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CP violation in the loop-mediated photon-photon interactions would modify the birefringence of the

quantum vacuum. We discuss the implications of this effect on an experiment in which light propagates in

a Fabry-Perot cavity permeated by a time-dependent electric and magnetic field: for some suitable

orientation of the electric field, the effect does not cancel out in a round-trip. We show that the violation of

CP would imply the existence of characteristic Fourier components, in the intensity spectrum of the

outgoing wave. In order to estimate the magnitude of this effect within the standard model, we use chiral

perturbation theory to compute the �-term contribution to the coefficient of the leading CP-odd vertex, in

the low-energy effective field theory for photon dynamics.
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I. INTRODUCTION

To date, CP violations have only been observed in
reactions in which the total flavor quantum number F is
not conserved [1–4]. Such processes are understood in the
standard model, in terms of the Cabibbo-Kobayashi-
Maskawa flavor-mixing mechanism.

On the other hand, CP violation in flavor-conserving
reactions has never been observed. Much of the experi-
mental investigations have focused in the neutron electric
dipole moment (NEDM), for which the most precise mea-
surements give [5]

jdnj< 2:9� 10�26e � cm: (1)

In the �F ¼ 0 channel, the CP violation generated by
weak interactions is expected to be much smaller than in
the �F � 0 channels, because the charged weak currents
do not contribute at tree level. For example, the weak
contribution to the neutron NEDM is only dweak ’ 10�32e �
cm (see [6] and references therein). On the other hand, all
flavor-conserving CP-odd matrix elements receive in prin-
ciple a direct contribution from the so-called � term of
QCD,

S� ¼ �
1

32�2

Z
d4xF��

~F��; (2)

where ~F�� ¼ ð1=2Þ"����F
�� is the dual gluon field

strength and � is a (real) dimensionless parameter, which
incorporates also a contribution from the weak sector,

� ¼ �0 þ arg det½M̂�; (3)

where M̂ is the complex, non-Hermitian quark mass ma-
trix. Estimates combining the theoretical predictions of
chiral effective Lagrangians with the existing experimental
bounds on the neutron NEDM have shown that the � angle
is in fact extremely small [7],

� < 0:2� 10�10: (4)

The existing experimental results on the NEDM only
provide information on the strength of CP-violating inter-
actions inside hadrons. On the other hand, they do not set
constraints on the CP violation in reactions in which the
on-shell states do not contain either quarks or leptons. In
such a perspective, the propagation of an electromagnetic
wave in an external magnetic field B has been studied
[8,9]. We note that such a process may be in principle
sensitive to exotic CP-odd microscopic dynamics, which is
not constrained by the measurement of the NEDM [10]. In
a context of search for such a new physics, it is important to
estimate the amount of CP violation in the same process,
which is to be attributed to the standard model. The main
goal of this paper is to compute the leading QCD contri-
bution to such processes, which is induced by the QCD
� term.
In general, quantum fluctuations are known to be re-

sponsible for the nonlinear response of the vacuum to an
external electromagnetic field. One of the consequences of
this effect is that a linearly polarized wave propagating in a
region permeated by a magnetic field would acquire a finite
ellipticity � (see, e.g., [10,11] and references therein). In
particular, if CP symmetry is conserved inside the loops
mediating the quantum interactions of the electromagnetic
wave with the external magnetic field, then the acquired
ellipticity has the following general structure:

�CP evenðB; LÞ ¼ �

�
ðn2ðBÞ � n1ðBÞÞL� sin2�0; (5)

where � is the wavelength of the electromagnetic wave, L
is the distance traveled in the cavity, n1 and n2 are the
refraction indexes along the axes perpendicular and paral-
lel to the external field, and �0 is the angle between the
polarization axis of the incoming wave and the direction
selected by the external field (see Fig. 1).
A small amount of CP violation inside the quantum

loops mediating the light-by-light scattering would imply
an additional contribution to the acquired ellipticity, in the
form
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� ¼ �CP even þ�CP odd: (6)

The correction from the CP-odd term reads

�CP odd ¼ �
�

�
ðn2ðBÞ � n1ðBÞÞL� cos2�0; (7)

where � is a small parameter, which measures the amount
of CP violation.

In order to calculate explicitly the contribution to
�CP odd, coming from the � term of QCD we shall proceed
as follows. First, we shall use the result of a microscopic
calculation in chiral perturbation theory to determine the
effective coefficient of the leading CP-odd operator, in the
effective field theory for low-energy photon dynamics.
Next, we shall express �CP odd in terms of such a coeffi-
cient. Our final result is

�CP odd ’ �2�
5

9

�2�

m2
	0 ð4�f�Þ2

L

�
B2 þ � � � ; (8)

where the ellipsis denotes higher orders, in the chiral and
1=Nc counting.

The maximum contribution to the CP-odd ellipticity
which can be attributed to the standard model is subject
to the strict constraint on � coming from the measurement
of the NEDM. For a generic magnetic field orientation, it is
much smaller than the leading CP-even contribution to�,
which comes from QED. On the other hand, it is important
to stress that the CP-even and CP-odd components of the
ellipticity are qualitatively different and therefore can be
experimentally separated. In fact, the CP-even part van-
ishes for polarization angles 2�0 ¼ 0, �, i.e., in the con-
figurations in which the CP-odd part is maximum.
Observing a significant excess of CP-odd ellipticity with
respect to the estimate arising from Eq. (8) would represent
a signature of CP violation coming from microscopic
dynamics beyond the standard model, for example, of the
type investigated in [10].

In the last part of this work, we shall analyze in detail the
possibilities of measuring the CP-odd ellipticity �CP odd,
in experiments in which the electromagnetic wave prop-
agates in a Fabry-Perot cavity [12,13]. These experiments

make use of the summation property of ellipticity, in order
to increase the CP-even signal. On the contrary, one can
show that after a reflection on a mirror, the coefficient � in
Eq. (7) changes sign. Hence the CP-odd ellipticity�CP odd

is not enhanced by propagating several times in the reso-
nant cavity. Nonetheless, we shall show that if an electric
field E is placed in the cavity together with the magnetic
fieldB, the total amount of CP-odd ellipticity after a single
round-trip is given by

�CP odd;R ¼ �0
�

�
jBjjEjL� sinð�B þ �EÞ; (9)

where �B and �E are the angles between the polarization
axis of the incoming wave and the directions selected by
the external magnetic and electric fields, respectively.
We shall also show that if the external fields are modu-

lated, a finite amount of CP violation would generate
additional Fourier components in the spectrum of the
intensity of the outgoing wave.
The paper is organized as follows. In Sec. II we intro-

duce the effective Lagrangian for low-energy photon-
photon dynamics and we compute the QCD contribution
to the effective coefficient of the leading CP-odd operator.
In Sec. III we study the birefringence of the vacuum in the
presence and in the absence of CP violation, we review the
calculation of the CP-even contribution to the ellipticity in
QED and, we compute the CP-odd correction in QCD,
using chiral perturbation theory and 1=Nc expansion. In
Secs. IVand V we present our discussion of the possibility
of CP violation in experiments in which the electromag-
netic wave is reflected by a mirror. Conclusions are re-
ported in Sec. VI.

II. EFFECTIVE LAGRANGIAN FOR PHOTON-
PHOTON INTERACTION WITH CP VIOLATION

At energy scales much below the electron mass, the
quantum dynamics of the electromagnetic field can be
rigorously formulated in terms of an effective theory, in
which the only dynamical degrees of freedom are soft
photons. One considers the most general effective
Lagrangian compatible with gauge and Lorentz symme-
tries, which contain an infinite tower of CP-even and
CP-odd operators of increasing dimension,

L eff ¼
X1
i¼1

cið�ÞOi; (10)

where � � me is the cutoff scale. Perturbative power-
counting rules imply that, for momenta much below the
cutoff, arbitrarily precise predictions can be obtained re-
taining only a finite number of lowest dimensional opera-
tors in (10). The effective coefficient ci’s in (10) encode the
information about the quantum ultraviolet physics above
the cutoff scale �. They can in principle be determined
explicitly, by means of microscopic calculations in the
underlying, more fundamental theory.

FIG. 1. Polarization planes and refraction indexes in an elec-
tromagnetic wave propagating in a resonant cavity (see the
details in the text).
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Starting from the electromagnetic field stress tensor, one
can construct only two Lorentz invariant terms: a scalar,

X ¼ B2 �E2 ¼ 1
2F��F

��; (11)

and a pseudoscalar,

Y ¼ B �E ¼ 1
2F��

~F��: (12)

Hence, the most general effective Lagrangian is con-
structed by combining powers of such operators. Clearly,
theCP-odd dynamics is encoded in the terms containing an
odd number of Y operators. The lowest-order terms in the
effective Lagrangian read

L eff ¼ �1
2X þ aY þ bX2 þ cY2 þ dXY þ � � � : (13)

The effective coefficient a can be set to zero, since the
pseudoscalar operator Y is a total derivative, while the
effective coefficients b, c, and d appear only at the quan-
tum level. In principle, these coefficients receive contribu-
tions from the electroweak and strong sectors of the
standard model and, possibly, also from dynamics beyond
the standard model. In particular, the leading contribution
to b and c comes from QED and has long been calculated
[14]

b ¼ 2�2

45m4
e

; c ¼ 7b: (14)

The coefficient d in Eq. (13) parametrizes the short-
distance CP-violating dynamics. Within the standard
model, if the QCD � angle is greater than 10�13, the
leading contribution to d comes from the strong sector.
On the other hand, for smaller values of �, d is dominated
by the weak interactions. In this work, we shall assume the
first scenario and in the remaining part of this section we
compute the QCD contribution to d.

Let us consider the response of the vacuum to an exter-
nal electromagnetic field Fext

�� ¼ ðE;BÞ. It is convenient to
introduce the electric displacement field D and the auxil-
iary magnetic field H, defined as

D ¼ @L
@E

¼ Eþ P; (15)

H ¼ �@L
@B

¼ B�M; (16)

where P and M are the polarization and magnetization
vectors, respectively. From Eq. (13) we obtain

D ¼ ½1� 4bX� 2dY�Eþ ½2cY þ dX�Bþ � � � ; (17)

H ¼ ½1� 4bX � 2dY�B� ½2cY þ dX�Eþ � � � : (18)

Some observations on these equations are in order. As
expected, the nonlinear vacuum polarization is a purely
quantum effect. In the absence of CP violation—i.e., if
d ¼ 0—a purely electric (magnetic) external field would

induce a purely electric polarization (magnetization) along
the same direction, i.e.,

B ¼ 0; E � 0)CPD ¼ 4bE2E; (19)

E ¼ 0; B � 0)CPH ¼ �4bB2B: (20)

This condition is no longer verified if CP is broken by
the microscopic dynamics buried inside the quantum loops.
In fact, if d � 0, a purely magnetic (electric) external field
can generate an electric polarization (magnetization) along
the same direction, i.e.,

B � 0; E ¼ 0 )CP viol:
D ¼ dB2B; (21)

E � 0; B ¼ 0 )CP viol:
H ¼ dE2E: (22)

The relationship (21) can be used to compute the effec-
tive coefficient of the leading CP-odd term in the effective
Lagrangian (13). In fact, a calculation of the strongCP-odd
contribution to the vacuum electric dipole moment induced
by an external magnetic field was recently carried out by
the authors in [15]. We have found that, for a constant and
uniform external field, the vacuum electric dipole moment
reads

D ¼ 5

9

�2�

m2
	0 ð4�f�Þ2

B2B: (23)

This result was obtained considering two quark flavors, and
it corresponds to the leading order in the chiral and 1=Nc

expansion. Some astrophysical implications of this effect
for the physics of magnetar (i.e., neutron star with ex-
tremely large magnetic fields, of the order of 1015 G)
have been discussed in [15].
The strong contribution to the coefficient d is immedi-

ately obtained by matching Eq. (23) with Eq. (21) and
reads

d ¼ 5

9

�2�

m2
	0 ð4�f�Þ2

: (24)

We also note that using Eqs. (22) and (24), it is immediate
to obtain the CP-odd magnetization induced by an external
electric field

M ¼ � 5

9

�2�

m2
	0 ð4�f�Þ2

E2E: (25)

In the next section, we evaluate the contribution of the
CP-odd component of the low-energy photon-photon in-
teraction (13) to the induced ellipticity of an electromag-
netic wave, propagating in a cavity.

CP VIOLATION IN LOW-ENERGY PHOTON-PHOTON . . . PHYSICAL REVIEW D 79, 065020 (2009)

065020-3



III. VACUUM BIREFRINGENCE

Let us consider an electromagnetic wave, characterized
by the fields ðe;bÞ, propagating along the ẑ direction and
linearly polarized along an axis rotated by an angle�0 with
respect to the ŷ axis (see Fig. 1):

e ðx; tÞ ¼ e0ðcos�0ŷþ sin�0x̂Þeiðkzz�!tÞ: (26)

The wave enters a cavity filled with a constant and uniform
magnetic field B, directed along the ŷ axis. After traveling
for a distance L, the electromagnetic wave develops an
elliptic polarization, which has both CP-even and CP-odd
components. Let us first review the calculation of the
CP-conserving contribution [11].

A. CP-even vacuum birefringence

The dynamics of the electromagnetic field is conven-
iently described in terms of the vacuum electric and mag-
netic permeability tensors "ij and�ij, which are defined as

di ¼ "ijej; hi ¼ �ijbj; (27)

where d and h are the usual displacement vector and
auxiliary magnetic field,

d ¼ @L
@e

; h ¼ � @L
@b

: (28)

In terms of the CP-even coefficients of the effective
Lagrangian (13), the electric and magnetic permeability
tensors have the following expression:

"ij ¼ ð1� 4bB2Þ
ij þ 2cBiBj; (29)

�ij ¼ ð1� 4bB2Þ
ij � 8bBiBj: (30)

Since d and h must satisfy a wave equation, " and �
must depend only on the external magnetic field B and not
fields e and b. Maxwell’s equations imply

k � b ¼ 0; (31)

k � d ¼ 0; (32)

k � e ¼ !b; (33)

k � h ¼ �!d; (34)

where k is the propagation vector of the wave. By sub-
stituting b of Eq. (33) in Eq. (34) we obtain

�ijqkj½�qlðk� eÞl� þ!2"ilel ¼ 0; (35)

where �ijq denotes the usual rank-3 completely antisym-

metric tensor. Using the relationships (29) and (30),
Eq. (35) can be written in the following matrix form:

�1 0
0 �2

� �
e1
e2

� �
¼ 0; (36)

with

�1 ¼ � k2

!2
½1� 12bB2� þ 1� 4bB2; (37)

�2 ¼ � k2

!2
½1� 4bB2� þ 1þ 2ðc� 2bÞB2: (38)

The two solutions of this equation give the refraction
indices along x̂ and ŷ, respectively,

n1 ¼ 1þ 4bB2 þ � � � ; (39)

n2 ¼ 1þ cB2 þ � � � : (40)

If the incoming wave is linearly polarized along the eigen-
vectors of �1 and �2—i.e., along the x̂ and ŷ axis—it will
remain linearly polarized, even inside the region permeated
by the magnetic field. On the other hand, if the incoming
wave is polarized along an axis forming a finite angle �0

with respect to the direction selected by the eigenvector
with the greatest eigenvalues, i.e., the ŷ axis, it will acquire
an ellipticity [11]

�CP evenðB; LÞ ¼ �

�
ðn2ðBÞ � n1ðBÞÞL� sin2�0

¼ �

�
ðc� 4bÞB2L sin2�0: (41)

B. CP-odd vacuum birefringence

We now compute the ellipticity induced on the electro-
magnetic wave, in the presence of CP-violating vacuum
polarization. In this case, the electric displacement field d
and auxiliary magnetic field h receive additional contribu-
tions �d and �h, which depend on the CP-odd effective
coefficient d,

d ¼ dCP even þ �d; (42)

h ¼ hCP even þ�h; (43)

with

�d ¼ 2dB½b � B� þ dbB2; (44)

�h ¼ �2dB½e �B� � deB2: (45)

Maxwell’s equations now give

�ijqkj½�qlðk� eÞl� þ!2"ilel

¼ 2d½ð�ijqkjBqÞelBl þ Bið½ðk� BÞjej�: (46)

The CP-odd interactions introduce nondiagonal elements
in the matrix (35), which now become

�1 C
C �2

� �
e1
e2

� �
¼ 0; (47)

where �1 and �2 are the same as in Eqs. (37) and (38), and
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C ¼ 2
k

!
dB2: (48)

As in the CP-even case, an incoming wave which is
linearly polarized along the eigenvectors of the matrix
(47) does not acquire ellipticity. Up to higher corrections
in the effective coefficient d, the eigenvalues of (47), i.e.,
the refraction indexes, are the same as those of (40). On the
other hand, the new eigenvectors are rotated by an angle �
given by

� ¼ d

c� 4b
þOðB2Þ: (49)

Consequently, the final expression for the ellipticity ac-
quired in the cavity, in the presence of CP violation reads

� ¼ �

�
ðc� 4bÞB2L sin2ð�0 � �Þ: (50)

We expect CP violation to provide at most a small correc-
tion to the total ellipticity, i.e., � � �0. In this case,

� ’ �CP even þ�CP odd; (51)

with

�CP odd ¼ �2�d
L

�
B2 cos2�0: (52)

This equation has been independently obtained in [8,9].
Within the standard model, the CP-odd correction is

indeed extremely small. For example, if we consider a
setup characterized by an angle �0 ¼ �=8, for which the
trigonometric factor cancels out, then the ratio between the
�CP even and �CP odd is�

�CP odd

j�CP evenj
�
�¼�=8

’ 2d

c� 4b
’ �� 10�12 < 10�22: (53)

However, it is important to stress that the CP-odd and
CP-even contributions to the ellipticity are qualitatively
different and therefore can be experimentally disentangled.
In particular, if �0 is chosen to be 0, �=2; . . . , then the
CP-even contribution vanishes and the entire ellipticity is
due to CP-violating quantum photon-photon interactions.
In this case, any significant deviation from our estimate,

�CP odd ’ � 10��2�

9m2
	0 ð4�f�Þ2

L

�
B2; (54)

would represent a clean signature of CP-violating physics
beyond the standard model.

In the next section, we shall discuss the possibility of
measuring the CP-odd ellipticity using a Fabry-Perot
cavity.

IV. VACUUM BIREFRINGENCE IN A RESONANT
CAVITY

We now imagine that the electromagnetic wave propa-
gating in the cavity is reflected by a mirror. After the

reflection, both the polarization vector e and the wave
vector k change sign: this affects both the angles �0 and
�. In fact, the angle �0 will undergo a rotation of 180�

�0 ! �0
0 ¼ �0 þ �; (55)

� ! �0 ¼ ��; (56)

while the angle � changes sign. The latter effect occurs
because � is proportional to the coefficient C in Eq. (47):
since C is linear in k, by inverting the direction of the
electromagnetic wave the sign of � changes. On the
contrary, the indices of refraction n1 and n2 remain un-
changed, because �1 and �2 are quadratic in k, see
Eqs. (37) and (38). Thus, the contribution to the total
ellipticity during the return part of the round-trip is given
by

�0 ¼ �

�
ðc� 4bÞB2L sin2ð�0

0 � �0Þ (57)

¼ �

�
ðc� 4bÞB2L sin2ð�0 þ �Þ: (58)

Hence, the total amount of CP-odd ellipticity of the wave
after a round-trip is

�CP odd;R ¼ �CP odd þ�0
CP odd ¼ 0: (59)

After being reflected 2N times in the resonant cavity, the
total ellipticity gained by the electromagnetic wave will be

�TOT ¼ ð2N þ 1Þ�CP even þ�CP odd: (60)

Thus, we conclude that the experimental setup formed by a
magnetic field in a resonant cavity is not suitable for
measurements of CP-odd ellipticity: there is no enhance-
ment of the CP-odd signal after several round-trips.
We now show that if the cavity is also permeated by an

electric field set up in the plane perpendicular to k, the
CP-odd ellipticity does not cancel out, in general, after a
round-trip. To this end, we performed again the calculation
in Sec. III B considering an external electromagnetic field
ðE;BÞ, instead of only ð0;BÞ. After a tedious but straight-
forward calculation one obtains the following results for
the forward and backward ellipticities �f and �b:

�f
CP even ¼

�

�
ðc� 4bÞ½B2 � sin2�B �E2 � sin2�E

� 2jEjjBj cosð�B þ �EÞ�; (61)

�f
CP odd ¼ �2d

�

�
½B2 � cos2�B �E2 � cos2�E

þ 2jEjjBj sinð�B þ �EÞ�; (62)

�b
CP even ¼

�

�
ðc� 4bÞ½B2 � sin2�B �E2 � sin2�E

þ 2jEjjBj cosð�B þ �EÞ�; (63)
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�b
CP odd ¼ 2d

�

�
½B2 � cos2�B �E2 � cos2�E

� 2jEjjBj sinð�B þ �EÞ�: (64)

After a round-trip, the total ellipticity amounts to

�CP even;R ¼ �f
CP even þ�b

CP even

¼ 2
�

�
ðc� 4bÞ½B2 � sin2�B �E2

� sin2�EÞ�; (65)

�CP odd;R ¼ �f
CP odd þ�b

CP odd

¼ �8d
�

�
jEjjBj sinð�B þ �EÞ: (66)

Hence after 2N reflections, the total ellipticity is

�TOT ¼ N½�CP even;R þ�CP odd;R�
þ ½�f

CP even þ�f
CP odd�: (67)

Notice that the CP-odd ellipticity is maximum if ð�B þ
�EÞ ¼ �=2; 3�=2; . . . and vanishes for ð�B þ �EÞ ¼
0; �; . . . . Notice also that, if the electric and magnetic
fields are orthogonal to each other, i.e., if �E � �B ¼
��=2, then one recovers the structure of the CP-even
and CP-odd ellipticities in Eqs. (41) and (52)

�CP even ¼ 2
�

�
ðc� 4bÞ½B2 þE2� sin2�B; (68)

�CP odd ¼ �8d
�

�
jEjjBj cos2�B: (69)

On the contrary, if the electric and magnetic fields are
parallel to each other, i.e., �B ¼ �E, both contributions
will be proportional to sin2�B

�CP even ¼ 2
�

�
ðc� 4bÞ½B2 �E2� sin2�B; (70)

�CP odd ¼ �8d
�

�
jEjjBj sin2�B: (71)

In the next section we study the effects of modulating the
external fields on the spectrum of the intensity of the out-
going wave.

V. IMPLICATIONS ON EXPERIMENTS

The main goal of the experiments PVLAS [12] and
BMV [13] is to study the birefringence and the dichroism
induced by the quantum fluctuations in the QED vacuum,
in the presence of an external magnetic field B. In the
following, we restrict our attention to the implications of
CP-violating quantum fluctuations on the vacuum birefrin-
gence. We compare two scenarios, one in which only the
magnetic field permeates the cavity and one in which also
an electric field E is present.
Let us begin with the first case, which is the one imple-

mented at PVLAS and BMV. The experimental setup con-
sists of a Fabry-Perot cavity, placed between two crossed
polarizers (Fig. 2). The cavity is uniformly filled with a
magnetic field B, rotating with angular frequency !B,
along the plane perpendicular to the wave vector of the
incoming light. Since the magnetic field is rotating, the
total induced ellipticity is time dependent, � ¼ �ð!Btþ
�BÞ, where �B is the angle between the polarization vector
and the magnetic field at the time t ¼ 0.
It can be shown that the intensity of the outgoing wave

has the following form [12,16]:

Iout ¼ Iin

��������
2F
�

i�CP evenð!Btþ �BÞ

þ i�CP oddð!Btþ �BÞ
��������

2

; (72)

where I0 is the intensity of the incoming wave, andF is the
so-called finesse of the Fabry-Perot cavity.
The ellipticity � generated by the quantum vacuum

polarization is in general expected to be a small effect.
Hence, in order to increase the intensity of the wave
coming out of the last polarizer, an additional time-
dependent classical ellipticity 	ðtÞ is introduced by means
of a modulator. This way, the intensity of the outgoing
wave becomes linear in the ellipticity �ðtÞ:

Iout ’ Iin	ðtÞ
�
	ðtÞ þ 4

F
�
�CP evenð!Btþ �0Þ

þ 2�CP oddð!Btþ �BÞ
�
þOðc 2Þ: (73)

In particular, let us consider the case in which the
classical ellipticity 	ðtÞ is modulated with a frequency!	,

	ðtÞ ¼ 	0 cosð!	tþ �	Þ: (74)

FIG. 2. Schematic representation of the experimental setup of PVLAS (see text). P and A are the cross polarizers, FP is the Fabry-
Perot cavity, G	 is the generator of the additional ellipticity 	ðtÞ, and D is the detector.
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In this case, the intensity of the outgoing wave is

Iout;c ðtÞ ¼ L
�

�
B2Iin	0

�
2
F
�
ðc� 4bÞfsin½ð!	 þ 2!BÞt

þ�	 þ 2�0� � sin½ð!	 � 2!BÞtþ�	 � 2�0�g
� 2dfcos½ð!	 þ 2!BÞtþ�	 þ 2�0�
þ cos½ð!	 � 2!BÞtþ�	 � 2�0�g

�
: (75)

The CP-even and CP-odd contributions to the induced
ellipticity can be disentangled by Fourier analysis. In fact,
we see that the Fourier spectrum of Iout;c contains the

following:
(i) Two CP-even Fourier components with amplitude

given by

Aeven ¼ 2ðc� 4bÞL
�
B2I0	0F ; (76)

and frequency and phase given by

�even;� ¼ !	 � 2!B; �even;� ¼ �	 � 2�0:

(77)

(ii) Two CP-odd Fourier components of amplitude given
by

Aodd ¼ 2dL
�

�
B2I0	0; (78)

and frequency and phase given by

�odd;� ¼ !	 � 2!B;

�odd;� ¼ �	 �
�
2�0 � �

2

�
:

(79)

Note that, except for �0 ¼ �
8 , the phases of the CP-even

and CP-odd components are different. This fact implies
that, at least in principle, it should be possible to probe
directly the CP-odd part of the photon-photon interaction
by analyzing the spectrum of the outgoing wave.
Unfortunately, as we noticed in Sec. IV, the amplitude
(78) of theCP-odd ellipticity is suppressed by a factorF /
N, where N is the number of round-trips in the cavity, with
respect to the CP-even amplitude (76): any signal of
CP violation would be hardly measurable.

We now discuss what would happen if a time-dependent
electric field is placed in the Fabry-Perot cavity, along with
the magnetic field. If the electric field is modulated with
frequency !E and phase �E, by replacing Eqs. (65) and
(66) in Eq. (72) the intensity of the outgoing wave in
Eq. (80) gives, up to OðF 0Þ,

Iout;c ðtÞ ¼ 2
L

�
Iin	0F ½ðc� 4bÞB2fsin½ð!	 þ 2!BÞt

þ�	 þ 2�B� � sin½ð!	 � 2!BÞtþ�	 � 2�B�g
� ðc� 4bÞE2fsin½ð!	 þ 2!EÞtþ�	 þ 2�E�
� sin½ð!	 � 2!EÞtþ�	 � 2�E�g
� 4djEjjBjfsin½ð!	 þ!B þ!EÞtþ�	

þ�B þ�E� � sin½ð!	 �!B �!EÞt
þ�	 ��B ��E�g�: (80)

Thus, the spectrum of the outgoing intensity has six char-
acteristic Fourier components
(i) Two CP-even Fourier components with amplitude

given by

Aeven;B ¼ 2ðc� 4bÞL
�
B2I0	0F ; (81)

and frequency and phase given by

�even;� ¼ !	 � 2!B; �even;B;� ¼ �	 � 2�B:

(82)

(ii) Two CP-even Fourier components with amplitude
given by

Aeven;E ¼ 2ðc� 4bÞL
�
E2I0	0F ; (83)

and frequency and phase given by

�even;� ¼ !	 � 2!E;

�even;E;� ¼ �þ �	 � 2�E:
(84)

(iii) Two CP-odd Fourier components of amplitude given
by

Aodd ¼ 8d
L

�
jEjjBjI0	0F ; (85)

and frequency and phase given by

�odd;� ¼ !	 � ð!B þ!EÞ;
�odd;� ¼ �þ �	 � ð�B þ �EÞ:

(86)

Based on the considerations made in Sec. IV, we realize
that for an experimental setup in which �E � �B ¼ �=2
and !E ¼ !B, the four CP-even peaks merge into two
peaks. The CP-odd Fourier components of the outgoing
intensity spectrum have the same frequency of the
CP-even ones, but their phases are shifted by �=2.
Hence, we have recovered our previous result with

ðc� 4bÞB2 ! ðc� 4bÞ½B2 þ E2�; (87)

dB2 ! 4

�
djEjjBjF : (88)
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The presence of an electric field in the cavity can sig-
nificantly increase the sensitivity of the experimental setup
to the CP-odd ellipticity only if the round-trip contribution
/ djEjjBjF is much larger than the one-way contribution,
/ dB2. This condition is verified if

Aodd;E

Aodd;E¼0
¼ 4jEjF

�jBj 	 1: (89)

For example, for a typical finesse of 105, the condition (89)
holds for electric fields 	 10 V=cm.

The contribution to the coefficient d coming from the
� term of QCD is at least 20 orders of magnitudes smaller
than the coefficient of the CP-even term c� 4b. Given
such a huge difference, it is difficult to imagine that an
experiment with a resonant cavity will be able to reach the
sensitivity required to resolve the standard model contri-
bution. Hence, observing evidence for the peaks (86) in the
spectrum of the outgoing wave would represent a clean
signature of CP violation coming from microscopic dy-
namics beyond the standard model.

VI. CONCLUSIONS

In this paper, we have considered CP violation in
photon-photon interactions, at energies much below the

electron mass scale. In such a kinematic regime, the photon
dynamics can be described by an effective field theory, in
which quantum loops are replaced by contact vertices. We
have seen that a CP violation in this channel would result
in a specific contribution to the ellipticity acquired by an
electromagnetic wave propagating in a Fabry-Perot cavity,
in the presence of an external electric field along with a
magnetic field. Interestingly, the CP-even and CP-odd
ellipticities are qualitatively distinct and give rise to addi-
tional Fourier components, in the power spectrum of the
outgoing wave.
We have estimated the magnitude of this effect, in a

scenario in which the only CP violation comes from the �
angle of QCD. To this end, we have computed the coeffi-
cient of the lowest-dimensional CP-odd operator in the
photon effective field theory, at the leading order in chiral
perturbation theory and in the 1=Nc expansion. Given the
smallness of this effect, it is difficult to imagine that
PVLAS or BMV experiments will reach the sensitivity
required to improve on the present upper bound for �. On
the other hand, we have shown that, if a large electric field
is dialed into the cavity, the analysis of the spectrum of
intensity of the outgoing wave may be used to set upper
bounds on exotic CP-violating dynamics.
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