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We present numerical evidence for the existence of stationary spinning generalizations for the static

sphaleron in the Weinberg-Salam theory. Our results suggest that, for any value of the mixing angle �W
and for any Higgs mass, the spinning sphalerons comprise a family labeled by their angular momentum J.

For �W � 0 they possess an electric charge Q ¼ eJ, where e is the electron charge. Inside they contain a

monopole-antimonopole pair and a spinning loop of electric current, and for large J, a Regge-type

behavior. It is likely that these sphalerons mediate the topological transitions in sectors with J � 0, thus

enlarging the number of transition channels. Their action decreases with J, which may considerably affect

the total transition rate.
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I. INTRODUCTION

The sphaleron represents one of the best known ex-
amples of solitons in the electroweak sector of the standard
model. This is a static, purely magnetic solution of the
classical field equations describing a localized, globally
regular object with a finite mass of order of several TeV
[1]. For vanishing mixing angle �W sphaleron is spheri-
cally symmetric [1], but for �W � 0 it is only axially
symmetric—due to a nonzero magnetic dipole moment
[2]. The sphaleron is unstable and relates to the potential
barrier between the topological vacua in the theory [1],
thereby mediating nonperturbative transition processes
that could be relevant for the generation of the baryon
number asymmetry of our Universe [3].

In this article we show that the static, purely magnetic
sphaleron admits stationary generalizations including an
electric field and supporting a nonzero angular momentum
J. This reveals new solitonic states and also provides the
first explicit example of stationary spinning solitons in the
standard model. In fact, it seems that spinning systems in
classical field theory should generically radiate and there-
fore cannot be stationary, while spinning not accompanied
by radiation should be viewed as something exceptional
[4]. For example, the existence of stationary spinning
generalizations can be ruled out for the magnetic mono-
poles [5,6]. A similar no-go statement can also be proven
for the sphalerons, but only assuming that they do not
depend explicitly on time [6], which is not the case for
our solutions below.

The inner structure of the spinning sphaleron shows a
monopole-antimonopole pair joined by a Z-string segment
and surrounded by a loop of electric current. The momen-
tum circulating along the loops gives rise to the angular
momentum, which can be regarded as an electroweak
analogue of cosmic vortons [4,7]. For large J the whole
system shows a Regge-type behavior, similar to what was
suggested long ago by Nambu [8].

For �W � 0 the spinning sphalerons carry an electric
charge Q ¼ Je, where e is the electron charge. Since J 2

Z in the full quantum theory, it follows that only solutions
withQ=e 2 Z are allowed. The charged, spinning sphaler-
ons comprise therefore a discrete set. It is likely that they
mediate the topological transitions in sectors with fixed
charge and angular momentum, thus enlarging the number
of transition channels. Their energy increases but the ac-
tion decreases with J, which may considerably affect the
total transition rate and thus be important for the theory of
baryogenesis.

II. WEINBERG-SALAM THEORY

Its bosonic sector is described by the action S ¼ 1
g2z
�R

Ld4x, where

L ¼ � 1

4g2
Wa

��W
a�� � 1

4g02
Y��Y

��

þ ðD��ÞyD��� �

8
ð�y�� 1Þ2: (1)

Here, Wa
�� ¼ @�W

a
� � @�W

a
� þ �abcW

b
�W

c
� and Y�� ¼

@�Y� � @�Y�, while � is a doublet of complex Higgs

fields with D�� ¼ ð@� � i
2Y� � i

2 �aW
a
�Þ�, where �a

are the Pauli matrices. All fields and spacetime coordinates
have been rendered dimensionless by rescaling, the re-
scaled gauge couplings are expressed in terms of the
Weinberg angle as g ¼ cos�W, g0 ¼ sin�W. The mass
scale is gz�0, where �0 is the dimensionfull Higgs field
vacuum expectation value, the electron charge is e ¼
gzgg

0. The theory is invariant under gauge transformations

� ! U�; W� ! UðW� þ 2i@�ÞU�1; (2)

where U 2 SUð2Þ � Uð1Þ and W � ¼ Y� þ �aWa
�.

The electromagnetic field can be defined in a gauge

invariant way as F�� ¼ g
g0 Y�� � g0

g naW
a
�� with na ¼

ð�y�a�Þ=ð�y�Þ [8]. The electric current is j� ¼
@�F��, while the dual of F�� determines similarly the

magnetic current.
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III. AXIAL SYMMETRY

Let us split the spacetime coordinates as xk ¼ ð�; zÞwith
k ¼ 1, 2, and xa ¼ ðt; ’Þ. We are interested in stationary,
axially symmetric systems for which KðaÞ ¼ @=@xa are the
symmetry generators. The existence of these symmetries
implies conservation of two Noether charges

R
T0
�K

�
ðaÞd

3x

which are, respectively, the energy E and angular momen-
tum J for a ¼ 0, 3 (the dimensionfull values being�0E=gz
and J=g2z). The energy-momentum tensor is obtained by
varying the Lagrangian (1) with respect to the spacetime
metric T�

� ¼ 2g��@L=@g�� � 	�
�L.

The two Killing vectors Ka commute between them-
selves. Since all the internal symmetries in the theory (1)
are gauged, there exists a gauge where the symmetric fields
do not depend on xa [9]. The most general stationary and

axially symmetric fields can therefore be chosen in the
form � ¼ �ðxkÞ, W � ¼ W �ðxkÞ. These can then be

consistently truncated by imposing the on-shell conditions
=ð�Þ ¼ 0,W2

a ¼ W1
k ¼ W3

k ¼ Yk ¼ 0, such that the fields
can be parametrized as

W ¼ ðYa þ �1c
1
a þ �3c

3
aÞdxa þ �2vkdx

k;

� ¼ 
þ

�

� �
:

(3)

This is in fact a version of the Rebbi-Rossi ansatz [10].
This parametrization defines the reduced field theory for
the complex scalars c a ¼ c 1

a þ ic 3
a and 
 ¼ 
þ þ i
�

and a vector vk living on the 2D space spanned by xk. The
field equations following from (1) and (3) read

1

�
@kð�hab@kYbÞ ¼ 2g02=ð
�aÞ; (4a)

1

�
Dkð�habDkc bÞ ¼ 2g2
��a þ 1

2
ð�cdc cc

�
dÞ�abc b; (4b)

1

�
@sð�VskÞ ¼ =fc a�Dkc a þ g2
�Dk
g; (4c)

1

�
Dkð�Dk
Þ þ c �

a�
a þ i��

aY
a ¼ �

4
ðj
j2 � 1Þ
: (4d)

Here, Dk ¼ @k � ivk, Dk ¼ @k þ i
2vk and �03 ¼ ��30 ¼

1=� with �a ¼ 1=4ð
c a þ i
�YaÞ also Vik ¼
@ivk � @kvi. The indices a, b are raised and lowered by
the ‘‘target space’’ metric hab ¼ diagð1;��2Þ. The resid-
ual symmetry of the ansatz (3) generated by U ¼
expði2��2Þ gives rise to the local U(1) symmetry of Eqs.
(4),

c a ! ei�c a; 
 ! e�ð1=2Þ�
; vk ! vk þ @k�:

(5)

Modulo this symmetry, zero energy fields are given by

W 0 ¼ ð�3 � 1Þð!dtþ nd’Þ; �0 ¼ 1
0

� �
; (6)

with constant !, n. Equations (4) also admit a discrete
symmetry under z ! �z,

Ya ! Ya; c a ! �c �
a;


 ! 
�; vkdx
k ! �vkdx

k:
(7)

IV. BOUNDARY CONDITIONS

Let zþ i� ¼ rei# . Finite energy fields should approach
(6) for r ! 1, so that one should haveW ¼ W 0 þ 	W ,
� ¼ �0 þ 	�. Linearizing Eqs. (4) with respect to 	W ,
	� gives (in the 	
� ¼ 0 gauge)

	Ya þ 	c 3
a � e�mZr; 	
þ � e�mHr;

	c 1
a � vk � e�mWr;

which correspond, respectively, to the Z, Higgs and W
bosons with masses (in units of gz�0)

mZ ¼ 1ffiffiffi
2

p ; mH ¼ ffiffiffiffi
�

p
mZ; mW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

2
�!2

s
:

(8)

We see that the W-boson mass gets screened, since having
! � 0 is equivalent to a manifest time-dependence of the
fields. For the photon field Eqs. (4) give for large r�

g

g0
	Ya � g0

g
	c 3

a

�
dxa ¼ Q

4
r
dtþ �

4
r
sin2#d’þ . . . ;

(9)

where Q, � are the electric charge and magnetic moment.
In the gauge (3) the fields depend only on xk but they

have a Dirac string singularity at the z axis. If n 2 Z, then
this singularity can be removed by the gauge transforma-
tion U ¼ �1 expfi2�ð1� �3Þg with � ¼ !tþ n’ � !ax

a.

Applying this to (3) gives

W ¼ðYaþ!aþ�1K
1
a��2K

2
aÞdxa��3vkdx

kþ2i�1d�1;

�¼�1


þ
ei�
�

" #
(10)

EUGEN RADU AND MIKHAIL S. VOLKOV PHYSICAL REVIEW D 79, 065021 (2009)

065021-2



with �1 ¼ �1 sin# cos�þ �2 sin# sin�þ �3 cos#, �2 ¼
@#�1, �3 ¼ @��1= sin#, and K2

a þ iK1
a ¼ ei#ðc a � i!aÞ:

The Dirac string is now absent, but the fields depend
explicitly on t, ’. The boundary conditions at infinity
and in the equatorial plane are specified by Eqs. (6) and
(7). Transforming (10) to Cartesian coordinates one re-
quires that all term proportional to 1=� and 1=r should
vanish at the z axis and at the origin, respectively. At least
for n ¼ �1 no additional complications at the axis then
arise [11] and the fields (10) are everywhere regular. These
boundary conditions still allow for a residual gauge free-
dom (5) with � vanishing for � ¼ 0, for z ¼ 0, and for r ¼
1. This freedom can be fixed by the gauge condition
@kð�vkÞ ¼ 0.

V. ANGULAR MOMENTUM

If g, g0 � 0, then using Eqs. (4) one can represent T0
’ as

a total derivative [5,6]

T0
’ ¼ n

gg0
1

�
@kð�F0kÞ þ . . . ; (11)

the dots denoting the terms that vanishes upon integration.
As a result, choosing n ¼ 1,

J ¼
Z

T0
’d

3x ¼ 1

gg0
I

~Ed ~S ¼ Q

gg0
; (12)

where ~E is the electric field. So far we have used the
relativistic units where @ ¼ c ¼ 1, but let us return for a
moment to the standard units where the electron charge is
e ¼ c@gzgg

0. Dividing Eq. (12) by c@g2z gives then the
relation for the dimensionfull quantities,

J ¼ Q=e (13)

with J expressed in units of @. Since J 2 Z in the full
quantum theory, it follows that only solutions with Q=e 2
Z are allowed. The sphaleron charge is therefore quantized

and the charged, spinning sphalerons comprise a discrete
family.

VI. THE �W ¼ 0 LIMIT

When g ¼ 1 and g0 ¼ 0 the right-hand side of Eq. (4a)
vanishes and so the U(1) amplitudes are constant and equal
to their asymptotic values, Ya ¼ �!a. The U(1) part of the
gauge field (10) then vanishes. Let us consider the spheri-
cally symmetric sphaleron [1],

W ¼ ðwðrÞ � 1Þð�3d# � �2 sin#d’Þ;

� ¼ �1
hðrÞ
0

� �
;

(14)

which is a particular case of the axially symmetric field
(10) with ! ¼ 0, n ¼ 1. Equations (4) reduce then to

w00 ¼ wðw2 � 1Þ
r2

þ 1

2
h2ðwþ 1Þ;

h00 þ 2

r
h0 ¼ ðwþ 1Þ2

2r2
hþ �

4
ðh2 � 1Þh; (15)

whose globally regular solution exists for any � � 0 [1]
and has the profile shown in Fig. 1.
The strategy now is to vary ! by keeping n ¼ 1. If ! �

0 then the solution should be sought within the full ansatz
(10), but for j!j � 1 it is expected to be close to the
sphaleron (14). Specifically, in the gauge (3) where the
fields do not depend on t, ’ one should haveW ¼ W s þ
	W , � ¼ �s þ 	�, where W s, �s is the sphaleron
fields (14) transformed to the gauge (3), while 	W , 	�
are of order !. Inserting this into Eqs. (4) and linearizing
with respect to 	W , 	� reveal that one can consistently
choose

	W ¼ ð�!þ �1	c
1
0 þ �3	c

3
0Þdt; 	� ¼ 0; (16)

with 	c 1
0 þ i	c 3

0 ¼ �e�i#ðHþðrÞ sin# þ iH�ðrÞ�
cos#Þ=r. The variables in the equations then separate,
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FIG. 1 (color online). Left: perturbative solutions of Eqs. (17) and the background sphaleron profiles. Right: schematic charge-
current distribution inside the spinning sphaleron.
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�
d2

dr2
� w2 þ 1

q	r2
� h2

2

�
H� þ 2w

q	r2
H	 ¼ 	!

rh2

2
; (17)

with q� ¼ 2=ð3� 1Þ. For ! � 0 the source term in these
equations forces H� to be nonzero. Numerically solving
these equations gives a globally regular solution H�ðrÞ
(see Fig. 1) for which H�=r ! �! as r ! 1, so that
asymptotically 	c 0 ! i! as it should. Passing back to
the globally regular gauge (10), this perturbative solution
describes a slow rotational excitation of the sphaleron. The
angular momentum is obtained by linearizing

R
T0
’d

3x,

J ¼ 2
!
Z 1

0
h2
�
1þ 1

3r
Hþ � 2

3r
H�

�
r2dr; (18)

which evaluates, e.g., to J ¼ 22:7! for � ¼ 1.
Summarizing, choosing a nonzero value of ! in

Eqs. (10) breaks the spherical symmetry of the sphaleron
down to the axial one, generates an electric field, and
produces an angular momentum. If ! is small then J is
small, the spinning configuration is only slightly nonspher-
ical and can be perturbatively described by Eqs. (16)–(18).
For larger ! deviations from spherical symmetry become
large and one needs to integrate the full system of partial
differential equations (PDE’s)(4) to construct the solutions.

We have performed our numerical calculations using the
elliptic PDE solver FIDISOL based on the iterative Newton-
Ralphson method [12]. We integrated a suitably discretized

version of Eqs. (4) with the described above boundary
conditions. Starting from the spherically symmetric spha-
leron for �W ¼ ! ¼ 0 and increasing ! our numerics give
nonperturbative, axially symmetric solutions. The pertur-
bative results are recovered for small !. However, as !
grows, deviations from the spherical symmetry, as well as J
and the energy E increase, although the perturbative de-
scription seems to be still applicable as long as J=! 

const (see Figs. 2 and 3). It seems that there is a maximal
value, !max, beyond which no localized solutions exist.
Although it is difficult to approach this value numerically,
it appears that !2

max ¼ g2=2, in which case the effective
W-boson massmW defined by Eq. (8) vanishes, leading to a
delocalization of the field configuration.

VII. THE CASE OF �W � 0

In this case the described above features remain quali-
tatively the same, but the U(1) amplitudes Ya are no longer
constant and the solutions support a long-range electro-
magnetic field (9) characterized by the electric charge Q
and magnetic dipole moments �. If ! ! 0 then Q, J ! 0
but� remains finite (see Fig. 3), the solutions then becom-
ing static and axially symmetric [2].
Our numerics indicate that J 
 Cð�; �WÞ!E2 and so for

! ! !max one has J � E2. A similar Regge-type behavior
was predicted long ago by Nambu [8] for the dumbbell–-
monopole-antimonopole pair (MAP) connected by a Z-
string segment and spinning around its center of mass.
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FIG. 2 (color online). The energy density T0
0 and the negative (to better see the structure) angular momentum density �T0

’ shown in
the z ¼ 0 and y ¼ 0 planes for the spinning sphaleron with sin2�W ¼ 0:23, � ¼ 2, ! ¼ 0:433.
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This suggests similarities with the dumbbell scenario, and
the electric and magnetic current distributions for our
solutions reveal indeed a MAP, but also an electric current
loop encircling it, as schematically shown in Fig. 1.
Following [13] one can show that the MAP members have
magnetic charges �4
g0=g. The current loop seems to be
stabilized by the MAP field, producing at the same time the
Biot-Savart field that props the MAP up. The fields of the
MAP and of the loop create together the sphaleron dipole
moment [13], while for ! � 0 there is also a momentum
circulating along the loop and creating the angular mo-
mentum J directed along the MAP. Therefore, it is the loop
that spins inside the sphaleron and not the MAP, the whole
system then resembling somewhat a vorton: vortex loop
stabilized by the centrifugal force [4,7]. This picture, how-
ever, can only be qualitative, since the electromagnetic
field is not uniquely defined off the Higgs vacuum [8,13].

The static sphaleron is a saddle point solution relating to
the top of the potential barrier between the topological
vacua. The spinning sphalerons determine additional criti-
cal points of the action, and, by continuity, at least for small
J, it is likely (but technically difficult to show) that these
are also saddle points with one negative mode. Each of
them presumably relates to the potential barrier separating
the minimum energy states in sectors with fixed Q ¼ eJ,
as, for example, asymptotic states of N spin-oneW bosons
with the charge Q ¼ Ne and with J ¼ N. The barrier
transition amplitude is then determined by the sphaleron
action density L ¼ Rð�LÞd3x, which decreases with J
(see Fig. 3). The sphaleron-mediated transitions might

therefore be enhanced in channels with nonzero charge
and angular momentum.
The fact that instead of just one saddle point of the action

there are many of them increases the number of transition
channels. For example, one can argue that in hot electro-
weak plasma the topological transitions in ZZ collisions,
say, are mediated by the J ¼ 0 sphaleron, those in ZW�
collisions—by the J ¼ Q=e ¼ �1 sphaleron, and so on.
To get the total transition rate one should sum over all
channels, which may considerably affect the standard one-
channel result [3]. Of course, detailed calculations are
necessary, since there could be competing effects, as, for
example, the Coulombian repulsion preventing the forma-
tion of charged sphalerons. However, such a repulsion
could perhaps be overcome by the weak force or by the
plasma screening effects. In any case, the fact that there are
many of them suggests that the overall contribution of the
charged sphalerons may be important.
We have checked that the multisphaleron, sphaleron-

antisphaleron and vortex ring solutions with n � 1 [14]
also admit spinning generalizations. For �W � 0 they have
Q ¼ neJ. Charged sphalerons were also discussed pertur-
batively [15], and, after the preprint of the present paper
was released, nonperturbatively in Ref. [16].
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