac ðm;m�Þ;

(32)

with

lim
m�!0

�exc;REN
vac ðm;m�Þ

¼ NF

g2

2

m4

64�4

�
v1ð0Þ þ

�
	þ log

�
�2

m2

��
v2ð0Þ

þ 1

2

�
	þ log

�
�2

m2

��
2
v3ð0Þ þ 6�ðm2Þ

�
; (33)

and the in-medium contribution

lim
m�!0

�med
Y ðT ¼ 0;�Þ

¼�NF

1

24�2
½2�p3

f � 3m2u�

�NF

g2

64�4

�
3u2 � 4p4

f þm2u

�
7� 3 log

�
m2

�2

���
; (34)

where p2
f ¼ �2 �m2 and u ¼ �pf �m2 logð�þpf

m Þ.
Figure 6 shows the pressure as a function of� for a large

value of the coupling, g ¼ �. As one can see both methods
predict very similar results.
To analyze the tiny differences, let us define the quantity

�P=Pp ¼ jðPopt � PpÞj=Pp where Pp and Popt are, re-

spectively, the pressures predicted by PT and OPT.
Although the numerical discrepancies appear to be rather
small, Fig. 7 nicely illustrates that �P=Pp increases with

higher couplings and decreases with higher chemical po-
tential values as opposed to the case where the scalar
tadpole is present.
This behavior can be better understood if one analyzes

how the OPT effective mass varies with g and �. Figure 8
shows that the quantity ðmþ �
Þ=m deviates from 1 as g
increases but, contrary to the case where tadpoles are
present (see Fig. 5), approaches 1 as � increases.
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FIG. 3 (color online). The pressure, P=�4
MS

, as a function of
�=�MS at T ¼ 1:0�MS. Top: results from PT (continuous line),

MFT (dashed line), and OPT (dotted-dashed line). Bottom:
differences, due to exchange terms, between the OPT and MFT.
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FIG. 4 (color online). The pressure, P=�4
MS

, as a function of g
for � ¼ T ¼ 0:05�MS (top figure) and � ¼ T ¼ 0:5�MS (bot-

tom figure). PT corresponds to the continuous line, MFT to the
dashed line and OPT to the dotted-dashed line.
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Therefore, the nonperturbative OPT results support the
PT results of Ref. [6], at T ¼ 0, when scalar condensates
are not considered. Notice that even though we have con-
sidered in this subsection only the m� ¼ 0 case our nu-

merical simulations show that the agreement between PT
and OPT remains valid for m� � 0. For more details

concerning the effects of the scalar mass the reader is
referred to Ref. [6].

B. Thermal effects

So far, we have seen through comparison with MFT and
OPT that PT does not give reliable results when conden-
sates are present but, as seen in the previous subsection, the
situation improves in their absence, at least at T ¼ 0. In
principle, it is not obvious that PT will furnish reliable
results at high temperatures, even when only exchange
contributions are considered. The aim of this subsection
is to analyze this situation. Figure 9 compares the OPT and
PT results for the pressure as a function of � in two
extreme situations: T ¼ 0 and T ¼ 10m ¼ 1:0�MS. In

the first case both methods agree well, as one should expect
from the discussion performed in the previous section, but
more surprisingly is the high-temperature result where
OPT also supports PT.
Like in the previous T ¼ 0 case, the quantity �P=Pp

assumes very small values, which increase with high val-
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FIG. 5. The OPT (dotted-dashed line) and MFT (dashed line)
effective masses (mþ �
 and mþ�dirð0Þ) in units of m for g ¼
�. Top: Meff=m as a function of �=�MS for T ¼ 0. Bottom:

Meff=m as a function of T=�MS for � ¼ 0.
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FIG. 6 (color online). Pressure in the absence of tadpoles
normalized by �4

MS
as a function of the chemical potential �

normalized by �MS. Dots represent the OPT result and the line

stands for PT. The fermion mass is fixed at m ¼ 0:1�MS, and

g ¼ �.

FIG. 7 (color online). Difference between the perturbative and
the OPT pressures in the absence of tadpoles as a function of the
coupling g and the fermion chemical potential � normalized by
�MS. The fermion mass is fixed at m ¼ 0:1�MS.

FIG. 8 (color online). The OPT effective mass mþ �
 in units
of m as a function of the coupling g and the fermion chemical
potential � normalized by �MS when tadpoles are absent. The

fermion mass is fixed at m ¼ 0:1�MS.
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ues of g but decrease with high values of T and/or �. The
OPTeffective mass in units ofm, ðmþ �
Þ=m, also behaves
as in the previous case, deviating from 1 as g increases and,
contrary to the case where tadpoles are present (see Fig. 5),
approaching 1 as � and/or T increase. Therefore, it looks
like the absence of direct terms means that m ’ mþ �
 at
high T and/or �, so that PT behaves like OPT. Finally,
Fig. 10 suggests that even at relatively high T and � OPT
and PT deviate from the free gas as the coupling increases,
while in the case with condensates (see Fig. 4) OPT (and
MFT) had a better agreement with the free gas as opposed
to PT. Therefore, the correct resummation of condensates
seems to reduce the effects of interactions at high T and�.

VII. CONCLUSIONS

We have investigated the thermodynamics of the
Yukawa model at finite temperature and chemical potential
by evaluating its thermodynamic potential up to the two-
loop level, which includes direct (Hartree-like) as well as
exchange (Fock-like) types of contributions. Three differ-
ent methods have been considered: the usual PT with its
bare mass, the OPT with its effective mass given by the
PMS variational criterion, and the well-known MFT with
its self-consistent effective mass.

We have considered coupling values ranging from g ¼ 0
to g 	 1 in situations where the temperature and chemical
potential ranged from zero to 10 times the highest mass
value, which is kept fixed. As discussed in the introduction,
the Yukawa model usually emerges in the description of
various physical situations, ranging from low-energy con-
densed matter phenomena to extremely energetic QCD
matter. In our approach, the characteristic features of
each physical system will be brought about essentially by
the specific values of the coupling g and the three energy
scales: the fermion and scalar masses m and m�, respec-

tively, and the renormalization scale �MS, which normal-

izes all the quantities in our plots. As observed previously
using the perturbative method [6], variations of the masses
can significantly affect the thermodynamic potential of the
Yukawa theory, yielding extremely different thermody-
namical pictures. The renormalization scale �MS sets the

typical energy scale of the system of interest. In hadronic
physics, for example, it is reasonable to choose �MS 

1 GeV, the confinement scale. In this paper, we keep the
discussion in general grounds, normalizing physical quan-
tities by �MS and fixing the masses as m ¼ 0:1�MS and

m� ¼ 0, 0:5m and concentrating on the effects of Hartree-

and Fock-like interactions and nonperturbative corrections.
First, we have analyzed the pressure with both direct and

exchange contributions, with the former being associated
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FIG. 9 (color online). The pressure, P=�4
MS

as a function of
�=�MS at T ¼ 0 (top figure) and at T ¼ 1:0�MS when tadpoles

are absent. PT results are represented by the continuous lines
while the OPT results are represented by the dotted-dashed lines.
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FIG. 10 (color online). The pressure, P=�4
MS

as a function of g
for �= ¼ T ¼ 0:05�MS (top figure) and at � ¼ T ¼ 0:5�MS

when tadpoles are absent. PT results are represented by the
continuous lines while the OPT results are represented by the
dotted-dashed lines.
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to the presence of a scalar condensate driven by the inter-
actions with fermions. We have shown that OPT and MFT
are identical if one does not consider exchange terms, in
agreement with many other applications [32], which is
reassuring since in the limit of direct contributions only
the MFT resummation can be considered as exact.
Moreover, nonperturbative effects of exchange contribu-
tions are readily incorporated by considering OPT consis-
tently up to two loops. In the light of the nonperturbative
approaches OPT and MFT, our results show that, as ex-
pected, naive PT is inadequate to deal with this situation
since it has no ability to resum tadpoles.

As a byproduct of this application we could see how the
resummation of exchange terms performed by OPT cor-
rects the MFT framework, which corresponds to the lead-
ing order of a 1=N type of approximation. Having
established the reliability of the OPT, we have followed
Ref. [6] imposing the absence of tadpoles at T ¼ 0. We
have then shown that, in this case, the OPT results turn out
to be very similar to the ones given by PT. Finally, still in
the limit in which condensates are not present, we have
investigated the high-temperature case where one could
expect the breakdown of PT. However, our results have
shown that this is not the case and the numerical differ-
ences between the OPT and PT results are very small. Our
results also suggest that, at high T and �, the presence of
condensates minimize the effects due to interactions when
these contributions are properly resummed.

One should notice that the direct application of these
results as effective-model predictions in different physical
contexts is restricted to definite energy regimes, within
which the relevant physical degrees of freedom can be
translated into a Yukawa model. For instance, when dis-
cussing the thermodynamics of cold and dense baryonic
matter, the Yukawa model considered here might be a
suitable effective theory only at small values of the chemi-
cal potential, e.g. at � & 350 MeV. To describe the prop-
erties of baryonic matter at higher values of �, a different
framework is necessary to account for the phenomenon of
color superconductivity (for a review, see Ref. [33]). One
alternative could be to extend this model by adding boson
fields from another, nonsinglet, multiplet of the color
SUð3Þ group. Nevertheless, since Yukawa-type interac-
tions are almost ubiquitous in the description of fermionic
matter, the analysis in the present paper provides an under-
standing of the interplay between direct and exchange
contributions to the thermodynamics as well as the role
played by nonperturbative effects in the scalar Yukawa
sector of any given extended model.
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APPENDIX A: VACUUM THERMODYNAMIC
POTENTIAL AND RENORMALIZATION

In this appendix, we address the details involved in the
explicit derivation of the vacuum contributions to the two-
loop thermodynamic potential of the Yukawa theory. In
particular, we concentrate on the calculation and renormal-
ization of the one-loop bubble diagrams and the exchange
diagram in the vacuum. The vacuum and in-medium direct
contributions (the third diagram in Fig. 1), which were not
considered in Ref. [6], are left for the next appendix.
After computing the Matsubara sums (cf. Ref. [6] and

the next appendix), the pieces that are not explicitly de-
pendent on T and/or � correspond to the vacuum contri-
bution in Eq. (10).
The first two terms in Eq. (10) can be expressed in terms

of the following UV-divergent function:

BðMÞ ¼ � 1

2

Z
dMM

Z d3p

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM2
p : (A1)

Those divergences are cancelled by a field-independent
counterterm in the Lagrangian, commonly known as a
vacuum expectation value subtraction or a cosmological

constant. Within theMS subtraction scheme, the tridimen-
sional momentum integral above is renormalized to [13]

BRENðMÞ ¼ M4

64�2

�
3

2
þ log

�
�2

M2

��
: (A2)

The two-loop T, �-independent exchange contribution
to the thermodynamic potential �Y , the last term in
Eq. (10), can also be written in terms of UV-divergent
vacuum integrals

�exc
vac ¼ NF

g2

2

Z d4Pd4Q

ð2�Þ8

� 4ðm2 þ P �QÞ
ðQ2 �m2ÞðP2 �m2Þ½ðQ� PÞ2 �m2

��
; (A3)

corresponding to the vacuum exchange diagram,4 as shown
in Fig. 11.
The renormalization is then implemented through the

usual procedure, with the addition of the appropriate dia-
grams containing counterterms, as represented in Fig. 12.

FIG. 11. Vacuum contribution of the exchange term written in
terms of the associated vacuum diagram.

4Throughout the appendices, whenever we refer to vacuum
diagrams, we adopt the Feynman rules from Ref. [34], with
factors (� NF) associated with fermion loops excluded from the
diagram definition.
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The counterterm vertices are defined in Fig. 13 in terms
of wavefunction and mass counterterms. At this order

within the MS subtraction scheme, these counterterm ver-
tices cancel exactly the one-loop vacuum self-energy
poles, yielding (d ¼ 4� �)

�ð2Þ
c ¼ � 1

2ð4�Þ2
2

�
; �ð2Þ

m
m

ð4�Þ2
2

�
; (A4)

�ð2Þ
� ¼ � 2

ð4�Þ2
2

�
; �ð2Þ

m�
¼ � 12m2

ð4�Þ2
2

�
: (A5)

Therefore, the second and third contributions in Fig. 12,
the vacuum bubble diagrams with counterterm insertions,
yield respectively,

�fCT
vac ¼ i

NF

2
ð�2Þ

Z d4P

ð2�Þ4 Tr

�
ðig2½P6 �ð2Þ

c � �ð2Þ
m �Þ i

P6 �m

�

¼ i
NF

2
ð�2Þiðig2Þ4½m2�ð2Þ

c �m�ð2Þ
m �Iðm2Þ; (A6)

�bCT
vac ¼ i

NF

2

Z d4K

ð2�Þ4 ðig
2ðK2�ð2Þ

� � �ð2Þ
m�

ÞÞ i

K2 �m2
�

¼ i
NF

2
iðig2Þðm2

��
ð2Þ
� � �ð2Þ

m�
ÞIðm2

�Þ; (A7)

where we have defined the following divergent integral:

I ðm2Þ �
Z d4P

ð2�Þ4
1

P2 �m2
; (A8)

whose regularization yields

I REGðm2Þ ¼ im2

ð4�Þ2
�
2

�
þ 1þ log

�
�2

m2

�
þ ��ðm2Þ

þOð�2Þ
�
; (A9)

with

�ðm2Þ �
�
1

4

�
1þ log

�
�2

m2

��
2 þ 1

4

�
1þ �2

6

��
: (A10)

Using the results (A4), (A5), and (A9) in (A7) and (A6),
we arrive at the following final regularized expressions for

the second and third terms in Fig. 12, respectively:

�fCT
vac ¼ i

NF

2
ð�12Þig2 m4

ð4�Þ4

�
��
2

�

�
2 þ 2

�
þ 2

�
log

�
�2

m2

�
þ 2�ðm2Þ þOð�Þ

�
;

(A11)

�bCT
vac ¼ i

NF

2
2ig2

m4
�

ð4�Þ4
�
1� 6m2

m2
�

�

�
��
2

�

�
2 þ 2

�
þ 2

�
log

�
�2

m2
�

�
þ 2�ðm2

�Þ þOð�Þ
�
:

(A12)

In Fig. 12, the contribution still to be calculated explic-
itly in a regularized form is �exc

vac. Using the identity

m2 þ P �Q ¼ 2m2 � 1
2m

2
� � 1

2½ðQ� PÞ2 �m2
��

þ 1
2ðP2 �m2Þ þ 1

2ðQ2 �m2Þ; (A13)

we can rewrite �exc
vac, Eq. (A3), as

�exc
vac ¼ NF2g

2

��
2m2 � 1

2m
2
�

�
Ib1 � 1

2I
b
2 þ Ib3

�
(A14)

in terms of the following integrals:

Ib1 �
Z d4Pd4Q

ð2�Þ8
1

ðQ2 �m2ÞðP2 �m2Þ½ðQ� PÞ2 �m2
��

;

(A15)

Ib2 �
Z d4Pd4Q

ð2�Þ8
1

ðQ2 �m2ÞðP2 �m2Þ ; (A16)

Ib3 �
Z d4Pd4Q

ð2�Þ8
1

ðQ2 �m2Þ½ðQ� PÞ2 �m2
��

: (A17)

Defining

Jða; bÞ �
Z d4Pd4Q

ð2�Þ8
1

ðP2 � aÞðQ2 � bÞ ; (A18)

we have Ib2 ¼ Jðm2; m2Þ and Ib3 ¼ Jðm2; m2
�Þ. The dimen-

sional regularization of Jða; bÞ is straightforward, yielding

JREGða; bÞ ¼ � 1

ð4�Þd
�
e	�2

4�

�
�
�
�

�
1� d

2

��
2ðabÞððd=2Þ�1Þ;

(A19)

where d ¼ 4� �.

FIG. 12. Renormalized exchange contribution to the vacuum thermodynamic potential. The crosses indicate counterterm vertices.

FIG. 13. Definition of counterterm vertices.
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On the other hand, the evaluation of the integral Ib1 is
extremely involved, essentially due to the absence of fac-
torization of terms containing different masses. This cal-
culation was performed in Ref. [35] and the result is

Ib;REG1 ¼
�
e	�2

4�

�
� �4��

ð2�Þ2d ðm
2Þ1��A

�
�

2

�

�
�
� 4

�2
ð1þ 2zÞ þ 2

�
½4z logð4zÞ� � 2z½logð4zÞ�2

þ 2ð1� zÞ�ðzÞ þOð�Þ
�
; (A20)

with z � m2
�

4m2 ,

A

�
�

2

�
� ½�ð1þ �=2Þ�2

ð1� �=2Þð1� �Þ ¼ 1þ ��1 þ �2�2 þOð�3Þ;
(A21)

�1 � 3
2 � 	 (A22)

�2 � 7

4
� 3

2
	þ 1

2
	2 þ �2

24
; (A23)

�ðzÞ � 4z

�
½2� logð4zÞ�2F1

�
1; 1;

3

2
; z

�

�
�
@

@a 2F1

�
a; 1;

3

2
; z

����������a¼1

�
�
@

@c 2F1ð1; 1; c; zÞ
���������c¼ð3=2Þ

�
; (A24)

and 2F1 is the hypergeometric function, defined by

2F1ða; b; c; zÞ �
X1
k¼0

ðaÞkðbÞk
ðcÞk

zk

k!
; (A25)

where ðaÞk � �ðaþkÞ
�ðaÞ is the Pochhammer symbol. In

Ref. [35], simplified expressions for �ðzÞ valid in the
regions z > 1 or z � 1 were also derived.

Taking the results in Eq. (A19) and in Eq. (A20) into the
Eq. (A14) and expanding around � ¼ 0, one obtains, after a
long algebra,

�exc
vac ¼ NF

g2

2

m4

64�4

�
½poles in � ¼ 0� þ v1
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; (A26)

where

v1ðzÞ ¼ 2ð	0 � 4�2Þ � 8zð2	0 þ �2Þ þ 16�2z
2

þ 4ð1� zÞ2�ðzÞ þ logð4zÞf8z½2ð1� zÞ�1 þ 	1�g
þ ½logð4zÞ�2f4z2 � 6zg; (A27)

v2ðzÞ ¼ 2ð	1 � 4�1Þ � 8zð2	1 þ �1Þ þ 16�1z
2

þ 8zð3� 2zÞ logð4zÞ; (A28)

v3ðzÞ ¼ �6� 24zþ 16z2; (A29)

with

	0 � 3

4
þ 	ð	� 2Þ

2
þ �2

24
; (A30)

	1 � 1� 	: (A31)

Finally, the two-loop contribution to the vacuum expec-
tation value counterterm, X, is then defined in order to
cancel the poles in Eqs. (A11), (A12), and (A26).
Therefore, collecting the finite parts of Eqs. (A11),

(A12), and (A26), we obtain the final expression for the
renormalized exchange vacuum contribution to the ther-
modynamic potential

�exc;REN
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: (A32)

APPENDIX B: VACUUMAND IN-MEDIUMDIRECT
CONTRIBUTION TO THE THERMODYNAMIC

POTENTIAL

The third term in the diagrammatic expansion of the
perturbative thermodynamic potential, shown in Fig. 1, is
the direct term. In this appendix, we concentrate on the
explicit evaluation of both vacuum and in-medium parts of
this contribution. As usual, the full renormalized form of
the direct term of the thermodynamic potential is obtained
through the addition of the appropriate counterterms, as
shown in Fig. 14.
Defining the renormalized tadpole integral, as in Fig. 15,

we can rewrite the renormalized direct contribution to the
thermodynamic potential as
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�dir;REN
Y ¼ � 1
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ðIREN
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Following the MS prescription, the counterterm is de-
fined through the renormalization of the one-loop fermi-
onic self-energy, cancelling exactly the pole in � ¼ 0 of the
tadpole integral, yielding

IREN
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with E2
p ¼ p2 þm2,
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and
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Finally, taking these results into Eq. (B1), we obtain the
following expression for the renormalized direct term of
the thermodynamic potential:
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where
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in terms of the dimensionless quantities E2
z � z2 þm2=T2

and z ¼ p=T.

FIG. 14. Renormalized direct contribution to the thermodynamic potential, represented by in-medium diagrams. As before, the
crosses indicate (vacuum) counterterm vertices.

FIG. 15. Definition of the renormalized tadpole integral.
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