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We evaluate the Casimir energy and force for a massive scalar field with general curvature coupling

parameter, subject to Robin boundary conditions on two codimension-one parallel plates, located on a

(Dþ 1)-dimensional background spacetime with an arbitrary internal space. The most general case of

different Robin coefficients on the two separate plates is considered. With independence of the geometry

of the internal space, the Casimir forces are seen to be attractive for special cases of Dirichlet or Neumann

boundary conditions on both plates and repulsive for Dirichlet boundary conditions on one plate and

Neumann boundary conditions on the other. For Robin boundary conditions, the Casimir forces can be

either attractive or repulsive, depending on the Robin coefficients and the separation between the plates,

what is actually remarkable and useful. Indeed, we demonstrate the existence of an equilibrium point for

the interplate distance, which is stabilized due to the Casimir force, and show that stability is enhanced by

the presence of the extra dimensions. Applications of these properties in braneworld models are discussed.

Finally, the corresponding results are generalized to the geometry of a piston of arbitrary cross section.
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I. INTRODUCTION

Many of the high-energy theories of fundamental phys-
ics are formulated in higher-dimensional spacetimes. In
particular, the idea of extra dimensions has been exten-
sively used in supergravity and superstring theories. It is
commonly assumed that the extra dimensions are compac-
tified. From the inflationary point of view, universes with
compact spatial dimensions, under certain conditions,
should be considered a rule rather than an exception [1].
Models involving a compact universe with nontrivial to-
pology play a very important role by providing proper
initial conditions for inflation. And compactification of
spatial dimensions leads to a number of interesting quan-
tum field theoretical effects, which include instabilities in
interacting field theories, topological mass generation, and
symmetry breaking.

In the case of nontrivial topology, the boundary condi-
tions imposed on fields give rise to a modification of the
spectrum for vacuum fluctuations and, as a result, to
Casimir-type contributions in the vacuum expectation val-
ues of physical observables (for the topological Casimir
effect and its role in cosmology see [2] and references
therein). In models of the Kaluza-Klein type, the Casimir
effect has been used as a stabilization mechanism for
moduli fields and as a source for dynamical compactifica-
tion of the extra dimensions, in particular, for quantum
Kaluza-Klein gravity (see Ref. [3]). The Casimir energy

can also serve as a model for dark energy needed for the
explanation of the present accelerated expansion of the
universe (see [4] and references therein). In addition, re-
cent measurements of the Casimir forces between macro-
scopic bodies provide a sensitive test for constraining the
parameters of long-range interactions, as predicted by
modern unification theories of fundamental interactions
[5]. The influence of extra compactified dimensions on
the Casimir effect in the classical configuration of two
parallel plates has been recently discussed in [6–9], for
the case of a massless scalar field with Dirichlet boundary
conditions, and in [10–13], for the electromagnetic field for
perfectly conducting boundary conditions.
More recently, interest has concentrated on the topic of

the Casimir effect in braneworld models with large extra
dimensions. In this type of models (for a review see [14])
the concept of brane is used as a submanifold embedded in
a higher-dimensional spacetime, on which the standard-
model particles are confined. Braneworlds naturally appear
in the string/M theory context and provide a novel setup for
discussing phenomenological and cosmological issues re-
lated with extra dimensions. In braneworld models the
investigation of quantum effects is of considerable phe-
nomenological interest, both in particle physics and in
cosmology. The braneworld corresponds to a manifold
with boundaries. All fields which propagate in the bulk
will give Casimir-type contributions to the vacuum energy
and, as a result, to the vacuum forces acting on the branes.
Casimir forces provide a natural mechanism for stabilizing
the radion field in the Randall-Sundrum model, as required*Also at Center of Theor. Phys., TSPU, Tomsk.
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for a complete solution of the hierarchy problem. In addi-
tion, the Casimir energy gives a contribution to both the
brane and the bulk cosmological constants. Hence, it has to
be taken into account in any self-consistent formulation of
the braneworld dynamics. The Casimir energy and corre-
sponding Casimir forces within the framework of the
Randall-Sundrum braneworld [15] have been evaluated in
Refs. [16–22] by using both dimensional and zeta function
regularization methods. Local Casimir densities were con-
sidered in Refs. [23,24]. The Casimir effect in higher-
dimensional generalizations of the Randall-Sundrum
model with compact internal spaces has been investigated
in [25–30].

The purpose of the present paper is to study the Casimir
energy and force for a massive scalar field with an arbitrary
curvature coupling parameter, obeying Robin boundary
conditions on two codimension one parallel plates which

are embedded in the background spacetime RðD1�1;1Þ � �,
being � an arbitrary compact internal space. The most
general case is considered, where the constants in the
boundary conditions are different for the two separate
plates. It will be shown that Robin boundary conditions
with different coefficients are necessary to obtain repulsive
Casimir forces. Robin type conditions are an extension of
Dirichlet and Neumann boundary conditions and genu-
inely appear in a variety of situations, including vacuum
effects for a confined charged scalar field in external fields
[31], spinor and gauge field theories, quantum gravity and
supergravity [32]. Robin conditions can be made confor-
mally invariant, while purely-Neumann conditions cannot.
Therefore, Robin type conditions are needed when one
deals with conformally invariant theories in the presence
of boundaries and wishes to preserve this invariance. It is
interesting to note that a quantum scalar field satisfying
Robin conditions on the boundary of a cavity violates the
Bekenstein’s entropy-to-energy bound near certain points
in the space of the parameter defining the boundary con-
ditions [33]. Robin boundary conditions are an extension
of those imposed on perfectly conducting boundaries and
may, in some geometries, be useful for modelling the finite
penetration of the field through the boundary, the skin-
depth parameter being related to the Robin coefficient
[34,35]. In other words, those are the boundary conditions
which are more suitable to describe physically realistic
situations. This type of boundary conditions naturally arise
for scalar and fermion bulk fields in the Randall-Sundrum
model [18,24,36] and the corresponding Robin coefficients
are related to the curvature scale and to the boundary mass
terms of the field. Robin boundary conditions also appear
in the study of Casimir forces between the boundary planes
of films (for a recent discussion with references see, for
instance, [37]). The Casimir effect in the geometry of two
parallel plates with Robin boundary condition was inves-
tigated in Refs. [35,38–41]. Note moreover that boundary
problems with nonlocal boundary conditions can also be

reduced to corresponding ones with Robin conditions, with
the coefficients depending on the wave vector components
along the plates [42].
The outline of the paper is as follows. In the next section

we will consider the geometry of the problem and the
corresponding eigenfunctions. The Casimir energy for
two parallel plates in the general case for the internal
subspace is evaluated in Sec. III. The boundary-free and
single plate parts will be extracted in a cutoff independent
way. Applications to braneworlds are then discussed. In
Sec. IV we consider the Casimir forces and show that
depending on the coefficients in the boundary conditions
these forces can be either attractive or repulsive. The
asymptotic behavior of the forces, for small and large
interplate distances, is given. As an application of the
general results, in Sec. V, a simple examplewith an internal
space S1 is discussed, for general periodicity condition
along the compactified dimension. For this special ex-
ample, we also present the boundary-free part and extract
from the single plate parts the topological contributions.
The corresponding generalizations for the internal spaces
ðS1ÞN and SN are also given in detail. In Sec. VI we extend
the results for the Casimir energy and force to the case of
the geometry of a piston with arbitrary cross section.
Section VII contains a summary of the work.

II. GEOMETRY OF THE PROBLEM AND
EIGENFUNCTIONS

We consider a scalar field ’ðxÞ, with arbitrary curvature
coupling parameter � , satisfying the equation of motion

ðgMNrMrN þm2 þ �RÞ’ðxÞ ¼ 0; (1)

M, N ¼ 0; 1; . . . ; D, with R being the scalar curvature for a
(Dþ 1)-dimensional background spacetime (for the met-
ric signature and the curvature tensor we adopt the con-
ventions of Ref. [43]). For the special cases of minimally
and of conformally coupled scalars one has, respectively,
� ¼ 0 and � ¼ �D � ðD� 1Þ=4D. Wewill assume that the

background spacetime has a topology RðD1;1Þ ��, where

RðD1;1Þ is (D1 þ 1)-dimensional Minkowski spacetime and
� aD2-dimensional internal manifold,D ¼ D1 þD2. The
corresponding line element has the form

ds2 ¼ gMNdx
MdxN ¼ ���dx

�dx� � �ildX
idXl; (2)

with ��� ¼ diagð1;�1; . . . ;�1Þ being the metric for the

(D1 þ 1)-dimensional Minkowski spacetime and the coor-
dinates Xi cover the manifold �. Here and below �, � ¼
0; 1; . . . ; D1 and i, l ¼ 1; . . . ; D2. For the scalar curvature
of the metric tensor, from (2) one has R ¼ �Rð�Þ, where
Rð�Þ is the scalar curvature for the metric tensor �il.

Our main interests in this paper will be to study the
Casimir energy density and the mutual forces occurring for
the geometry of two parallel infinite plates of codimension
one, located at xD1 ¼ a1 and xD1 ¼ a2, a1 < a2. As most
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general set up, we assume that on these boundaries the
scalar field obeys Robin boundary conditions

ð1þ �jn
MrMÞ’ðxÞ ¼ ½1þ �jð�1Þj�1@D1

�’ðxÞ ¼ 0;

xD1 ¼ aj; j ¼ 1; 2; (3)

with constant coefficients �j. For �j ¼ 0 these boundary

conditions are reduced to Dirichlet one and for �j ¼ 1 to

Neumann boundary conditions. The choice of different
boundary conditions on the plates may correspond physi-
cally to use of different materials for plates. The imposition
of boundary conditions on the quantum field changes the
spectrum for the zero-point fluctuations and leads to the
modification of the vacuum expectation values for physical
quantities, as compared with the same situation without
boundaries.

In the region between the plates, a1 < xD1 < a2, the
corresponding eigenfunctions, satisfying the boundary
condition on the plate at xD1 ¼ aj, can be expressed in

the decomposed form:

’�ðxMÞ ¼ C� exp

�
�i

XD1�1

�;�¼0

���k
�x�

�

� cos½kD1 jxD1 � ajj þ �j�c �ðXÞ; (4)

where � denotes a set of quantum numbers specifying the
solution and

k0 ¼ ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðkD1Þ2 þm2

�

q
; m2

� ¼ �2
� þm2;

k ¼ jkj; k ¼ ðk1; . . . ; kD1�1Þ: (5)

In Eq. (4), the �j, j ¼ 1, 2, are defined by the relations

sin�j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkD1Þ2�2

j þ 1
q ; cos�j ¼

kD1�jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkD1Þ2�2

j þ 1
q :

(6)

The modes c �ðXÞ are the eigenfunctions of the operator

�ð�Þ þ �Rð�Þ:

½�ð�Þ þ �Rð�Þ�c �ðXÞ ¼ ��2
�c �ðXÞ; (7)

with eigenvalues �2
�, and fulfill the normalization condi-

tion

Z
dD2X

ffiffiffiffi
�

p
c �ðXÞc �

�0 ðXÞ ¼ 	��0 : (8)

In Eq. (7), �ð�Þ is the Laplace-Beltrami operator for the

metric �il. In the consideration below we will assume that
�� � 0.

From the boundary condition on the second plate one
obtains that the eigenvalues for kD1 are solutions of the
equation

FðzÞ ¼ ð1� b1b2z
2Þ sinz� ðb1 þ b2Þz cosz ¼ 0;

z ¼ akD1 ; a ¼ a2 � a1; bj ¼ �j=a:
(9)

We denote by z ¼ zn, n ¼ 1; 2; . . . , the zeros of the func-
tion FðzÞ in the right half-plane of the complex variable z,
arranged in ascending order, zn < znþ1. In the discussion
below we will assume that all these zeros are real. This is
the case for the conditions (see [38]) fb1 þ b2 � 1; b1b2 �
0g [ fb1;2 � 0g. The coefficient C� in (4) is determined

from the orthonormality condition for the eigenfunctions,
and is equal to

C2
� ¼ ð2
Þ1�D1

!ðznÞa
�
1þ 1

zn
sinðznÞ cosðzn þ 2�jÞ

��1
; (10)

being !ðznÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ z2n=a

2 þm2
�

q
the eigenfrequencies.

III. THE CASIMIR ENERGY

The vacuum energy in the region between the plates (per
unit volume along the directions x1; . . . ; xD1�1) is given by
the formal expression

E½a1;a2� ¼
1

2

Z dk

ð2
ÞD1�1

X
�

X1
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ z2n=a

2 þm2
�

q
:

(11)

In the discussion below we will assume that some cutoff
function is present, without writing it explicitly.
Alternatively, one can use zeta function regularization,
that yields the same result. For the sum over n we use
the summation formula [38,44]

X1
n¼1


fðznÞ
1þ sinðznÞ cosðzn þ 2�jÞ=zn

¼ �


2

fð0Þ
1� b2 � b1

þ
Z 1

0
dzfðzÞ

þ i
Z 1

0
dz

fðizÞ � fð�izÞ
ðb1z�1Þðb2z�1Þ
ðb1zþ1Þðb2zþ1Þ e

2z � 1
: (12)

By taking into account the relation

1þ sinðznÞ
zn

cosðzn þ 2�jÞ ¼ 1� X2
j¼1

bj

1þ b2jz
2
n

; (13)

we see that the sum on the left-hand side of (12) coincides
with the corresponding sum in the vacuum energy, if we
take

fðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ z2=a2 þm2

�

q �
1� X2

j¼1

bj

1þ b2j z
2

�
: (14)

The application of the summation formula (12) with (14)
allows us to write the vacuum energy from (11) in the
decomposed form
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E½a1;a2� ¼ aERðD1 ;1Þ�� þ X
j¼1;2

Ej þ�E½a1;a2�; (15)

where we have introduced the notations

Ej ¼ � 1

8

Z dk

ð2
ÞD1�1

X
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

q
� �j

2


�
Z dk

ð2
ÞD1�1

X
�

Z 1

0
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ x2 þm2

�

q
1þ �2

jx
2

; (16)

and

�E½a1;a2� ¼ � 1




Z dk

ð2
ÞD1�1

X
�

Z 1ffiffiffiffiffiffiffiffiffiffiffi
k2þm2

�

p dz

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � k2 �m2

�

q
ð�1z�1Þð�2z�1Þ
ð�1zþ1Þð�2zþ1Þ e

2az � 1

�
aþ X2

j¼1

�j

�2
j z

2 � 1

�
:

(17)

In Eq. (15),

ERðD1 ;1Þ�� ¼ 1

2

Z dkD1

ð2
ÞD1

X
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2D1

þm2
�

q
(18)

is the vacuum energy (per unit volume along the directions

x1; . . . ; xD1) in the spacetime of topology RðD1;1Þ � � for
the case when the plates are absent. In the limit a ! 1 the
term �E½a1;a2� vanishes and the contribution Ej can be

interpreted as the vacuum energy (per unit volume along
the directions x1; . . . ; xD1�1) induced by the presence of the
plate located at xD1 ¼ aj in the half-space x

D1 � aj. These

single plate components do not depend on the location of
the plate and do not contribute to the vacuum force acting
on the plates. As it will be shown below, the latter is
determined by the term �E½a1;a2�. Note that this contribu-

tion is finite and that the cutoff function is strictly neces-
sary for the terms ERðD1 ;1Þ�� and Ej only. In the discussion

below we will refer to �E½a1;a2� as the interaction term.

For further simplification of the corresponding expres-
sion, we use the relation

Z dk

ð2
ÞD1�1

Z 1ffiffiffiffiffiffiffiffiffiffiffi
k2þm2

�

p dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � k2 �m2

�

q
gðzÞ

¼ ð4
Þ1�D1=2

2D1�ðD1=2Þ
Z 1

m�

dxðx2 �m2
�ÞD1=2gðxÞ: (19)

In order to derive this formula, we must first integrate the
left-hand side over the angular part of the vector k and then

change to a new integration variable, y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � k2 �m2

�

q
.

After introducing polar coordinates in the ðk; yÞ-plane and
integrating over the polar angle, we get Eq. (19). By using
this relation, for the interaction part of the vacuum energy
we find

�E½a1;a2� ¼ � ð4
Þ�D1=2

�ðD1=2þ 1Þ
X
�

Z 1

m�

dx

� ðx2 �m2
�ÞD1=2

ð�1x�1Þð�2x�1Þ
ð�1xþ1Þð�2xþ1Þ e

2ax � 1

�
aþ X2

j¼1

�j

�2
jx

2 � 1

�
:

(20)

Using

�
aþ X2

j¼1

�j

�2
jx

2 � 1

�
2

ð�1x�1Þð�2x�1Þ
ð�1xþ1Þð�2xþ1Þ e

2ax � 1

¼ d

dx
ln

�
1� ð�1x� 1Þð�2x� 1Þ

ð�1xþ 1Þð�2xþ 1Þ e
�2ax

�
; (21)

and integrating by parts, the interaction term in the vacuum
energy can be written as

�E½a1;a2� ¼
ð4
Þ�D1=2

�ðD1=2Þ
X
�

Z 1

m�

dxxðx2 �m2
�ÞD1=2�1

� ln

�
1� ð�1xþ 1Þð�2xþ 1Þ

ð�1x� 1Þð�2x� 1Þ e
�2ax

�
: (22)

In the case when the internal space is absent and for a
massless scalar field this result reduces to the one derived
in [38]. Note that the bulk divergences in the vacuum
energy between the plates are contained in the first term
on the right-hand side of (15) and the boundary divergen-
ces are contained in the single plate contributions Ej. The

interaction part is unambiguously defined. In particular, it
does not depend on the regularization scheme used (see, for
example, Ref. [38] for the case without the internal space,
where exactly the same result is obtained with zeta func-
tion techniques).
For the special cases of Dirichlet and Neumann bound-

ary conditions on both plates, from (22) one finds

�EðJ;JÞ
½a1;a2� ¼ � ð4
Þ�D1=2a

�ðD1=2þ 1Þ
X
�

Z 1

m�

dx
ðx2 �m2

�ÞD1=2

e2ax � 1
;

(23)

with J ¼ D and J ¼ N for Dirichlet and Neumann bound-
ary conditions, respectively. By expanding the factor
1=ðe2ax � 1Þ in the integrand one gets

Z 1

m�

dx
ðx2 �m2

�ÞD1=2

e2ax � 1

¼ �ðD1=2þ 1Þffiffiffiffi



p
aD1þ1

X1
n¼1

�
am�

n

�ðD1þ1Þ=2
KðD1þ1Þ=2ð2nam�Þ;

(24)

beingK�ðzÞ the Mac-Donald (or modified Bessel) function.
This allows us to write the corresponding vacuum energy
for Dirichlet and Neumann scalars as
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�EðJ;JÞ
½a1;a2� ¼ � 2a�D1

ð8
ÞðD1þ1Þ=2
X
�

X1
n¼1

fðD1þ1Þ=2ð2nam�Þ
nD1þ1

;

(25)

with the notation

f�ðzÞ ¼ z�K�ðzÞ: (26)

The energy given by Eq. (25) is always negative and the
corresponding Casimir forces are attractive for all inter-
plate distances, as will be shown below. In the caseD1 ¼ 3
and for a massless scalar field, Eq. (25) reduces to the
expression given in Ref. [8], where the zeta function
method was used.

For Dirichlet boundary conditions on one plate and
Neumann boundary conditions on the other, similarly to
(20) we get

�EðD;NÞ
½a1;a2� ¼

ð4
Þ�D1=2a

�ðD1=2þ 1Þ
X
�

Z 1

m�

dx
ðx2 �m2

�ÞD1=2

e2ax þ 1

¼ � 2a�D1

ð8
ÞðD1þ1Þ=2
X
�

X1
n¼1

fðD1þ1Þ=2ð2nam�Þ
ð�1ÞnnD1þ1

: (27)

In this case the energy �E½a1;a2� is always positive and the

corresponding vacuum forces are repulsive for all distances
between the plates.

By using the result (22), in a similar way as in [21], we
obtain the corresponding Casimir energy for a conformally
coupled massless scalar field �’ðxÞ on the background of a
spacetime with metric tensor �gMN ¼ �2ðxD1ÞgMN , where
the metric gMN is defined by the line element (2). We
assume that the field obeys the boundary conditions:

ð1þ ��jn
MrMÞ �’ðxÞ ¼ ½1þ ð�1Þj�1��1

j
��j@D1

� �’ðxÞ ¼ 0;

�j ¼ �ðxD1

j Þ; (28)

on two codimension-one branes with coordinates xD1 ¼
aj, j ¼ 1, 2. The corresponding results for the interaction

part of the Casimir energy can be derived from those
obtained before simply by using the conformal relation
that relates the two problems. The fields are connected

by the formula �’ðxÞ ¼ �ð1�DÞ=2’ðxÞ. Making use of this
relation, from Eqs. (3) and (28) we obtain the following
relations between the Robin coefficients:

�j ¼
�
�j þ ð�1Þj D� 1

2�j

��j�
0
j

��1
��j; (29)

where �0
j ¼ �0

jðxD1
j Þ. We conclude that for a conformally

coupled massless scalar field with boundary conditions
(28), the interaction part of the vacuum energy in the region
between the branes is given by (22), where the coefficients
�j are defined by the relations (29). In particular, for the

case of Neumann boundary conditions (1= ��j ¼ 0), one has

�j ¼ 2�jð�1Þj=½ðD� 1Þ�0
j�. In the special case of the

AdS bulk used in the Randall-Sundrum braneworld model

[15] (note that in this model only the inside region between
the branes is considered) we have�ðxD1Þ ¼ rD=x

D1 , being
rD the AdS radius. The corresponding Robin coefficients
for an untwisted scalar are given by the relations
[18,24,27,36]

���1
j ¼ ð�1Þjcj=2� 2D�=rD; (30)

where c1 and c2 are the mass parameters in the surface
action of the scalar field for the left and right branes,
respectively. For a twisted scalar field, Dirichlet boundary
conditions are obtained on both branes.
To summarize, as we see, in the case of the warped

geometry the corresponding vacuum energy is not, in
general, a monotonic function of the interbrane distance
and can display a minimum, corresponding to the stable
equilibrium point. This property can be used in braneworld
models for the stabilization of the radion field. An impor-
tant difference between the warped geometry and the one
discussed before is that now the single brane contributions
to the vacuum energy depend on the location of the brane
and, hence, give additional contributions to the force acting
on the brane. The divergences in the single brane compo-
nents are absorbed by adding the respective counterterms
to the brane action. The coefficients of these counterterms
are not computable within the framework of the low-
energy effective theory and should be considered as pa-
rameters which are fixed by imposing renormalization
conditions on the corresponding effective potential (see
also the discussions in Refs. [16,18,19,25,26,28,45]).

IV. THE CASIMIR FORCE

The vacuum energy corresponding to the region 0 �
xl � cl, l ¼ 1; . . . ; D1 � 1, a1 � xD1 � a2 will be denoted
E½a1;a2�c1 � � � cD1�1. The volume of this region is V ¼
V�c1 � � � cD1�1a, being V� the volume of the internal

space. The corresponding vacuum stress at xD1 ¼ a1þ is
given by

Pða1þÞ ¼ � @

@V
E½a1;a2�c1 � � � cD1�1 ¼ P0 þ�Pða1þÞ;

(31)

where

P0 ¼ �ERðD1 ;1Þ��

V�

; �Pða1þÞ ¼ � 1

V�

@

@a
�E½a1;a2�:

(32)

Using Eq. (22), we find

�Pða1þÞ ¼ � 2ð4
Þ�D1=2

V��ðD1=2Þ
X
�

Z 1

m�

dxx2

� ðx2 �m2
�ÞD1=2�1

ð�1x�1Þð�2x�1Þ
ð�1xþ1Þð�2xþ1Þ e

2ax � 1
: (33)
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As can be easily seen, the vacuum stress at xD1 ¼ a2� is
given by the same expression: �Pða2�Þ ¼ �Pða1þÞ.

For the geometry of two parallel plates, the total vacuum
energy is the sum of the contributions from the regions
xD1 � a1, a1 � xD1 � a2 and a2 � xD1 . When investigat-
ing the resulting force on the plate at xD1 ¼ a1, in order to
deal with finite regions from both sides, we will consider a
pistonlike geometry (with large transverse dimensions, for
a piston with finite cross section see below), assuming the
presence of an additional plate located at xD1 ¼ a0 < a1.
For the corresponding vacuum stress at xD1 ¼ a1 � , one
has

Pða1�Þ ¼ P0 þ�Pða1�Þ;
�Pða1�Þ ¼ � 1

V�

@

@b
�E½b1;a1�;

(34)

with b ¼ a1 � a0. The resulting pressure on the plate at
xD1 ¼ a1 is given by the difference

Pða1Þ ¼ �Pða1þÞ � �Pða1�Þ: (35)

As we see, the contributions to the vacuum force coming
from the term P0 are the same from the left and from the
right sides of the plate, so that there is no netto contribution
to the effective force. In the limit a0 ! �1 one has
�Pða1�Þ ! 0 and the Casimir force acting on the plate
at xD1 ¼ aj, j ¼ 1, 2, in the original two-plate geometry is

given by the expression

P¼� 2ð4
Þ�D1=2

V��ðD1=2ÞaD1þ1

X
�

Z 1

am�

dx
x2ðx2 �a2m2

�ÞD1=2�1

ðb1x�1Þðb2x�1Þ
ðb1xþ1Þðb2xþ1Þe

2x� 1
:

(36)

This force is attractive when P< 0 and repulsive when
P> 0. If one does not take into account the contributions
from the exterior regions xD1 � a1 and xD1 � a2, the
effective pressure is given by (31) where the renormalized
value for P0 does not depend on the separation of the
plates. In the case � ¼ S1 and for periodic boundary
conditions along the compactified dimension, the renor-
malized value P0 is positive (see next section, Eq. (47))
which would correspond to the repulsive force between the
plates observed in the first paper of [6] (see also the
discussion in Ref. [7]).

As is clearly seen from Eq. (36), the sign of the vacuum
stress on the plate is determined by the sign of the integral
in this formula. In Fig. 1 we have plotted the location of the
zeros for this integral on the ðb1; b2Þ-plane in the case
D1 ¼ 3 and for different values of am� (figures on the

curves). For a given am�, these zeros are located on two

curves symmetric with respect to the line b1 ¼ b2. The
integral is positive in the region containing this line and it
is negative outside. In particular, the Casimir force be-
tween the plates is always attractive for symmetric bound-
ary conditions with �1 ¼ �2 < 0. This result is a special
case of the general theorem [46], which dictates an attrac-

tion between bodies with the same properties. Note that the
curves in Fig. 1 display the locations of the zeros for the
Casimir force in the geometry of two parallel plates on the
background of a four-dimensional Minkowski spacetime.
For the special cases of Dirichlet and Neumann bound-

ary conditions, making use of the recurrence relations for
the function K�ðzÞ, the Casimir forces can be written as

PðJ;JÞ ¼ � 2ð4
Þ�D1=2

V��ðD1=2Þ
X
�

Z 1

m�

dxx2
ðx2 �m2

�ÞD1=2�1

e2ax � 1

¼ 2a�D1�1

ð8
ÞðD1þ1Þ=2V�

X
�

X1
n¼1

1

nD1þ1
½fðD1þ1Þ=2ð2nam�Þ

� fðD1þ3Þ=2ð2nam�Þ�; (37)

with J ¼ D, N. Again, in the case D1 ¼ 3 and for a mass-
less scalar field this result reduces to the one obtained in
[8]. The forces described by Eq. (37) are attractive for all
distances between the plates, irrespective of the geometry
of the internal subspace. For Dirichlet boundary conditions
on one plate and Neumann boundary conditions on the
other, the expression for the Casimir force is obtained from
Eq. (37) after introducing an additional factor ð�1Þnþ1 in
the summation over n. In this case, Casimir forces are
repulsive. In the general case of Robin boundary conditions
the Casimir forces can be either attractive or repulsive,
depending on the coefficients present in the definition of
the boundary conditions, and on the distance between the

plates. For the special case of the topology RðD�1;1Þ � S1

this issue will be illustrated in the next section.
Let us now consider the asymptotic behavior of the

Casimir force as a function of the size of the internal space.
Note that if the size of the internal space is of the order L,
then for nonzero modes one has �� 	 1=L. For small

20 1

2.0 1.5 1.0 0.5 0.0

2.0

1.5

1.0

0.5

0.0

b1

b 2

FIG. 1 (color online). The location of the zeros for the integral
in (36) in the case D1 ¼ 3 and for different values of the
parameter am� (numbers near the curves).
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values of L and for the nonzero modes, �� is large. The

contribution of these modes is exponentially suppressed
and the main contribution comes form the zero mode. In
this case, from (33) we recover the Casimir force for two
parallel plates in (D1 þ 1)-dimensional Minkowskian
spacetime, namely

V�P 
 � 2ð4
Þ�D1=2

�ðD1=2Þ
Z 1

m
dx

x2ðx2 �m2ÞD1=2�1

ð�1x�1Þð�2x�1Þ
ð�1xþ1Þð�2xþ1Þ e

2ax � 1
:

(38)

For the case of a degenerated zero eigenstate the corre-
sponding degeneracy factor must be included on the right-
hand side. In some models of compactification the zero
mode is absent (for example, in models with twisted
boundary conditions along the compactified dimensions,
see below). In such cases, for small values of L the main
contribution to the Casimir force comes from the lowest
mode �� ¼ �0 and, to leading order, one gets

V�P 
 � mD1þ1
0

ð4
ÞD1=2

ð�1m0xþ 1Þð�2m0xþ 1Þ
ð�1m0x� 1Þð�2m0x� 1Þ

e�2am0

ðam0ÞD1=2
;

(39)

wherem0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
0 þm2

q
. Hence, here the Casimir forces are

exponentially suppressed for small sizes of the internal
space.

For small values of the interplate distance, a=j�jj � 1,

the main contribution into the integral in Eq. (33) comes
from larger values of x and, to leading order, one has

P 
 � 2ð4
Þ�D1=2

V��ðD1=2Þ
X
�

Z 1

m�

dxx2
ðx2 �m2

�ÞD1=2�1

e2ax � 1
; (40)

except for the case of Dirichlet boundary conditions on one
plate and non-Dirichlet boundary conditions on the other.
We see that in this limit (40) the Casimir force is attractive.
However, in the case of Dirichlet boundary condition on
one plate and non-Dirichlet boundary condition on the
other the Casimir force is repulsive at small distances,
what is indeed a remarkable result.

V. PARTICULAR CASES

As a simple example of a particular application of the
general results obtained above, we will first consider the
special case where � ¼ S1, with the size of the internal
space being 2
L. For the compact dimension we assume a
general periodicity condition of the form

c �ðX þ 2
LÞ ¼ e2
i�c �ðXÞ; (41)

with constant �, 0 � � � 1. The specific cases � ¼ 0 and
� ¼ 1=2 correspond to untwisted and to twisted fields,
respectively. The corresponding part of the scalar eigen-

functions is

c �ðXÞ ¼ eiKXffiffiffiffiffiffiffiffiffiffi
2
L

p ; K ¼ ð�þ �Þ=L;

� ¼ 0;�1;�2; . . . :

(42)

The formulas for the topology RðD�1;1Þ � S1 are obtained
from the results given in the previous sections, by taking

X
�

¼ Xþ1

�¼�1
; �� ¼ j�þ �j

L
;

m� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ �Þ2=L2 þm2

q
; D1 ¼ D� 1:

(43)

In particular, for the Casimir force one has

P ¼ � ð4
Þ�ðD�1Þ=2


�ððD� 1Þ=2ÞL
Xþ1

�¼�1

Z 1

m�

dx

� x2ðx2 �m2
�ÞðD�3Þ=2

ð�1x�1Þð�2x�1Þ
ð�1xþ1Þð�2xþ1Þ e

2ax � 1
: (44)

For large values of L the main contribution to the series in
(44) comes from large values of � and one can replace the
summation over � by an integration. After some trans-
formations, to leading order we find the result

P 
 � 2ð4
Þ�D=2

�ðD=2Þ
Z 1

0
dx

x2ðx2 �m2ÞD=2�1

ð�1x�1Þð�2x�1Þ
ð�1xþ1Þð�2xþ1Þ e

2ax � 1
; (45)

which is, in fact, the Casimir force for two parallel plates in
(Dþ 1)-dimensional Minkowskian spacetime.
As we already noted before, depending on the values of

the coefficients �j and of the distance between the plates,

the Casimir force (44) can be either attractive or repulsive.
In Fig. 2, and corresponding to the model with D ¼ 4 and
for a massless scalar field with Dirichlet boundary con-
ditions, we have plotted the ratio 2
LP=PC as a function
of a=L, where PC ¼ �
2=ð480a4Þ is the standard Casimir
force. The values on each of the curves correspond to those
of the parameter �. As we have explained before, for � �
0 the zero mode is absent and for large values of a=L the
Casimir force is exponentially suppressed.
In Fig. 3 the Casimir force is plotted for the topology

Rð3;1Þ � S1 and an untwisted (� ¼ 0) massless scalar field
with Robin coefficients�1=a0 ¼ �0:1,�2=a0 ¼ �0:5 (a0
a fixed length scale) as a function of a=a0 for L=a0 ¼ 1
(full curve) and L=a0 ¼ 0:5 (dashed curve). The thick
curve corresponds to the Casimir force for two parallel

plates in Minkowski spacetime Rð3;1Þ with the same Robin
coefficients. As is seen, the corresponding Casimir forces
are attractive for small and large distances between the
plates while they are repulsive for intermediate distances.
There are two equilibrium points corresponding to the
zeros of the function P. The leftmost point is unstable
whereas the rightmost one is stable. Hence, in this case
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the Casimir force stabilizes the distance between the plates.
This feature can be used in braneworld models for the
stabilization of the radion field. We see from Fig. 3 that
the height of the barrier between the stable and the unstable
equilibrium points is increased by the presence of the
internal space. As a consequence, an enhancement of the
repulsive Casimir effect, coming from the extra dimension,
occurs.

As already explained before, in the case of Dirichlet
boundary conditions on one plate and non-Dirichlet bound-
ary conditions on the other, the Casimir force is repulsive at
small separations. In Fig. 4 we illustrate this feature for the

topology Rð3;1Þ � S1 in the case of an untwisted massless
scalar field with �1 ¼ 0, �2=a0 ¼ �0:5. As in Fig. 3, the
full (dashed) curve stands for L=a0 ¼ 1 (L=a0 ¼ 0:5) and
the thick curve corresponds to the Casimir force for two

parallel plates in Minkowski spacetime Rð3;1Þ with the same
Robin coefficients.
For the topology under consideration, the Casimir en-

ergy for the bulk without boundaries,

ERðD�1;1Þ�S1 ¼
1

2

Z dkD�1

ð2
ÞD�1

� Xþ1

�¼�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2D�1 þ ð�þ �Þ2=L2 þm2

q

can be further simplified through the Abel-Plana summa-
tion formula, in the form [44,47]

Xþ1

�¼�1
fðj�þ �jÞ ¼ 2

Z 1

0
dxfðxÞ

þ i
Z 1

0
dx

X
�¼�1

fðixÞ � fð�ixÞ
e2
ðxþi��Þ � 1

;

(46)

what leads to the result

ERðD�1;1Þ�S1 ¼
2
L

2

Z dDk

ð2
ÞD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2D þm2

q
� 2ðLmÞðDþ1Þ=2

ð2
ÞDLD

� X1
n¼1

cosð2
n�Þ
nðDþ1Þ=2 KðDþ1Þ=2ð2
nLmÞ: (47)

The second term on the right-hand side of this expression is
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FIG. 4 (color online). Same as in Fig. 3 for a scalar field with
Robin coefficients �1 ¼ 0, �2=a0 ¼ �0:5.
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FIG. 3 (color online). Casimir force for two parallel plates in
the spacetime with topology Rð3;1Þ � S1, for an untwisted mass-
less scalar field with Robin coefficients �1=a0 ¼ �0:1,
�2=a0 ¼ �0:5, as a function of the distance between the plates.
The full (dashed) curve corresponds to a size of the internal
space with L=a0 ¼ 1 (L=a0 ¼ 0:5). The thick curve corresponds
to the Casimir force for two parallel plates in Minkowski space-
time Rð3;1Þ with the same Robin coefficients.
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FIG. 2 (color online). Ratio of the Casimir force for two
parallel plates in the spacetime with topology Rð3;1Þ � S1 to the
standard Casimir force in Rð3;1Þ, for a massless Dirichlet scalar,
as a function of a=L. The values on each of the curves corre-
spond to those of the parameter �.

E. ELIZALDE, S.D. ODINTSOV, AND A.A. SAHARIAN PHYSICAL REVIEW D 79, 065023 (2009)

065023-8



finite and introduction of a cutoff function is necessary for
the first term only. Note that the latter is the vacuum energy
density for the spatial topology RD and, hence, the second
term on the right-hand side of Eq. (47) is the contribution to
the vacuum energy induced by the compactness of the xD

dimension. In particular, the topological part of the vacuum
energy is always negative (positive) for untwisted (twisted)
scalars.

In a similar way, we can also extract the topological
contributions in the single plate terms of the vacuum
energy. After applying the summation formula (46) and
after integration, these contributions yield

Ej ¼ 2
LEðMÞ
j þ ðLmÞD=2

2ð2
LÞD�1

X1
n¼1

cosð2
n�Þ
nD=2

KD=2ð2
nLmÞ

þ ð4
Þ�ðD�1Þ=2L�j

�ððDþ 1Þ=2Þ
X

�¼�1

Z 1

m
dy

ðy2�m2ÞD=2

e2
Lyþ2
i��� 1

�
Z 1

0
dx

ð1� x2ÞðD�1Þ=2

1þ�2
j ðy2�m2Þx2 ; (48)

where

EðMÞ
j ¼ � 1

8

Z dkD�1

ð2
ÞD�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2D�1 þm2

q

� �j

2


Z dkD�1

ð2
ÞD�1

Z 1

0
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2D�1 þ x2 þm2

q
1þ �2

jx
2

(49)

is the vacuum energy (per unit volume along the coordi-
nates x1; . . . ; xD�1) for a single plate in Minkowski space-

time with trivial topology RðD;1Þ. Hence, the last two terms
on the right-hand side of (48) are the terms in the vacuum
energy corresponding to a single plate and due to the
compactness of the dimension xD. These terms are finite
and renormalization is needed for the Minowskian part

EðMÞ
j only. Note that for Dirichlet and Neumann boundary

conditions the last term on the right of Eq. (48) vanishes.
The case of a D2-dimensional torus as internal space,

� ¼ ðS1ÞD2 , can be considered in a similar way. For a
scalar field with the periodicity condition c �ðXl þ
2
LlÞ ¼ e2
i�lc �ðXlÞ along the coordinate Xl, 0 � Xl �
2
Ll, the formulas for the Casimir energy and force are
obtained from the general expressions in Secs. III and IV
with the substitutions

X
�

¼ Xþ1

j1¼�1
� � � Xþ1

jD2
¼�1

;

m2
� ¼ XD2

l¼1

ðjl þ �lÞ2=L2
l þm2:

(50)

Concerning the issues of embedding the model in string
theory and of the discussions of the holographic principle
there, the case of the internal space � ¼ SD2 is of very
special interest. The corresponding eigenfunctions c �ðXÞ

are expressed in terms of spherical harmonics of degree l,
l ¼ 0; 1; 2; . . . . For the internal space with radius L the
expressions for the Casimir energy and Casimir force are
quite easily obtained from the general formulas given in
the above sections, just by replacing

X
�

! X1
l¼0

ð2lþD2 � 1Þ�ðlþD2 � 1Þ
l!�ðD2Þ ;

�� ! 1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþD2 � 1Þ þ �D2ðD2 � 1Þ

q
:

(51)

Here the factor under the summation sign is the degeneracy
of the angular mode with a given l.

VI. GENERALIZED PISTON GEOMETRY

In a way very much similar to the procedure described in
the preceding sections, we are able to treat the more
general case when a part of the dimensions x1; . . . ; xD1�1

are still constrained by boundary conditions. This corre-
sponds to considering a generalized piston geometry, a
quite fashionable situation nowadays, in particular, in the
quest for negative Casimir forces (for the investigation of
the Casimir effect in a piston geometry see [48] and
references therein). Here we have obtained those in the
configurations above, but would like to see now the differ-
ences introduced in our results by the consideration of
piston geometries.
We will denote by d1 the number of unconstrained

dimensions (coordinates x1; . . . ; xd1) and by �2
i , with a

collective index i, the eigenvalues of the Laplacian along
the constrained directions:

�D1�1�d1’�ðxMÞ ¼ ��2
i ’�ðxMÞ: (52)

The eigenfrequencies in the region between the plates are
here given by

!ðznÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d1 þ z2n=a

2 þ �2
i þm2

�

q
; (53)

with the vacuum energy being

E½a1;a2� ¼
1

2

Z dkd1

ð2
Þd1
X
i;�

X1
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d1 þ z2n=a

2 þ �2
i þm2

�

q
:

(54)

After applying the summation formula (12) to the sum over
n, we can write the energy in the decomposed form

E½a1;a2� ¼
a

2

Z dkd1þ1

ð2
Þd1þ1

X
i;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d1þ1 þ �2

i þm2
�

q
þ X

j¼1;2

Ej

þ �E½a1;a2�: (55)

Here the expressions for the terms Ej and �E½a1;a2� are
obtained from Eqs. (16) and (17) by the replacements

Z dk

ð2
ÞD1�1
!

Z dkd1

ð2
Þd1 ; k2 ! k2d1 ; (56)
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X
�

! X
i;�

; D1 ! d1 þ 1; m2
� ! �2

i þm2
�:

(57)

These formulas are further simplified after integrating over
the angular part of the vector kd1 . The corresponding

expressions are obtained from the results of Secs. III and
IV, with the replacements (57). In particular, for the inter-
action part of the Casimir energy (per unit volume along
the direction x1; . . . ; xd1) one has

�E½a1;a2� ¼
ð4
Þ�ðd1þ1Þ=2

�ððd1 þ 1Þ=2Þ
X
i;�

Z 1ffiffiffiffiffiffiffiffiffiffiffiffi
�2
iþm2

�

p dxxðx2 � �2
i �m2

�Þðd1�1Þ=2 ln
�
1� ð�1xþ 1Þð�2xþ 1Þ

ð�1x� 1Þð�2x� 1Þ e
�2ax

�
: (58)

The expression for the Casimir pressure takes the form

Pða;�1; �2Þ ¼ � 2ð4
Þ�ðd1þ1Þ=2

VcsV��ððd1 þ 1Þ=2Þ
X
i;�

Z 1ffiffiffiffiffiffiffiffiffiffiffiffi
�2
iþm2

�

p dx
x2ðx2 � �2

i �m2
�Þðd1�1Þ=2

ð�1x�1Þð�2x�1Þ
ð�1xþ1Þð�2xþ1Þ e

2ax � 1
; (59)

where Vcs is the volume of the piston cross section along
the coordinates xd1þ1; . . . ; xD1�1. In particular, for
Dirichlet and Neumann boundary conditions on the plates,
we find

PðJ;JÞðaÞ ¼ 2a�d1�2

ð8
Þd1=2þ1VcsV�

X
i;�

X1
n¼1

1

nd1þ2

� ½fd1=2þ1ðzÞ � fd1=2þ2ðzÞ�z¼2na
ffiffiffiffiffiffiffiffiffiffiffiffi
�2
iþm2

�

p ; (60)

J ¼ D, N, the function f�ðzÞ being defined in Eq. (26). The
corresponding force remains attractive independently of
the form of the cross section. In the case of Dirichlet
boundary condition on one plate and Neumann boundary
condition on the other the expression for the Casimir force
is obtained from (60) after introducing an additional factor
ð�1Þnþ1, and the resulting force is always repulsive. In the
special case d1 ¼ 0 and for a massless scalar field, Eq. (60)
reduces to the formula for the Casimir force in Ref. [8], as
it should.

On the base of Eqs. (58) and (59) we can analyze the
geometry of a generalized piston with two chambers,
assuming that the plates are located at xD1 ¼ a0, a1, a2,
with the Robin coefficient �0 for the left plate (for the
Casimir effect in a piston geometry see, for example,
Refs. [48]). For an arbitrary cross section, the effective
pressure on the plate at xD1 ¼ a1 is given by

Pa1 ¼ Pða; �1; �2Þ � Pðb;�0; �1Þ; (61)

with b ¼ a1 � a0. For Pa1 < 0 (Pa1 > 0) the resulting

force on the plate is directed towards the right (left) plate.
For Dirichlet and Neumann boundary conditions the
Casimir stress given by Eq. (60) is a monotonic function
of the plate separation and, hence, in the piston geometry
with two chambers the resulting force (61) is directed
toward the closer plate.

In the special case of the geometry of a piston with
circular cross section in the plane ðxD1�2; xD1�1Þ, the cor-
responding part in the eigenfunctions has the form

Jjqjð�rÞeiq�, q ¼ 0, �1, �2, where r and � are polar

coordinates on this plane and JqðzÞ is the Bessel function.
The eigenvalues for the quantum number � are quantized
by the boundary conditions on the cylindrical surface r ¼
r0, with r0 being the piston radius. For example, in the case
of a Dirichlet boundary condition one has � ¼ jjqj;p=r0,
where j�;p is the p-th positive zero of the function J�ðzÞ.
The corresponding formulas for the Casimir energy and
forces are obtained from the general results (36) and (58)
with the substitutions

d1 ¼ D1 � 3;
X
i

¼ Xþ1

q¼�1

X1
p¼1

; �i ¼ jjqj;p=r0:

(62)

Other types of boundary conditions on the cylindrical
boundary can be considered in a similar way. Moreover,
the generalization of our procedure to more than three
plates is also easy to carry out.

VII. CONCLUSION

We have investigated in this paper the influence of extra
dimensions on the Casimir energy and on the Casimir force
for a massive scalar field with an arbitrary curvature cou-
pling parameter, in the usual geometry of two parallel
plates. We have assumed that on the plates the field obeys
Robin boundary conditions with, in general, different co-
efficients for the two different plates. The corresponding
eigenfrequencies are expressed in terms of solutions of a
transcendental Eq. (9), thus they are known implicitly only.
By applying the summation formula (12) to the corre-
sponding series in the mode-sum for the vacuum energy
in the region between the plates, we have explicitly ex-
tracted, in a cutoff independent way, the boundary-free
(topological) part and the contributions induced by the
single plates (when the other plate is absent). The remain-
ing interaction part is finite for all nonzero interplate
distances and is cutoff independent. The surface divergen-
ces in the Casimir energy are contained in the single plate
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components only. But the latter do not depend on the
location of the plate and do not contribute to the Casimir
force. For an arbitrary internal space, the interaction part of
the Casimir energy is given by Eq. (22). In the special cases
of Dirichlet and Neumann boundary conditions on both
plates this formula leads to the result (25) and the corre-
sponding energy is always negative. For Dirichlet bound-
ary conditions on one plate and Neumann boundary
conditions on the other, the interaction component of the
vacuum energy is given by Eq. (27), and it is positive for all
values of the interplate distance. In the case of a confor-
mally coupled massless field on the background of a space-
time conformally related to the one described by the line
element (2) with the conformal factor �2ðxD1Þ, the inter-
action part of the Casimir energy is given by Eq. (22), with
the coefficients �j being related to the specific coefficients

of the Robin boundary conditions (28) and to the confor-
mal factor by Eqs. (29). In the Randall-Sundrum two brane
model with a compact internal space, the corresponding
Robin coefficients are given by Eq. (30) and the corre-
sponding vacuum energy can have a minimum, corre-
sponding to the stable equilibrium point. This feature is
useful in braneworld models for the stabilization of the
radion field.

The interaction forces between the plates for the most
general case of internal space have been considered in
Sec. IV. In order to obtain the resulting force, the contri-
butions from both sides of the plates must be taken into
account. Then, the forces coming from the topological
parts of the vacuum energy cancel out and only the inter-
action terms contribute to the Casimir force. In order to
show this important fact explicitly, we have considered a
pistonlike geometry, by introducing a third plate. At the
end of the calculation this plate is sent to infinity. The
resulting Casimir force is given by Eq. (36). With inde-
pendence of the geometry of the internal space, the force is
attractive for Dirichlet or Neumann boundary conditions
on both plates (formula (37)) and it is repulsive for
Dirichlet boundary conditions on one plate and Neumann
boundary conditions on the other. In both cases the force is
a monotonic function of the distance. For general Robin
boundary conditions the Casimir force can be either attrac-
tive (corresponding to negative values of P) or repulsive
(positive values of P), depending on the particular Robin
coefficients and on the distance between the plates. For
small values of the size of the internal space and in models
where the zero modes along the internal space are present,
the main contribution to the Casimir force comes from the
zero modes and the contributions of the nonzero modes are
exponentially suppressed. In this limit, to leading order we
recover the standard result for the Casimir force between
two plates in (D1 þ 1)-dimensional Minkowski spacetime.
When the zero mode is absent (for example, in the case of
twisted boundary conditions along the compactified di-
mensions), the Casimir forces are exponentially sup-

pressed in the limit of small size of the internal space.
For small values of the interplate distance the Casimir
forces are attractive, independently of the values of the
Robin coefficients, except for the case of Dirichlet bound-
ary conditions on one plate and non-Dirichlet boundary
conditions on the other. In this latter case, the Casimir force
is repulsive at small distances. It is interesting to remark
that this property could be used in the proposal of a Casimir
experiment with the purpose to carry out an explicit de-
tailed observation of ‘‘large’’ extra dimensions as allowed
by some models of particle physics.
As an illustration of the general results, in Sec. V we

have considered a special model for the internal space� ¼
S1, with the periodicity condition (41) along the compacti-
fied dimension. For the specific values � ¼ 0, 1=2 this
condition corresponds to untwisted and twisted scalar
fields, respectively. In Fig. 2, for Dirichlet boundary con-
ditions we depicted the dependence of the Casimir force on
the distance between the plates for different values of the
parameter �. In Fig. 3 a plot of the Casimir force in the
case of Robin boundary conditions on both plates as a
function of the interplate distance has been provided. In
the example considered, the Casimir force is attractive both
for large and for small distances, while it is repulsive at
intermediate distances. The Casimir force vanishes at two
values of the interplate distance, which correspond to
equilibrium points. The leftmost point is unstable and the
rightmost one is locally stable. As shown in the plot, the
stability of the rightmost equilibrium point is enhanced by
the presence of the internal space. Formulas for the
Casimir energy and force for the more general internal
spaces ðS1ÞD2 (D2-torus) and SD2 have been obtained
from the general results of Secs. III and IV.
In the last Sec. VI, we have extended the results from the

previous ones to the case of a piston geometry with finite
cross section of arbitrary form along some subset of the
dimensions. The corresponding expressions for the
Casimir energy and Casimir force between the plates are
given by Eqs. (58) and (59). We have checked that the
qualitative features described above remain basically un-
altered. In particular, the possibility of a repulsive Casimir
effect is again observed. In the special case of a piston
geometry of circular cross section on the plane
ðxD1�2; xD1�1Þ, the corresponding formulas have been
specified in (62).
The search for specific applications of this study to

practical situations in braneworld models, nanophysics
and particle physics will keep us busy for some time.
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