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We consider the influence of extra dimensions on the force in Casimir pistons. Suitable analytical

expressions are provided for the Casimir force in the range where the plate distance is small, and where it

is large, compared to the size of the extra dimensions. We show that the Casimir force tends to move the

center plate toward the closer wall; this result is true independently of the cross section of the piston and

the geometry or topology of the additional Kaluza-Klein dimensions. The statement also remains true at

finite temperature. In the limit where one wall of the piston is moved to infinity, the result for parallel

plates is recovered. If only one chamber is considered, a criterion for the occurrence of Lukosz-type

repulsion, as opposed to the occurrence of renormalization ambiguities, is given; we comment on why no

repulsion has been noted in some previous cosmological calculations that consider only two plates.
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I. INTRODUCTION

In recent years Casimir pistons have received an increas-
ing amount of interest because they allow the unambiguous
prediction of forces, free of the divergences that often
plague Casimir calculations. In their modern form they
were introduced by Cavalcanti [1] in a two-dimensional
setting. Namely, in his paper a Casimir piston consists of a
rectangular box divided by a movable partition into two
compartments, A and B, of dimensions a� b and ðL�
aÞ � b, respectively. Imposing Dirichlet boundary condi-
tions, as L ! 1, it is shown that the piston is attracted to
the nearest end of the box. Higher-dimensional pistons
have been considered with various boundary conditions
[2–9]. Hertzberg et al. showed that in three dimensions
for perfect metallic boundary conditions the rectangular
piston is attracted to the closest base [4,5]; for pistons with
rectangular cross sections and Dirichlet or Neumann
boundary conditions see also [2,10]. The same conclusion
was reached in [3] for perfect magnetic conductor (infi-
nitely permeable) boundary conditions in a rectangular
piston of arbitrary dimension. Finally, a unified treatment
reached the same conclusion for a scalar field with peri-
odic, Dirichlet, or Neumann boundary conditions and an
electromagnetic field with perfect electric conductor or
perfect magnetic conductor boundary conditions [6].
However, with the judicious choice of a perfectly conduct-
ing piston inside a closed cylinder of arbitrary cross section
with infinitely permeable walls, or a Dirichlet piston with
Neumann walls, etc., a repulsive force is found [7,11,12];
those results generalize the famous observation of Boyer

[13] for parallel plates of unlike nature. This work mostly
considered pistons of rectangular cross section, where
closed answers can be obtained. An exception is [8] where
it was shown that in three dimensions a piston of arbitrary
cross section, with all surfaces perfectly conducting, is
attracted to the closest wall.
In the limit where the transversal dimensions as well as

one of the walls are sent to infinity the configuration of two
parallel plates is obtained. This is the procedure used in
early calculations of the Casimir force between parallel
plates [14–16]. But although in principle pistons were
studied at that time, auxiliary plates at finite but large
distances were introduced for mere mathematical conve-
nience in contrast to the modern pistons which are studied
in their own right. The scalar Casimir force between par-
allel plates in the presence of compactified extra dimen-
sions has been used to put restrictions on the size of the
extra dimensions [17–22]; for more recent discussions of
perfectly conducting parallel plates affecting the five-
component electromagnetic field in five dimensions
(reaching different conclusions) see [23,24]. The Casimir
effect was also used to argue against the possibility that
vacuum energy plays the role of a cosmological constant
responsible for the observed dark energy [25–27]; cutoff
scales that could produce the needed dark energy led to the
prediction of repulsive Casimir forces at distances between
the plates where attraction is verified experimentally [28–
30].
In this article we consider three-dimensional pistons of

arbitrary cross section in the context of Kaluza-Klein
models. We show that in a scalar field theory with
Dirichlet or Neumann boundary conditions the piston is
attracted to the closest wall and that this statement holds
independently of the cross section of the piston, of the
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geometry and topology of the additional Kaluza-Klein
dimensions (with one minor caveat), and of the tempera-
ture. We use zeta function techniques [31–36] to find
closed answers for the Casimir force and to show these
results. In the Appendix indications are made how to use
path sums (or images) and an ultraviolet cutoff to reach the
same conclusions. It should be noted that mathematically
the Kaluza-Klein dimensions and the transverse dimen-
sions of the macroscopic piston play very similar roles,
only their respective magnitudes relative to the plate sepa-
ration being quantitatively significant.

The correction to the force due to the additional dimen-
sions is exponentially damped as long as the distance
between the plates is large compared to the size of the
extra dimensions. However, if the distance is comparable
to or smaller than the size of the extra dimensions the
standard Casimir force in the space of the full dimension
is found. The crossover between the two regimes is com-
plicated, and different representations clearly showing the
different behavior are provided. The expansion in terms of
the ratio of distance between the plates over size of other
dimensions clearly shows how the geometry of the cross
section and of the Kaluza-Klein dimensions enters.

Furthermore, it is shown that a Lukosz-type repulsive
force [37] can appear only in a naive calculation where just
one chamber of the piston is taken into account; for related
remarks see [4,5]. Moreover, an unambiguous prediction in
such a case is possible only if a particular geometric
invariant of the extra dimensions vanishes. A crucial point
is that this issue arises in the presence of Kaluza-Klein
dimensions even when the large transverse dimensions are
infinite; indeed, it is even more cogent there than for a
macroscopic box. The present paper developed from a
commentary [38] on these points as they arose in the papers
of Cheng [17,18], and it fulfills our pledge there to publish
the details of our calculations. There is some overlap with
an article by Teo [39] that appeared in the meantime and
gives special attention to the finite-temperature theory. The
recent cosmological papers [19–21,24] do not explicitly
consider the outer chamber of a piston, but nevertheless
they do not report a repulsive force; we investigate the
reason for that apparent discrepancy.

The article is organized as follows. We start by consid-
ering parallel plates in the presence of extra dimensions.
We first find the Casimir force resulting from the space
between the plates only; the features just outlined are
derived. We then add the contributions from the exterior
space to obtain the generically attractive force between the
plates. Section IV generalizes the results to an arbitrary
cross section of the piston. Results for plate distances large,
respectively, small, compared to the size of the extra
dimensions are given. For the case of a torus as Kaluza-
Klein manifold, more explicit results are provided. In
Sec. VI we summarize the main results of the article and
add pertinent remarks about the finite-temperature case.

II. PARALLEL PLATES IN KALUZA-KLEIN
MODELS: CONTRIBUTIONS FROM BETWEEN

THE PLATES

Let M ¼ R3 � N. We want to consider a piston geome-
try that lives in the three-dimensional real space, and where
there are additional dimensions described by the smooth
Riemannian manifold N of dimension d. We realize the
parallel plates as obtained from a piston geometry with
appropriate dimensions sent to infinity: Considering one
chamber of the piston with two dimensions already sent to
infinity, only two parallel plates a distance D apart remain.
The correct answer for the parallel plates is obtained by
adding up answers for D ¼ a and D ¼ L� a sending
L ! 1. In this section we deliberately consider only one
chamber to highlight the serious flaws of this procedure.
We consider a scalar field model with Dirichlet bound-

ary conditions on the plates. The relevant eigenvalue spec-
trum of the Laplacian on M then is

!2 ¼ k21 þ k22 þ
�
n�

D

�
2 þ �2

i ;

where n and i are positive integers, k21 þ k22 comes from the
two free transversal dimensions in R3, ðn�=DÞ2 results
from the Dirichlet plates (D ¼ a for the left chamber and
D ¼ L� a for the right chamber), and �2

i are the eigen-
frequencies in the additional dimensions,

��N’i ¼ �2
i ’i: (2.1)

The zeta function (density) associated with this spec-
trum is

�ðsÞ ¼ 1

4�2

Z 1

�1
dk1

Z 1

�1
dk2

� X1
n¼1

X1
i¼1

�
k21 þ k22 þ

�
n�

D

�
2 þ �2

i

��s
: (2.2)

Performing the k1 and k2 integration we find

�ðsÞ ¼ 1

4�ðs� 1Þ
X1
n¼1

X1
i¼1

��
n�

D

�
2 þ �2

i

��sþ1
: (2.3)

In order to write down the necessary analytical continu-
ation of this expression, as is standard, a resummation of
the n summation is applied. In that process, the zero modes
�j ¼ 0 need separate treatment. Letting g0 be the degen-

eracy of the zero eigenstate and assuming that �i � 0 we
can write

�ðsÞ ¼ g0
4�ðs� 1Þ

�
D

�

�
2s�2

�Rð2s� 2Þ

þ 1

4�ðs� 1Þ
X1
n¼1

X1
i¼1

0��n�
D

�
2 þ �2

i

��sþ1
; (2.4)

where the prime at the i summation indicates that the
modes with �j ¼ 0 are to be omitted from the summation.
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We rewrite the n summation as

X1
n¼1

¼ 1

2

� X1
n¼�1

�ðn ¼ 0Þ
�
;

and the n ¼ 0 term causes the occurrence of the zeta
function related to the eigenvalue problem (2.1) on N,

�NðsÞ ¼
X1
i¼1

0
��2s
i : (2.5)

Using a Mellin transform this allows the rewriting of (2.4)
as

�ðsÞ ¼ g0
4�ðs� 1Þ

�
D

�

�
2s�2

�Rð2s� 2Þ

� 1

8�ðs� 1Þ �Nðs� 1Þ þ 1

8��ðsÞ
�

Z 1

0
dtts�2

X1
n¼�1

X1
i¼1

0
e�½ðn�=DÞ2þ�2

i �t: (2.6)

The last term is suitably manipulated employing for � 2
Rþ [40]

X1
n¼�1

e��n2 ¼
ffiffiffiffi
�

�

r X1
n¼�1

e��2n2=�: (2.7)

As a result, for n � 0 we encounter the integral represen-
tation of modified Bessel functions [41]

K�ðzxÞ ¼ z�

2

Z 1

0
exp

�
� x

2

�
tþ z2

t

��
t���1dt:

This allows us to obtain

�ðsÞ ¼ g0
4�ðs� 1Þ

�
D

�

�
2s�2

�Rð2s� 2Þ� 1

8�ðs� 1Þ�Nðs� 1Þ

þD�ðs� 3
2Þ

8�3=2�ðsÞ�N
�
s� 3

2

�
þ Ds�1=2

2�3=2�ðsÞ
� X1

n¼1

X1
i¼1

0�n2
�2
i

�ð1=2Þðs�ð3=2ÞÞ
Kð3=2Þ�sð2Dn�iÞ: (2.8)

In order to find the Casimir energy, and then the force,
for this setting, we need to evaluate this expression about
the value s ¼ �1=2. Whereas the first and last term are
well-defined at s ¼ �1=2, and thus s ¼ �1=2 can simply
be substituted there, more care is needed for the second and
third term. From general theory, see e.g. [36,42,43], it is
known that �Nðs� 1Þ will have a pole at s ¼ �1=2 and
that �Nðs� 3=2Þ will not vanish at s ¼ �1=2. With s ¼
�1=2þ � and expanding about � ¼ 0 we therefore write

�Nðs� 1Þ ¼ �N

�
� 3

2
þ �

�

¼ 1

�
Res�N

�
� 3

2

�
þ FP�N

�
� 3

2

�
þOð�Þ;

�N

�
s� 3

2

�
¼ �Nð�2þ �Þ

¼ �Nð�2Þ þ �� 0Nð�2Þ þOð�2Þ;
and so

1

s� 1
�Nðs� 1Þ ¼ � 2

3

��
1

�
þ 2

3

�
Res�N

�
� 3

2

�

þ FP

�
� 3

2

��
þOð�Þ;

�ðs� 3
2Þ

�ðsÞ �N

�
s� 3

2

�
¼ � 1

4
ffiffiffiffi
�

p
�
�Nð�2Þ

�
1

�
� 1

2
þ 2 ln2

�

þ � 0Nð�2Þ
�
þOð�Þ:

This allows us to obtain

�

�
� 1

2
þ �

�
¼ ��2g0

720

1

D3
þ 1

12�

�
Res�N

�
� 3

2

��
1

�
þ 2

3

�

þ FP�N

�
� 3

2

��
� D

32�2

�
�Nð�2Þ

�
1

�
� 1

2

þ 2 ln2

�
þ � 0Nð�2Þ

�
� 1

4�2D

� X1
n¼1

X1
i¼1

0 �2
i

n2
K2ð2Dn�iÞ: (2.9)

The resulting force from one chamber therefore reads

F ¼ � 1

2

@

@D
�

�
� 1

2
þ �

�

¼ � �2g0
480D4

þ 1

64�2

�
�Nð�2Þ

�
1

�
� 1

2
þ 2 ln2

�

þ � 0Nð�2Þ
�
þ 1

8�2

X1
n¼1

X1
i¼1

0 �2
i

n2
@

@D

1

D
K2ð2Dn�iÞ:

(2.10)

Notice that the second term on the right-hand side
represents minus the Casimir energy of the manifold R3 �
N. Because of the pole at � ¼ 0 in (2.10), for �Nð�2Þ � 0
the zeta method leaves a finite renormalization ambiguity
proportional to �Nð�2Þ. From a theoretical point of view
no prediction about the sign of the force can be made. In
case �Nð�2Þ ¼ 0 the force appears to be finite. (In the
setting of an ultraviolet cutoff [see the Appendix] there
are additional divergences, but we shall not discuss them
here.) This can happen under certain restrictions on the
geometry of the manifold N. If we define KNðtÞ to be the
heat kernel associated with the eigenvalue problem (2.1),
its asymptotic expansion reads
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KNðtÞ ¼
X1
i¼1

e��2
i t � X1

l¼0;1=2;1;...

blt
l�ðd=2Þ: (2.11)

The heat-kernel coefficients are determined in terms of
geometric tensors of N and its boundary, if present; for a
collection of known results see [36,42,44,45]. Using

�Nð�2Þ ¼ 2bðdþ4Þ=2 ¼ 0

[43], we thus have a geometric condition on when the force
becomes finite. When this vanishing occurs, � 0Nð�2Þ< 0
indicates that the force is definitely negative (attractive). If
� 0Nð�2Þ> 0, asymptotically for D � 1 the force seems to
be positive and turns negative at some critical distance
Dcrit. In other words, if the Casimir energy of R3 � N is
positive, a Lukosz-type repulsion cannot occur, whereas
for a negative Casimir energy it can. We come back to this
discussion in Sec. V when N is chosen to be a torus and
where indeed �Nð�2Þ ¼ 0.

III. PARALLEL PLATES IN KALUZA-KLEIN
MODELS: ADDING EXTERIOR CONTRIBUTIONS

Let us now take into account the second chamber of the
piston. (In the present context that merely means adding a
third plate at a large distance.) Denoting the plate separa-
tions by a and L� a and the associated zeta functions by
�aðsÞ and �L�aðsÞ, from (2.9) one has immediately

�a

�
� 1

2
þ �

�
þ �L�a

�
� 1

2
þ �

�

¼ ��2g0
720

1

a3
� �2g0

720

1

ðL� aÞ3 þ
1

6�

�
Res�N

�
� 3

2

�

�
�
1

�
þ 2

3

�
þ FP�N

�
� 3

2

��
� L

32�2

�
�Nð�2Þ

�
1

�
� 1

2

þ 2 ln2

�
þ � 0Nð�2Þ

�
� 1

4�2a

X1
n¼1

X1
i¼1

0 �2
i

n2
K2ð2an�iÞ

� 1

4�2ðL� aÞ
X1
n¼1

X1
i¼1

0 �2
i

n2
K2ð2ðL� aÞn�iÞ: (3.1)

Despite the fact that the Casimir energy in general needs
renormalization, the force this time is always well-defined
no matter what the geometry or topology ofN looks like. In
particular,

F ¼ � 1

2

@

@a

�
�a

�
� 1

2
þ �

�
þ �L�a

�
� 1

2
þ �

��

¼ � �2g0
480a4

þ �2g0
480ðL� aÞ4 þ

1

8�2

X1
n¼1

X1
i¼1

0 �2
i

n2
@

@a

� 1

a
K2ð2an�iÞ þ 1

8�2

X1
n¼1

X1
i¼1

0 �2
i

n2
@

@a

1

L� a

� K2ð2ðL� aÞn�iÞ: (3.2)

The force vanishes for a ¼ L=2, is negative for a < L=2,

and is positive for a > L=2; that is, the plate at a is always
attracted to the closer wall. As L ! 1 the very simple
result

F ¼ � �2g0
480a4

þ 1

8�2

X1
n¼1

X1
i¼1

0 �2
i

n2
@

@a

1

a
K2ð2an�iÞ (3.3)

is obtained. The force is negative independently of any
details of the topology or geometry of the extra dimensions
(within the confine �i � 0).

IV. PISTONS WITH FINITE CROSS SECTION

In this section we show that a negative force is guaran-
teed whenever the boundary conditions on the plates are
both Dirichlet (or both Neumann), no matter what the cross
section C and the manifold N are. Assume two parallel
plates of some arbitrary shape within a cylinder of that
same cross section, along with general Kaluza-Klein di-
mensions. With Dirichlet boundary conditions on the
plates (at separation D), this gives rise to a spectrum of
the form

!2 ¼
�
n�

D

�
2 þ�2

i : (4.1)

The part �2
i comes from the manifold T ¼ C� N.

Proceeding exactly as before, denoting

�TðsÞ ¼
X1
i¼1

0
��2s

i ;

we obtain

�ðsÞ ¼ ��2sD2sg0�Rð2sÞ � 1

2
�TðsÞ

þD�ðs� 1
2Þ

2
ffiffiffiffi
�

p
�ðsÞ �T

�
s� 1

2

�
þ 2Dsþ1=2ffiffiffiffi

�
p

�ðsÞ

� X1
n¼1

X1
i¼1

0�n2
�2

i

�
1=2ðs�1=2Þ

K1=2�sð2Dn�iÞ: (4.2)

The zeta function for the piston is the sum of two such
contributions withD replaced by a and L� a respectively.
For the force this gives

F ¼ � �g0
24a2

þ �g0
24ðL� aÞ2

þ 1

2�

X1
n¼1

X1
i¼1

0 �i

n

@

@a
K1ð2an�iÞ

þ 1

2�

X1
n¼1

X1
i¼1

0 �i

n

@

@a
K1ð2ðL� aÞn�iÞ: (4.3)

Again it is clearly seen that even in this generalized sce-
nario the piston is attracted to the closest wall. In the limit
L ! 1, the force reduces to
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F ¼ � �g0
24a2

þ 1

2�

X1
n¼1

X1
i¼1

0 �i

n

@

@a
K1ð2an�iÞ; (4.4)

which again is manifestly negative.
The essential difference between this calculation and

that of Sec. III is that we have only one infinite dimension
instead of three; up to this point the transverse and the
Kaluza-Klein dimensions have played identical roles. If we
had carried out the analog of Sec. II, we would have
encountered similar results. In particular, the famous re-
pulsive force of Lukosz [37] corresponds to rectangular
cross section and N ¼ ;.

Although the representation (4.3) is most suitable for
reading off the sign of the force, it is not useful numerically
unless the plate separation is sufficiently large compared to
other scales. An expression suitable for reading off the
small-a behavior is found by following formally a proce-
dure used for large-mass expansions [46], where the role of
the mass is played by the large parameter �=a. We first
rewrite the zeta function associated with the spectrum (4.1)
as

�ðsÞ ¼ 1

�ðsÞ
X1
n¼1

X1
i¼1

Z 1

0
dtts�1e�½ðn�=DÞ2þ�2

i �t: (4.5)

We note that the small-D expansion follows from the
small-t behavior of the heat-kernel,

KðtÞ ¼ X1
i¼1

e��2
i t � X1

l¼0;1=2;1;...

alt
l�ðdþ2Þ=2;

note that the spectrum �2
i results from a second-order

partial differential operator in dimension ðdþ 2Þ.
Substituting this expansion into (4.5), asymptotically as

D ! 0 we find

�ðsÞ ¼ 1

�ðsÞ
X1

l¼0;1=2;1;...

al�

�
sþ l� dþ 2

2

�

�
�
D

�

�
2sþ2l�d�2

�Rð2sþ 2l� d� 2Þ:

We evaluate this about s ¼ �1=2 using well-known prop-
erties of the � function and of the Riemann zeta function
[41]. The answers for d even and odd look slightly differ-
ent; we denote by

P
l
d the summation over l ¼

0; 1; . . . ; ðdþ 2Þ=2; l > ðdþ 4Þ=2 for d even, but over l ¼
1=2; 3=2; . . . ; ðdþ 2Þ=2; l > ðdþ 4Þ=2 for d odd.
Furthermore, bxc denotes the greatest integer not larger
than x. With s ¼ �1=2þ �, we get

�

�
�1

2
þ �

�
¼� 1

2
ffiffiffiffi
�

p X
l

dal�

�
l� dþ 3

2

��
D

�

�
2l�d�3

� �Rð2l� d� 3Þ þ Xbðdþ3Þ=2c

j¼1

aððdþ3Þ=2Þ�j

� ð�1Þjþ1

j!
ffiffiffiffi
�

p
�
�

D

�
2j
� 0Rð�2jÞ

þ aðdþ3Þ=2
�

1

4
ffiffiffiffi
�

p
�
þ lnð4DÞ � 1

2
ffiffiffiffi
�

p
�

þ aðdþ4Þ=2
�
� D

4��
þ D

2�

�
1��þ ln

�
�

D

���

þOð�Þ:
This result is used to find the force from the left chamber.
The contribution to the force from the right chamber,
where D ¼ L� a with L ! 1, follows easily to be

F2 ¼ 1

8��
�Tð�1Þ þ 1

8�
ð� 0Tð�1Þ þ �Tð�1Þ½�1þ ln4�Þ

¼ � 1

8�
aðdþ4Þ=2

�
1

�
� 1þ ln4

�
þ 1

8�
� 0Tð�1Þ:

Here we used �Tð�1Þ ¼ �aðdþ4Þ=2. As before, when the

forces are added, the terms singular as � ! 0 cancel and,
asymptotically as a ! 0, the unambiguous answer for the
force is found,

F ¼ 1

2�3=2

X
l

dal�

�
l� dþ 1

2

��
a

�

�
2l�d�4

�Rð2l� d� 3Þ

þ 1

�3=2

Xbðdþ3Þ=2c

j¼1

aððdþ3Þ=2Þ�j

ð�1Þjþ1

ðj� 1Þ!
�
�

a

�
2jþ1

� 0Rð�2jÞ

� 1

4
ffiffiffiffi
�

p
a
aðdþ3Þ=2 þ 1

8�
� 0Tð�1Þ

� 1

4�
aðdþ4Þ=2

�
ln

�
2�

a

�
� �� 1

2

�
: (4.6)

Explicit expressions for given cross sections C and Kaluza-
Klein manifolds N are easily obtained from known expres-
sions for the heat-kernel coefficients [36,42,45].
In particular, if there are no additional dimensions, N ¼

;, and Neumann boundary conditions are imposed on the
cylinder walls, then

a0 ¼ ð4�Þ�1volðCÞ; a1=2 ¼ 1

4
ð4�Þ�1=2volð@CÞ;

and the first few terms of the expansion reproduce the
results in [4,5].
If the manifold N is nonempty and has no boundary, this

time imposing Dirichlet boundary conditions on the cylin-
der walls, one easily finds

a0 ¼ ð4�Þ�ðdþ2Þ=2volðCÞvolðNÞ;

a1=2 ¼ � 1

4
ð4�Þ�ðdþ1Þ=2volð@CÞvolðNÞ;
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and the leading two terms in the asymptotic expansion of the force read

F� 2�d�3�ðdþ3Þ=2volðCÞvolðNÞa�d�4

8><
>:
�ð� dþ1

2 Þ�Rð�d� 3Þ d even

2ð�1Þðdþ1Þ=2
ðdþ1

2 Þ! � 0Rð�d� 3Þ d odd

� 2�d�3�ðdþ2Þ=2volð@CÞvolðNÞa�d�3

8><
>:

ð�1Þd=2
ðd=2Þ! �

0
Rð�d� 2Þ d even

1
2 �ð� d

2Þ�Rð�d� 2Þ d odd
: (4.7)

Higher orders would involve the extrinsic curvature of @C
and the curvature of N. It is clearly seen that as soon as the
plate separation gets small compared to the sizes of other
dimensions, the Casimir force between the plates is sig-
nificantly modified, revealing information about the vol-
ume, and at higher order the curvature, of the Kaluza-Klein
dimensions.

V. TORUS AS KALUZA-KLEIN MANIFOLD

The series over the Bessel functions in Eqs. (2.10), (3.3),
and (4.4) are numerically suitable as long as the argument
of the Bessel function grows sufficiently fast with the
eigenvalues. If that is the case, taking into account only a
few eigenvalues will be enough as contributions are ex-
ponentially damped. However, in order to analyze how the
Casimir force behaves when the distance between the
plates is smaller than the size of the extra dimensions, a
different procedure is necessary, as we have seen, and in
general only asymptotic answers can be obtained.

For the case whereN ¼ Td it is possible to obtain closed
answers that allow consideration of several limits exactly.
For simplicity let us assume an equilateral torus of radius
R, with the two macroscopic transverse dimensions effec-
tively infinite. The relevant eigenvalue spectrum then reads

!2 ¼ k21 þ k22 þ
�
n�

D

�
2 þ 1

R2

Xd
i¼1

n2i : (5.1)

For reasons explained above, the previously obtained rep-
resentations involving the Bessel functions cannot be used
easily to analyze the range where D � R. If only the
asymptotic behavior as D ! 0 is wanted, the use of (4.6)
is sufficient. For the torus, however, it is possible to recover
also the exponentially damped contributions as D ! 0. In
fact, all technical tools have been provided to find closed
expressions in that regime. In particular it is again the
resummation (2.7) that is relevant, but it should be applied
to the toroidal dimensions and not to the dimension in
which Dirichlet conditions are applied. Applying resum-
mation to all d sums originating from the torus, the result
for the left chamber corresponding to Eq. (2.8) reads

�ðsÞ ¼ �ð3d=2Þ�2sþ1�ðs� d
2� 1Þ

4�ðsÞ
�
R

D

�
d
D2s�2�Rð2s� d� 2Þ

þ�ðd=2Þ�1

2�ðsÞ
�
R

D

�
d=2ðRDÞs�1

X1
n¼1

X1
n1;...;nd¼�1

0

�
�

n2

n21 þ �� �þ n2d

�
1=2ð1�sþðd=2ÞÞ

�K1þðd=2Þ�s

�
2�2R

D
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ �� �þ n2d

q �
: (5.2)

For the right chamber we are mostly interested in the limit
D ! 1, and so Eq. (2.8) is the appropriate form. Because

�2
i ¼

1

R2

Xd
j¼1

n2j ;

the zeta function �NðsÞ turns out to be the Epstein function
[47,48]

Zdðs;RÞ ¼ R2s
X1

n1;...;nd¼�1

0
ðn21 þ � � � þ n2dÞ�s: (5.3)

Its analytical continuation is very well understood [33,49–
52] and we get

�ðsÞ ¼ �1�2sD2s�2

4ðs� 1Þ �Rð2s� 2Þ � 1

8�ðs� 1ÞZdðs� 1;RÞ

þ D

8�3=2

�ðs� 3
2Þ

�ðsÞ Zd

�
s� 3

2
;R

�

þDs�1=2Rs�3=2

2�3=2�ðsÞ
X1
n¼1

X1
n1;...;nd¼�1

0

�
�

n2

n21 þ � � � þ n2d

�
1=2ðs�ð3=2ÞÞ

� Kð3=2Þ�s

�
2Dn

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ � � � þ n2d

q �
: (5.4)

Using this representation (5.4) for both chambers, and
noting g0 ¼ 1, we get immediately from Eq. (3.3) the force

F ¼ � �4

480a4
þ 1

8�2R2

X1
n¼1

X1
n1;...;nd¼�1

0 n21 þ � � � þ n2d
n2

� @

@a

1

a
K2

�
2an

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ � � � þ n2d

q �
: (5.5)
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This representation is particularly suitable for R< a be-
cause the contributions from K2 are exponentially damped.
It shows that as long as the size of the extra dimensions is
small compared to the separation of the plates, the correc-
tion to the well-known Casimir force between parallel
plates is very small.

The above representation is not suitable for the range
with plate separation smaller than R, becauseK2ðzÞ � 2=z2

as z ! 0. As we will see, the leading contribution as a ! 0
will then come from the series. A better suited representa-
tion is obtained by rewriting Eq. (5.5) using the fact that
Eqs. (5.2) and (5.4) equal each other. This first shows

Ds�1=2Rs�3=2

2�3=2�ðsÞ
X1
n¼1

X1
n1;...;nd¼�1

0� n2

n21 þ � � � þ n2d

�
1=2ðs�ð3=2ÞÞ

Kð3=2Þ�s

�
2Dn

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ � � � þ n2d

q �

¼ �ð3d=2Þ�2sþ1�ðs� d
2 � 1Þ

4�ðsÞ
�
R

D

�
d
D2s�2�Rð2s� d� 2Þ þ �ðd=2Þ�1

2�ðsÞ
�
R

D

�
d=2ðRDÞs�1

� X1
n¼1

X1
n1;...;nd¼�1

0� n2

n21 þ � � � þ n2d

�
1=2ð1�sþðd=2ÞÞ

K1þðd=2Þ�s

�
2�2R

D
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ � � � þ n2d

q �
� �1�2sD2s�2

4ðs� 1Þ �Rð2s� 2Þ

þ 1

8�ðs� 1ÞZdðs� 1;RÞ � D

8�3=2

�ðs� 3
2Þ

�ðsÞ Zd

�
s� 3

2
;R

�
:

Analytically continuing this to s ¼ �1=2, one obtains

1

8�2R2

X1
n¼1

X1
n1;...;nd¼�1

0 n21 þ . . .þ n2d
n2

@

@a

1

a
K2

�
2an

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ � � � þ n2d

q �

¼ �ðdþ 3Þ�
3=2ðdþ1Þ

16

�
R

a

�
d
a�4

��ð� dþ3
2 Þ�Rð�d� 3Þ; d even

2ð�1Þðd�1Þ=2
ðdþ3

2 Þ! � 0Rð�d� 3Þ; d odd
þ �2

480a4
� 1

64�2
Z0
dð�2;RÞ þ �ðd�3Þ=2Rðd�3Þ=2

8

� X1
n¼1

X1
n1;...;nd¼�1

0� n2

n21 þ � � � þ n2d

�ð3þdÞ=4 @

@a
a�ð3þdÞ=2Kðdþ3Þ=2

�
2�2R

a
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ � � � þ n2d

q �
:

Using this in Eq. (5.5) then gives the force in the form

F ¼ �3=2ðdþ1Þ

8

�
R

a

�
d
a�4

��ð� dþ1
2 Þ�Rð�d� 3Þ; d even

2ð�1Þðdþ1Þ=2
ðdþ1

2 Þ! � 0Rð�d� 3Þ; d odd
� 1

64�2
Z0
dð�2;RÞ þ �ðd�3Þ=2Rðd�3Þ=2

8

� X1
n¼1

X1
n1;...;nd¼�1

0� n2

n21 þ � � � þ n2d

�ð3þdÞ=4 @

@a
a�ð3þdÞ=2Kðdþ3Þ=2

�
2�2R

a
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ � � � þ n2d

q �
: (5.6)

This result shows that if a � R, the compactness of the
extra dimensions can be ignored, and the force is the
standard Casimir force, but in the space of the full dimen-
sion, namely, of dimension 3þ d. The first term agrees
with the general result (4.7) when specialized to N ¼ Td.

For this example it is clear that �Nð�2Þ ¼ Zdð�2;RÞ ¼
0, because the torus is a flat manifold without boundary.
Therefore the force resulting from one chamber only, as
given in (2.10), is finite. Using the reflection formula for
the Epstein function [49] it is obtained as

F ¼ � �2

480a4
þ �ðd2 þ 2Þ

32�6þd=2R4
Zd

�
d

2
þ 2; 1

�

þ 1

8�2R2

X1
n¼1

X1
n1;...;nd¼�1

0 n21 þ � � � þ n2d
n2

� @

@a

1

a
K2

�
2an

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ � � � þ n2d

q �
: (5.7)

For a � R this force, obtained by neglecting the second
chamber, is positive and asymptotically constant.
Considering N to be rectangular with Neumann boundary
conditions leads to the same result [17]. If for the rectan-
gular parallelepiped Dirichlet conditions are imposed in-
stead, the asymptotic nature of the force depends on the
dimension of N. From [49] it follows, for example, that for
d ¼ 1 the force (5.7) is asymptotically repulsive, whereas
for d ¼ 2 it is asymptotically attractive. Whatever may be
the case for a macroscopic conducting box (where there
may not be an external piston shaft), in a Kaluza-Klein
cosmology the extra dimensions are indisputably present
outside the parallel plates as well as inside. Therefore,
formula (5.7) surely must be rejected as spurious.
However, the papers [19–21,24] did not take the outer

chamber of the Kaluza-Klein piston into account, but
nevertheless they did not find a repulsive force. Closer
examination (see, for example, Eqs. (24) and (25) of
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[24], or p. 5 of [19]) shows that all those authors have
indeed subtracted the term (linear in a) that we here con-
sider to be the piston correction. Their reasoning is to
subtract the Casimir energy (caused by the small compact
dimensions) that would exist in the region between the
plates if the plates were not there. In the Cavalcanti piston,
the analogous reasoning would be to make the piston shaft
infinite in both directions, ignore the outer chambers, re-
move the plates, and subtract the energy in the inner
chamber. We believe that our analysis is more convincing.

VI. CONCLUSIONS

In this article we have analyzed forces occurring in
pistons of arbitrary cross section in a cosmological
Kaluza-Klein setting. We have shown that irrespective of
the details of the cross section and of the geometry and
topology of the Kaluza-Klein manifold, the piston is al-
ways attracted to the closest wall. This implies that parallel
plates always attract no matter what the properties of the
additional dimensions are (except for the physically mild
restriction that the eigenvalues �2

i or �2
i all be nonnega-

tive). Repulsive forces between Dirichlet plates can occur
only in a naive calculation that takes into account only one
of the chambers; see the explanations at the ends of Secs. II
and V. Furthermore, we have derived an asymptotic expan-
sion of the force for small distances between the piston and
the wall, Eq. (4.7). It is clearly seen how the geometries of
the cross section and the Kaluza-Klein manifold enter the
answer. In this limit the plates notice the dimensions of all
space and the force obtained is the standard Casimir force
in the space of the full dimension.

All results for the force remain valid if Neumann bound-
ary conditions on both plates instead of Dirichlet boundary
conditions are considered, because the Neumann and
Dirichlet spectra differ only by a-independent eigenvalues.

The attraction of the piston to the closest wall is further
enhanced by finite-temperature contributions. Assuming a
piston with arbitrary cross section, the relevant finite-
temperature spectrum reads

!2 ¼
�
2�j

	

�
2 þ

�
n�

D

�
2 þ�2

i ; j 2 Z;

where 	 is the inverse temperature. The energy associated
with the system is defined to be [32,35]

E ¼ � 1

2

@

@	
½� 0	ð0Þ þ �	ð0Þ ln�2�;

where �	ðsÞ is the zeta function arising from this spectrum

and � is a renormalization scale. Using as is standard a
resummation of the Matsubara sum, the following form
can be obtained [53]:

E ¼ 1

2
FP�

�
� 1

2

�
þ Res�

�
� 1

2

�
ln

�
�e

2

�

þ X1
n¼1

X1
i¼1

�i;n

ðe	�i;n � 1Þ ;

where �2
i;n ¼ ðn�D Þ2 þ�2

i and �ðsÞ is the zeta function

analyzed in Sec. IV. The temperature contribution is a
decreasing function of D [39]. Thus, when the contribu-
tions of the two chambers are added, the finite-temperature
part, just like the zero-temperature part discussed previ-
ously, tends to move the piston toward the closer wall, as
has been observed long ago for infinite parallel conducting
plates [54,55].
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APPENDIX: THE METHOD OF IMAGES

As in Sec. V, consider two infinite transverse dimen-
sions; one Dirichlet plate separation, D; and d periodic
Kaluza-Klein dimensions, all of circumference 2�R. The
system can easily be treated by the methods of [56] (for
example).
The free cylinder kernel (a certain Green function for the

Laplacian in Rdþ4) is

T0 ¼ Cdþ3t½t2þ k x� x0 k2��ðdþ4Þ=2; Cdþ3 ¼
�ðdþ4

2 Þ
�ðdþ4Þ=2 :

(A1)

Thus

� 1

2

@T0

@t
¼ 1

2
Cdþ3f�½t2þ k x� x0 k2��ðdþ4Þ=2

þ ðdþ 4Þt2½t2þ k x� x0 k2��ðdþ6Þ=2g: (A2)

The corresponding Green function Tðt;x;x0Þ in a rectan-
gular geometry is given exactly by a sum over all classical
paths from x0 to x or, equivalently, by a sum over T0

displaced to appropriate ‘‘image charges.’’ In the limit t #
0, formally the energy density is

T00 ¼ � 1

2

@T

@t

��������t¼0
¼ � 1

2

X
images

Cdþ3 k x� x0 k�ðdþ4Þ :

(A3)

For a careful study of divergences one would maintain the
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last factor in the form ½t2þ k x� x0 k2��ðdþ4Þ=2. Let Bd ¼
� 1

2Cdþ3.

Let N ¼ ðN1; . . . ; NdÞ 2 Zd, and let k̂ be the unit vector
perpendicular to the plates in the physical space (the z
direction). Periodic boundary conditions are imposed by
summing displacements of formula (A3) over a periodic
lattice, and the lattice of Dirichlet images is a difference of
two periodic lattices:

T00 ¼ Bd

X1
N1¼�1

� � � X1
Nd¼�1

X1
N¼�1

fk x� ðxþ 2Dk̂N

þ 2�RNÞ k�ðdþ4Þ

� k x� ðx� 2zk̂� 2Dk̂N� 2�RNÞ k�ðdþ4Þg

¼ Bd

X1
N1¼�1

� � � X1
Nd¼�1

X1
N¼�1

fk 2Dk̂Nþ 2�RN k�ðdþ4Þ

� k 2zk̂þ 2Dk̂Nþ 2�RN k�ðdþ4Þg: (A4)

To get the energy per unit area one should integrate over z
and over the periodic coordinates. The latter amounts to
multiplying by ð2�RÞd.

We now sketch the process of discarding divergent terms
(which appear in the present ultraviolet cutoff method as
negative powers of t, but were automatically eliminated by
the zeta function regularization). The term N ¼ 0, N ¼ 0
is the free vacuum energy. The other periodic terms with
N ¼ 0 (the analog of terms called PV in [56]) are (after the
integration)

Bdð2�RÞ�4D
X
N�0

k N k�ðdþ4Þ : (A5)

This expression (with D ¼ a) will add to the correspond-
ing term from the piston shaft (withD ¼ L� a) to give an
energy per area independent of a, hence no pressure.
Without the shaft, however, (A5) (with D ¼ a) gives a
repulsive Lukosz pressure independent of a. The remain-
ing terms in the periodic orbit sum [the first term in the
final version of (A4)] are

Bdð�RÞd2�4D
X
N�0

X
N

k �RNþDk̂N k�ðdþ4Þ : (A6)

These are the PD and PH terms in [56]; (A6) (with D ¼ a)
is the main Casimir energy. With more effort it could be
shown to yield the same forces as found in Sec. V.
In the terminology of [56] there are no VP, VD, or C

terms in this problem, because there are no reflections in
the periodic directions. The last term in (A4) consists of HP
terms (N ¼ 0) and HD terms as they are called in [56]. The
HP terms formally give the energy

� ðconstantÞ
Z D

0
dz

X1
N¼�1

jzþDNj�ðdþ4Þ

¼ �ðconstantÞ
Z 1

�1
jzj�ðdþ4Þdz: (A7)

The integral (which would converge if we had kept t > 0)
is independent of D and hence gives no force. This is the
surface energy of the plates (renormalizes their masses).
Finally, the HD terms, before integration over z, are

�Bdð�RÞd2�4
X
N�0

X1
N¼�1

k ðzþDNÞk̂þ �RN k�ðdþ4Þ

¼ �Bdð�RÞd2�4
X
N�0

X1
N¼�1

½ðzþDNÞ2

þ ð�RÞ2 k N k2��ðdþ4Þ=2:

Upon integration the N sum again telescopes:

� Bdð�RÞd2�4
X
N�0

Z 1

�1
½z2 þ ð�RÞ2 k N k2��ðdþ4Þ=2dz:

(A8)

Again this contribution is independent of D (being a sur-
face effect, albeit dependent on the geometry of the extra
dimensions). The HD energy does not contribute to the
force, just as in the original Cavalcanti piston (or single
box).
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