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Theories of low-energy Lorentz violation by a fixed-norm ‘‘aether’’ vector field with two-derivative

kinetic terms have a globally bounded Hamiltonian and are perturbatively stable only if the vector is

timelike and the kinetic term in the action takes the form of a sigma model. Here we investigate the

phenomenological properties of this theory. We first consider the propagation of modes in the presence of

gravity and show that there is a unique choice of curvature coupling that leads to a theory without

superluminal modes. Experimental constraints on this theory come from a number of sources, and we

examine bounds in a two-dimensional parameter space. We then consider the cosmological evolution of

the aether, arguing that the vector will naturally evolve to be orthogonal to constant-density hypersurfaces

in a Friedmann-Robertson-Walker cosmology. Finally, we examine cosmological evolution in the

presence of an extra compact dimension of space, concluding that a vector can maintain a constant

projection along the extra dimension in an expanding universe only when the expansion is exponential.
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I. INTRODUCTION

Models of fixed-norm vector fields, sometimes called
‘‘aether’’ theories, serve a useful purpose as a phenome-
nological framework in which to investigate violations of
Lorentz invariance at low energies [1–7]. For a recent
review, see [8]. In a companion paper [9], we argue that
almost all such models are plagued by instabilities. For
related work on stability in aether theories, see [10–17].

There is one version of the aether theory that is stable
under small perturbations and in which the Hamiltonian is
globally bounded when only two-derivative terms are in-
cluded in the action. This model is defined by a kinetic
Lagrange density of the form

L kinetic
� ¼ �1

2ðr�A�Þðr�A�Þ; (1)

where A� is a dynamical timelike four-vector aether field.

(The spacelike version has an unbounded Hamiltonian and
is unstable.) We refer to the theory defined by this action as
‘‘sigma-model aether,’’ due to its resemblance to a theory
of scalar fields propagating on a fixed manifold with an
internal metric, familiar from studies of spontaneous sym-
metry breaking. The aether theory is not identical to such a
sigma model—in particular in curved space where cova-
riant derivatives act on the vector—but the nomenclature is
convenient.

Even though this theory is stable, it has an important
drawback. It is conventional in aether models to give the
vector field an expectation value by means of a Lagrange
multiplier, which enforces the fixed-norm constraint

A�A
� ¼ �m2: (2)

We take m2 to be positive and use a metric signature
ð� þþþÞ, so that this defines a timelike vector field.
Despite the convenience of this formulation, it seems likely
that a more complete version of the theory would arise as a
limit of a theory in which the expectation value is fixed by
minimizing a smooth potential of the form VðA�Þ ¼
�ðA�A

� þm2Þ2. As we showed in [9], any such theory

would be plagued by ghosts and tachyons. As far as we can
tell, therefore, the sigma-model aether theory cannot be
derived from models with a smooth potential.
Nevertheless, as it is the only example of a Lorentz-

violating aether theory that we are sure is globally well
behaved, examining the dynamics and experimental con-
straints on this model is worthwhile. We undertake such an
investigation in this paper.
First we examine the degrees of freedom in this theory,

taking into account the mixing with the gravitational field.
There are three different massless modes, of spins 0, 1, and
2 in the aether rest frame.1 Demanding that none of the
modes propagate faster than light fixes a unique value for
the coupling of the vector field to the Ricci tensor. We use
experimental constraints on the preferred frame parameters
�1;2 in the parametrized post-Newtonian (PPN) expansion

to limit the magnitude of the vacuum expectation value,m.
The spin-2 mode can propagate subluminally for some
values of the vector field/Ricci tensor coupling; in such
cases, very tight restrictions on the vacuum expectation
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1The lack of rotational symmetry in frames other than the
aether rest frame make classification of modes by spin in such
frames impossible. But the aether rest frame has rotational
symmetry, which allows for the spin classification with respect
to this frame.
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value, m, due to limits from vacuum Čerenkov radiation of
gravitons come into play.

Finally, we consider the cosmological evolution of the
vector field in two different backgrounds. We study the
evolution of the timelike vector field in a flat Friedmann-
Robertson-Walker (FRW) universe and find that the vector
field tends to align to be orthogonal to constant density
hypersurfaces. In a background consisting of a timelike
dimension, three expanding spatial dimensions, and one
compact (nonexpanding) extra spatial dimension, we find
that the vector field can evolve to have a nonzero projection
in the direction of the compact extra dimension if the large
dimensions are de Sitter-like. We take this as evidence that
a timelike vector field with the Lagrangian that satisfies the
aforementioned theoretical and experimental constraints
would not lead to any significant departure from isotropy.

II. EXCITATIONS IN THE PRESENCE OF
GRAVITY

We would like to understand the experimental con-
straints on, and cosmological evolution of, the sigma-
model aether theory. For both of these questions, it is
important to consider the effects of gravity. But whereas
the flat-space model with a kinetic Lagrangian of the form
(1) is unique, in curved space there is the possibility of an
explicit coupling to curvature. The full action we consider
is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�G
R� 1

2
ðr�A�Þðr�A�Þ

þ �

2
R��A

�A� þ �

2
ðA�A

� þm2Þ
�
: (3)

Here, � is the Lagrange multiplier that enforces the fixed-
norm constraint (2), � is a dimensionless coupling, R�� is

the Ricci tensor, and R is the curvature scalar. Note that,
given the fixed-norm constraint, there are no other scalar
operators that could be formed solely from A� and the

Riemann tensor R�
���. By integrating by parts and using

R��A
�A� ¼ A�½r�;r��A�, this curvature coupling could

equivalently be written purely in terms of covariant deriva-
tives of A�; the form (3) has the advantage of emphasizing

that the new term has no effects in flat space-time.
In [9] we showed that the sigma-model aether theory

was stable in the presence of small perturbations in flat
space-time; the possibility of mixing with gravitons im-
plies that we should check once more in curved space-time.
The equations of motion for the vector field are

�r�r�A� ¼ �A� þ �R��A�; (4)

along with the fixed-norm constraint from the equation of
motion for �. Assuming the fixed-norm constraint, the
equations of motion can be written in the form

�
g�� þ 1

m2
A�A�

�
ðr�r�A� þ �R��A

�Þ ¼ 0: (5)

The tensor ðg�� þ A�A�=m
2Þ acts to take what would be

the equation of motion in the absence of the constraint and
project it into the hyperplane orthogonal to A�.

The Einstein-aether system has a total of 5 degrees of
freedom, all of which propagate as massless fields: one
spin-2 graviton, one spin-1 excitation, and one spin-0
excitation. Each of these dispersion relations can bewritten
(in the short-wavelength limit) in frame-invariant notation
as

k�k
� ¼

�
1� v2

v2

�� �A�k
�

m

�
2
; (6)

where v is the phase velocity in the aether rest frame. The
squared phase velocities of the gravity-aether modes are
[6]

v2
2 ¼

1

1� 8�Gm2ð1þ �Þ � 1þ 8�Gm2ð1þ �Þ
ðspin-2Þ; (7)

v2
1 ¼

2� 8�Gm2ð1þ �Þð1� �Þ
2ð1� 8�Gm2ð1þ �ÞÞ

� 1þ 4�Gm2ð1þ �Þ2 ðspin-0Þ; (8)

v2
0 ¼

2� 8�Gm2

ð1� 8�Gm2ð1þ �ÞÞð2þ 8�Gm2ð1� 2�ÞÞ
� 1þ 16�Gm2� ðspin-0Þ; (9)

where G is the gravitational constant appearing in
Einstein’s action. The approximate equalities hold assum-
ing 8�Gm2 � 1.2

These squared mode phase velocities minus the squared
speed of light are plotted in Fig. 1 as a function of �. It is
clear that the only value of � for which none of the modes
propagate superluminally (v2 > 1) is

� ¼ �1: (11)

We therefore have a unique version of a Lorentz-violating
aether theory for which the Hamiltonian is bounded below
(in flat space) and that is free of superluminal modes when
coupled to gravity: the sigma-model kinetic term with an
expectation value fixed by a Lagrange-multiplier constraint

2The relationship between the parameters in Eq. (3) ð�;m2Þ
and those in Ref. [6] ðc1; c2; c3; c4Þ is
c1 ¼ 8�Gm2; �c2 ¼ c3 ¼ �8�Gm2; c4 ¼ 0: (10)
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and a coupling to curvature of the form in (3) with � ¼
�1. In what follows, we will generally allow � to remain
as a free parameter when considering experimental limits,
keeping in mind that models with � � �1 are plagued by
superluminal modes. We will find that the experimental
limits on m are actually weakest when � ¼ �1.

Before moving on, however, we should note that the
existence of superluminal phase velocities does not con-
stitute prima facie evidence that the theory is ill behaved.
There are two reasons for suspecting that superluminal
propagation is bad. First, in [9], we showed that such
models were associated with perturbative instabilities:
there is always a frame in which small perturbations
grow exponentially with time. Second, acausal propagation
around a closed loop in space-time could potentially occur
if the background aether field were not constant through
space [5,13]. But in the presence of gravity, these argu-
ments are not decisive. There now exists a scale beyond
which we expect the theory to break down: namely, length
scales on the order of M�1

pl . Perhaps there is some length

scale involved in boosting to a frame where the instability
is apparent (or, equivalently, in approaching a trajectory
that is a closed timelike curve) that is order M�1

pl .

Again, in a background flat space-time with a back-
ground timelike aether field �A� ¼ constant, the dispersion

relations have the generic form

ðv�2 � 1Þðt�k�Þ2 ¼ k�k
�; (12)

where t� ¼ �A�=m characterizes the 4-velocity of the pre-

ferred rest frame. The velocity v2 is given by Eqs. (7)–(9).
In a boosted frame, where t� ¼ ð� cosh	; sinh	n̂Þ, the
frequency is given by

!

j ~kj ¼
�ð1� v�2Þ sinh	 cosh	ðk̂ � n̂Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� v�2Þðcosh2	� sinh2	ðn̂ � k̂Þ2Þ

q

1� ð1� v�2Þcosh2	 : (13)

Let us parametrize the boost in the standard way as

cosh 2	 ¼ 1

1� 
2
; 0 � 
2 < 1: (14)

Then

!

j ~kj ¼
�ð1� v�2Þ
ðk̂ � n̂Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v�2 � 
2 þ 
2ð1� v�2Þðn̂ � k̂Þ2
q

v�2 � 
2
: (15)

There is a pole in the frequency at 
2 ¼ v�2. The pole is
physical if v > 1 and (in the limit as n̂ � k̂ ! 0), as 

passes through the pole (
2 ! 
2 > v�2), the frequency
acquires a nonzero imaginary part, which corresponds to
growing mode amplitudes. (The frequency becomes imagi-
nary at some 
2 < 1 as long as n̂ � k̂ � 1.) The time scale
on which the mode grows is set by 1=Imð!Þ. In frames with
a boost factor greater than the inverse rest-frame mode
speed, 
> v�1, the time scale on which mode amplitudes
grow is maximal for modes with wave vectors perpendicu-
lar to the boost direction (n̂ � k̂ ¼ 0) and is given by

TMAXð
Þ ¼ 1

jImð!Þj ¼ j ~kj�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � v�2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p when v2 > 1:

(16)

We generically expect the linearized gravity analysis
that led to the propagation speeds in Eqs. (6)–(9) to be
valid for wave vectors that are much greater in magnitude
than the energy scale set by other energy density in
the space-time—generally, the Hubble scale, H. Thus

the analysis makes sense for j ~kj�1 � H�1 and (as long

FIG. 1 (color online). Aether rest-frame mode phase velocities
squared, v2, minus the speed of light in units of 8�Gm2 as a
function of �. The solid (red) line corresponds to spin-0, the
small dashed line (green) to spin-1, and the large dashed line
(blue) to spin-2. Only for � ¼ �1 do none of the modes
propagate faster than light (v2 � 1> 0).
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as 1� 
2 is not infinitesimal) there will be instabilities on
time scales less than the inverse Hubble scale and (unless

2 � v�2 is infinitesimal) greater than M�1

Pl .

Thus, not only could superluminal propagation speeds
lead to closed timelike curves and violations of causality,
but the existence of instabilities on an unremarkable range
of less-than-Hubble-radius time scales in boosted frames
indicates that such superluminal propagation speeds lead to
instabilities. If v > 1, it appears as if instabilities can be
accessed without crossing some scale threshold beyond
which we would expect the model to break down.

III. EXPERIMENTAL CONSTRAINTS

We now apply existing experimental limits to the sigma-
model aether theory, keeping for the moment � as well as
m2 as free parameters. Direct coupling of the aether field to
standard model fields fits into the framework of the
‘‘Lorentz-violating extension’’ of the standard model con-
sidered in Ref. [2]. Such couplings are very tightly con-
strained by various experiments (for a discussion of
experimental constraints, see Ref. [18]). The relevant limit
from gravitational Čerenkov radiation in [13] translates to3

� 8�Gm2ð1þ �Þ< 1� 10�15: (17)

Limits on PPN parameters give the strongest constraints
on� andm2 when� � �1 (since the constraint in Eq. (17)
is automatically satisfied). The preferred frame parameters
must satisfy j�1j< 10�4 and j�2j< 10�7 [19]. We have
the limits [8]

j�1j � j4�2ð8�GNm
2Þj< 10�4 and

j�2j � jð�þ 1Þð8�GNm
2Þj< 10�7;

(18)

where GN is the gravitational constant as measured in our
solar system or tabletop experiments. This gravitational
constant is related to the parameter in the action G by [5]

GN ¼ G

1� 4�Gm2
: (19)

If we require that all modes have phase speeds v that
satisfy v2 � 1, then we must have � ¼ �1 and

8�GNm
2 < 10�4 ð� ¼ �1Þ: (20)

All relevant constraints (allowing modes to have larger
than unity phase velocities) are summarized in Fig. 2.
Constraints from big bang nucleosynthesis [5] are signifi-
cantly weaker than the PPN and Čerenkov constraint
above.

IV. COSMOLOGICAL EVOLUTION

We now turn to the evolution of the sigma-model aether
field in a cosmological background. It is usually assumed
in the literature that the aether preferred frame coincides
with the cosmological rest frame—i.e., that in Robertson-
Walker coordinates, a timelike aether field has zero spatial
components, or a spacelike aether field has zero time
component. Under this assumption, there has been some
analysis of cosmological evolution in the presence of
aether fields [14,20–22]. Cosmological alignment in a de
Sitter background was considered in [23]. Evolution of
vector field perturbations in a more general context, in-
cluding the effect on primordial power spectra, was con-
sidered in [7,24].
Here, we relax the aforementioned assumption. We de-

termine the dynamical evolution of the aether alignment
with respect to constant density hypersurfaces of flat FRW
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FIG. 2 (color online). Parameter space allowed (shaded region) by constraints from Čerenkov radiation and PPN. The strongest
constraint in the �<�1 region is from Eq. (17), and for most of the �>�1 region the strongest constraint is from the second
inequality in Eq. (18). The plot on the right is a blowup of the small range of � for which the first constraint in Eq. (18) is strongest—
when � ¼ �1 to within a couple of parts in 100.

3Reference [13] uses the same parameters as in [6,8], thus the
translation between our parameters and the parameters used in
[6,8,13] is as stated in (10).
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backgrounds, assuming that the aether field has a negli-
gible effect on the form of the background geometry. We
will show that a homogeneous timelike vector field tends to
align in the presence of a homogeneous cosmological fluid
such that its rest frame coincides with the rest frame of the
cosmological fluid.

Take the background space-time to be that of a flat FRW
cosmology,

ds2 ¼ �dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ: (21)

We take the equation state of the cosmological fluid to be
pfluid ¼ w�fluid. The Friedmann equation then implies

aðtÞ ¼ t2=3ð1þwÞ (22)

for w � �1, and

aðtÞ ¼ eHt; H ¼ constant (23)

for w ¼ �1. We assume that m2=M2
P is small, so that the

backreaction of the vector field on the FRW geometry will
be small, and the evolution of the vector field will be well
approximated by its evolution in the FRW background.

Suppose the vector field is homogeneous. This is a
reasonable assumption given that the background space-
time is homogeneous and therefore should only affect the
time evolution of the vector field. We may use the rota-
tional invariance of the FRW background to choose coor-
dinates such that the x-axis is aligned with the spatial part
of the vector field. Then, without loss of generality, A0 ¼
m coshð�ðtÞÞ and Ax ¼ maðtÞ sinhð�ðtÞÞ. In this case the
equations of motion reduce to

�00ðtÞ þ 3HðtÞ�0ðtÞ þ ½H2ðtÞ þ �H0ðtÞ� sinhð2�ðtÞÞ ¼ 0;

(24)

where HðtÞ ¼ a0ðtÞ=aðtÞ. Expanding to first order in the
angle �, for w � �1 we have

�00 þ
�

2

ð1þ wÞt
�
�0 þ

�
8� 12�ð1þ wÞ
9ð1þ wÞ2t2

�
� ¼ 0: (25)

It is a simple exercise to show that � behaves as a damped
oscillator for all �1<w< 1 and �< 2

3ð1þwÞ . For the case
of a constant Hubble parameter (w ¼ �1),

�ðtÞ ¼ Ae�Ht þ Be�2Ht: (26)

One can see even for large �ðtÞ that j�ðtÞj generically
decreases when�1<w< 1 and�< 2

3ð1þwÞ because, since
sinhð�Þ ¼ � sinhð��Þ, the essential features of the full
equation mirror those of the linearized equation.

We conclude that a timelike vector field will generically
tend to align to be purely timelike in the rest frame of the
cosmological fluid, thereby restoring isotropy of the cos-
mological background. We do not examine the case of a
spacelike aether field, since that is perturbatively unstable.

V. EXTRA DIMENSIONS

Consider now the evolution of the vector field in a
background space-time with metric

ds2 ¼ �dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ þ dr2: (27)

This metric is the local distance measure for a space-time
in which the infinite spatial dimensions expand as a usual
flat FRW metric, for general equation of state parameter w
as discussed in the previous section, and a compact extra
dimension with coordinate r does not expand. A scenario
in which a spacelike aether is aligned completely along the
compact fifth extra dimension was considered in [25].
The equations of motion are once again

ðg�� þ A�A�=m2Þðr�r�A� þ �R��A
�Þ ¼ 0 (28)

and A�A
� ¼ �m2. Consider homogeneous configurations

where, without loss of generality,

A0 ¼ m cosh�ðtÞ; Ax ¼ aðtÞm sinh�ðtÞ cos�ðtÞ;
Ay ¼ Az ¼ 0; and Ar ¼ m sinh�ðtÞ sin�ðtÞ: (29)

The � ¼ 0 equation of motion [Eq. (28)] reads

½12ð5� cos2�ÞðH2ð1þ �Þ þ �H0Þ � 2�H2cos2�� ð�0Þ2�
� sinh2�þ 6H�0 þ 2�00 ¼ 0: (30)

When �02 � H2, we can treat � as being essentially con-
stant and then the above equation determines the evolution
of�. Numerical simulations indicate that� decays to zero,
whatever the value of �, if �1<�< 2

3ð1þwÞ . One can see

the decay of � (given the bounds on �) explicitly by
expanding about� ¼ 0 and � ¼ constant when� is small.
If H is constant (i.e. the noncompact dimensions are de

Sitter-like) and the vector field is aligned entirely along the
timelike dimension and the compact dimension (so � ¼
�=2), then the equation of motion for �ðtÞ is

�00ðtÞ þ 3H�0ðtÞ þ 3
2ð1þ �ÞH2 sinhð2�ðtÞÞ ¼ 0; (31)

the solution to which is

�ðtÞ ¼ Aþe��þHt=2 þ A�e���Ht=2; (32)

where

�� ¼ 3ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

3ð1þ �Þ
q

Þ; (33)

when j�ðtÞj � 1. If 1þ �> 0 then � decays to zero. If
� ¼ �1,� decays to a (generically nonzero) constant, and
� can grow with time if �<�1. It is interesting to see
that, for the case where no perturbative modes propagate
superluminally—the case where � ¼ �1—the fixed-norm
vector field can evolve during a de Sitter expansion phase
so that it has a nonzero component in the compact fifth
dimension while otherwise aligning so that isotropy is
restored in the rest frame of the cosmological fluid.
However, when the Universe enters a phase of expansion
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where aðtÞ ¼ t2=3ð1þwÞ and w is strictly greater than �1
(and less than 1), then the component of the vector field in
the fifth dimension will decay away.

VI. CONCLUSIONS

We investigated the dynamics of and limits on parame-
ters in a theory with a fixed-norm timelike vector field
whose kinetic term takes the form of a sigma model. We
argued in a companion paper [9] that such sigma-model
theories are the only aether models with two-derivative
kinetic terms and a fixed-norm vector field for which the
Hamiltonian is bounded below.

In the presence of gravity, the action for sigma-model
aether is

SA ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�G
R� 1

2
ðr�A�Þðr�A�Þ

þ �

2
R��A

�A� þ �

2
ðA�A

� þm2Þ
�
: (34)

We showed that the five massless degrees of freedom in the
linearized theory will not propagate faster than light only if
� ¼ �1, and we argued that faster-than-light degrees of
freedom generically lead to instabilities on less-than-
Hubble-length time scales. In the special case � ¼ �1,
the vacuum expectation value m2 must be less than about
10�4M2

p, whereMp is the Planck mass, in order to comply

with limits on the PPN preferred frame parameter �2.
Relaxing the � ¼ �1 assumption, we summarized the
strongest limits on the parameters f�;mg (from gravita-
tional Čerenkov radiation and the PPN preferred frame
parameters) in Fig. 2.
We also showed that the aether field tends to dynami-

cally align such that it is orthogonal to constant density
hypersurfaces for the theoretically and experimentally
relevant portion of the parameter space. The dynamics
forces the rest frame of the aether and that of the perfect
fluid dominating the cosmological evolution to coincide.
Finally, we showed that the dynamics allows for the pos-
sibility of a nonzero spatial component in a nonexpanding
fifth dimension during a de Sitter era. Even a spatial
component in a nonexpanding fifth dimension will decay
away during non-de Sitter eras, e.g., in a matter- or
radiation-dominated universe. We take this as evidence
that aether fields with well-behaved semiclassical dynam-
ics will not lead to any significant departure from isotropy.
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