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In this paper we show that Yang-Mills theory in the Curci-Ferrari-Delbourgo-Jarvis gauge admits some

up to now unknown local linear Ward identities. These identities imply some nonrenormalization

theorems with practical simplifications for perturbation theory. We show, in particular, that all renormal-

ization factors can be extracted from two-point functions. The Ward identities are shown to be related to

supergauge transformations in the superfield formalism for Yang-Mills theory. The case of nonzero Curci-

Ferrari mass is also addressed.
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I. INTRODUCTION

In Yang-Mills theories, for almost all calculations aside
from lattice simulations of gauge-invariant quantities, one
needs to fix the gauge. In order to choose a sort of ‘‘opti-
mal’’ gauge fixing among a large number of possibilities,
one would like to preserve as many properties of the non-
fixed gauge theory as possible. In particular, it is conve-
nient to choose a gauge fixing that preserves Lorentz
invariance, the global color symmetry group, the renorma-
lizability of the theory, its locality and Becchi-Rouet-
Storat-Tyutin (BRST) symmetry [1–3] seen as a nontrivial
subgroup of the gauge symmetry. Of course, one also wants
the resulting model to be physically acceptable preserving,
in particular, the unitarity. Gauge fixings exist that, at the
perturbative level, satisfy all these requirements. The most
popular are the linear covariant gauges, including, in par-
ticular, the Landau gauge. However, such gauge fixings are
ambiguous because of the Gribov copies problem [4–6].
One manifestation of this problem is that if one tries to
construct a nonperturbative version of the BRST symmetry
on the lattice, the expectation value of gauge-invariant
quantities is an undefined 0=0 expression. This is some-
times called the Neuberger’s 0 problem [7,8]. These zeros
originate from the compensation in the functional integral
of the contributions of pairs of Gribov copies that come
with opposite weights. One therefore faces the alternative
of either working with a gauge fixing with a Gribov ambi-
guity or lose one of the above mentioned properties. In fact,
recent works propose a third option, and that is to calculate
some gauge-invariant quantities without fixing the gauge
(see [9] and references therein).

If one chooses the second option, one can, for example,
(i) Use the axial gauge that explicitly breaks Lorentz

invariance but does not have a Gribov problem [10].

(ii) Use the maximal Abelian gauge that breaks the
global color symmetry group; in this case, the partial
gauge fixing to the maximal Abelian subgroup of the
gauge group has been proven to avoid the Gribov
problem [12].

(iii) Use the absolute Landau gauge by imposing a global
extremization condition of a certain functional (see,
for example, [13]); however no local action is known
to implement this gauge fixing and the very useful
BRST symmetry is also lost. Moreover, no efficient
algorithm is known to implement that idea in
practice.

In this paper we will follow a more heterodox strategy,
which consists of taking the Curci-Ferrari (CF) model
[14,15] that corresponds to the Yang-Mills theory in a
particular gauge, supplemented with a mass for gluons
and ghosts. This model is not unitary [15–17] but the
presence of the masses lifts the degeneracy of contributions
coming from different Gribov copies and therefore regu-
larizes the Neuberger’s zero [18–20]. If one studies the
model directly at zero mass, one has a standard gauge
fixing sometimes called the Curci-Ferrari-Delbourgo-
Jarvis (CFDJ) gauge [14,15,21], with all good properties,
including unitarity, except that it has a Gribov ambiguity. It
is actually possible to have unitarity and regularize the 0=0
expressions by computing physical observables in the
massive theory and then taking the limit of vanishing
masses as proposed in [18–20].
The mass term can also be seen as a source for the

dimension-two composite operator 1
2 ðAa

�Þ2 þ �0 �c
aca that

attracted a lot of attention recently in relation with non-
perturbative effects on the behavior of the correlation
functions of ghosts and gluons (see, for example, [22–25]).
All these reasons strongly motivate the use of the CF

model. However, this model is not widely used in practice,
mainly because it seems much more cumbersome than the
linear gauges. For instance it has a four-ghosts interaction.
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In this paper we show that this widespread prejudice should
be reconsidered. We will show that beside the large sym-
metry group of the CF model, there exist local transforma-
tions that induce very simple variations of the action.
Therefore, although these transformations are not symme-
tries of the full action, one can deduce from them useful
linear Ward identities. We show that there are actually
underlying symmetries associated with these transforma-
tions that clearly appear in the superspace formulation of
Yang-Mills theory [21,26–28]. In this formulation, gluons
and ghosts are part of a single supervector in a superspace
with four bosonic coordinates and two anticommuting
Grassmann coordinates. We show that the transformations
associated with the new Ward identities are, in fact, super-
gauge transformations. The associated identities allow us
to deduce nonrenormalization theorems reducing the num-
ber of independent renormalization factors from five [17]
to three. The situation is very close to the gauge-fixed
Abelian theories where gauge transformations are not
symmetries of the full bare action but allow one to deduce
linear Ward identities. This, in turn, implies that gauge-
fixing terms are not renormalized. Another question ad-
dressed in the present paper is the meaning of the Curci-
Ferrari mass in the superspace formulation. We show that it
can be seen as a consequence of a curvature in the
Grassmannian sector of the superspace. Finally we show
that these nonrenormalization theorems imply practical
simplifications for perturbation theory: all the renormal-
ization factors can be extracted from diagrams with two
external legs only. We should stress that, up to now, a fully
satisfying construction of Yang-Mills theory based on
a superspace formulation has not been proposed (see
for instance [21] for a discussion of the problems en-
countered). However, in this article, the superfield
formalism is mainly used as a way to rewrite in an elegant
manner things that have their equivalent in the standard
formulation of the Yang-Mills theory (i.e., not expressed in
terms of superfields). The possible issue of a consistent
quantization of the Yang-Mills theory in the superfield
formalism has therefore no impact on the results presented
here.

The paper is organized as follows: In Sec. II, we review
the model and its symmetries in the massless case. We also
derive the new Ward identities. In Sec. III, we analyze the
renormalization properties of the model and deduce a non-
renormalization theorem. In Sec. IV we generalize the
results of the two previous sections to take into account
the CF mass and deduce another nonrenormalization theo-
rem. In Sec. V we analyze the consequences of these
results for perturbation theory. In Sec. VI we review the
superspace formulation of Yang-Mills theory and interpret
in this context the mentioned Ward identities in terms of
supergauge transformations. We also give an interpretation
of the CF model in the superspace formulation. Finally, we
give our conclusions in Sec. VII.

II. THE ACTION AND ITS SYMMETRIES

In this section, we analyze the CF model with vanishing
masses, i.e., the Yang-Mills theory in the CFDJ gauge
[14,15,21]. We will consider here the model in a four-
dimensional Euclidean space without including matter,
but most of the results can be generalized to
Minkowskian space and the inclusion of matter does not
modify the main results. The gauge-fixed Lagrangian reads

L ¼ LYM þLGF: (1)

LYM is the Yang-Mills Lagrangian:

L YM ¼ 1
4F

a
��F

a
��; (2)

Fa
�� ¼ @�A

a
� � @�A

a
� þ g0f

abcAb
�A

c
� is the bare field

strength, g0 is the bare gauge coupling, A� is the gauge

field, and fabc denotes the structure constants of the gauge
group that are chosen completely antisymmetric. LGF is
the gauge-fixing term, which includes a ghost sector. It
takes the form:

L GF ¼ 1

2
@� �c

aðD�cÞa þ 1

2
ðD� �cÞa@�ca þ �0

2
haha

þ iha@�A
a
� � �0

g20
8
ðfabc �cbccÞ2: (3)

Here, c and �c are ghost and antighosts fields, respectively,
and ðD�’Þa ¼ @�’

a þ g0f
abcAb

�’
c is the covariant de-

rivative for any field ’ in the adjoint representation. The
main interest of the CFDJ Lagrangian (3) is that the ghost-
antighost exchange symmetry is explicit and that it pre-
serves the linear realization of some continuous symme-
tries [21]. This is not the case if the Lagrange multiplier ha

is introduced, as often done [28], in a nonsymmetric way:

L ns
GF ¼ @� �c

aðD�cÞa þ �0

2
haha þ iha@�A

a
�

� i
�0

2
g0f

abcha �cbcc � �0

g20
4
ðfabc �cbccÞ2: (4)

However, these two versions of the CF model are in fact
equivalent: indeed, one obtains (4) by performing the
change of variables iha ! iha þ g0

2 f
abc �cbcc in (3).

Note that the considered gauge-fixing Lagrangian is
different from the more standard linear gauge fixing:

L linear
GF ¼ @� �c

aðD�cÞa þ �0

2
haha þ iha@�A

a
�: (5)

One cannot obtain one from the other by a change of
variables in the fields. However, all these gauge fixings
coincide in the particular case of the Landau gauge limit
�0 ! 0. In fact, (4) and (5) are identical in this limit.
Let us list the symmetries of the gauge-fixing

Lagrangian (3):
(a) The Euclidean symmetries of the spacetime.
(b) The global color symmetry.
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(c) The already mentioned ghost conjugation symme-
try: ca ! �ca, �ca ! �ca without modifying the
other fields. This symmetry allows one to obtain
most of the relations of this paper by conjugating
those explicitly considered.

(d) The continuous symplectic group SPð2;RÞ [29,30]
with generators N, t, and �t defined by

tAa
� ¼ 0; �tAa

� ¼ 0; NAa
� ¼ 0;

tca ¼ 0; �tca ¼ � �ca; Nca ¼ ca;

t �ca ¼ ca; �t �ca ¼ 0; N �ca ¼ � �ca;

tha ¼ 0; �tha ¼ 0; Nha ¼ 0:

(6)

N is associated with the ghost-number conservation.
One observes that A and h are singlets while c and �c
form a doublet of this group. Note that t and �t have
ghost numbers 2 and �2, respectively.

(e) The model is also invariant under the nonlinear
BRST and anti-BRST symmetries:

sAa
� ¼ ðD�cÞa; �sAa

� ¼ ðD� �cÞa;
sca ¼ � g0

2
fabccbcc; �s �ca ¼ �g0

2
fabc �cb �cc;

s �ca ¼ iha � g0
2
fabc �cbcc;

�sca ¼ �iha � g0
2
fabc �cbcc;

siha ¼ g0
2
fabc

�
ihbcc þ g0

4
fcde �cbcdce

�
;

�siha ¼ g0
2
fabc

�
ihb �cc � g0

4
fcdecb �cd �ce

�
: (7)

These symmetries satisfy the standard nilpotency
property (s2 ¼ �s2 ¼ �ssþ s�s ¼ 0).

We now review the standard procedure to handle these
symmetries [28,31,32]. However, let us stress that, con-
trary to [28] here we use the action (3) that ensures a linear
realization of the SPð2;RÞ group. This implies some dif-
ferences that are detailed below. In order to deduce
Slavnov-Taylor identities for these symmetries, it is neces-
sary to introduce sources for the variations of the fields
under BRST and anti-BRST symmetries. Since the sym-
metry is nilpotent, it is sufficient to introduce sources for
s’a, �s’a, and s�s’a for ’a ¼ Aa

�, c
a, and �ca [33]. For

completeness, we give here

s�sAa
� ¼ iðD�hÞa þ g0

2
fabcð �cbðD�cÞc � ðD� �cÞbccÞ;

s�sc ¼ �g0f
abc

�
ihbcc þ g0

4
fcde �cbcdce

�
;

s�s �c ¼ �g0f
abc

�
ihb �cc � g0

4
fcdecb �cd �ce

�
: (8)

Observe that

iha ¼ ðs �ca � �scaÞ=2 (9)

so that the variations of ha can be expressed in terms of the
variations of the other fields. Consequently we do not
introduce new sources for these variations.
We therefore consider the generating functional:

expðW½J; �; ��; R;K; L; �K; �L;M;�;�; ���Þ
¼

Z
DðA; c; �c; hÞ exp

Z
d4xð�LþLsourcesÞ; (10)

where

Lsources ¼ Ja�A
a
� þ ��aca þ �ca�a þ Raha þ �Ka

�sA
a
�

þ �sAa
�K

a
� þ �Lasca þ La �s �ca

þMaðs �ca þ �scaÞ=2þ �a
�s�sA

a
� þ ��as�sca

þ s�s �ca�a: (11)

We coupled the variations of the fields to the sources so that
R is a singlet and (La, �La, Ma) a triplet of the SPð2;RÞ
group. In Table I we give the dimensions, ghost numbers,
and ghost conjugates of the sources and fields.
Simple Ward identities can be easily derived for linearly

realized symmetries (a)–(d). For instance, the Ward iden-
tity associated with the symmetry of generator t is

Z
d4x

�
ca

��

� �ca
þ Ka

�

��

� �Ka
�

� 2La ��

�Ma

�Ma ��

� �La
þ �a ��

� ��a

�
¼ 0: (12)

One of the advantages of using the action (3) is that Ward
identities for the SPð2;RÞ group are linear.
As usual, the Slavnov-Taylor identity [34,35] associated

with the BRST symmetry is obtained by performing the
change of variables in the functional integral ’ ! ’þ
&s’ for all fundamental fields ’ with a constant
Grassmannian parameter &. One obtains

Z
d4x

�
� ��

� �Ka
�

��

�Aa
�

� ��

� �La

��

�ca
þ

�
iha � ��

�Ma

�
��

� �ca

� Ka
�

��

��a
�

þ La ��

��a þ
1

2

�
�i

��

�ha
�Ma

�
��

� ��a

�
¼ 0:

(13)

A similar equation can be deduced for the anti-BRST
symmetry. However, we will not need it here because its
information can be obtained by exploiting the ghost con-
jugation (c). Slavnov-Taylor identities for the BRST and
anti-BRST symmetries have been deduced in [28] for the
action (4). Here, the use of the action (3) let us use the
simple ghost conjugation in order to deduce the identity
associated with anti-BRST from that associated with
BRST. The physical interpretation of (13) is well known.
If one evaluates it for vanishing sources for composite
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operators, it says that � is invariant under Aa
� !

Aa
� � &��=� �Ka

�, c
a ! ca � &��=� �La, etc. The symme-

try transformation itself acquires quantum corrections.
After this review of these well-known symmetries and

their consequences, we now come to the deduction of other
new Ward identities that are linear and local. The first one
is the equation of motion for the Lagrange multiplier ha. It
can be obtained in the usual way by performing an infini-

tesimal spacetime dependent shift on the h field ihaðxÞ !
ihaðxÞ þ �̂aðxÞ. This gives

��

�ha
¼ �0h

a þ i½@�Aa
� þ ðD���Þa

� g0f
abcð ��bcc þ �cc�bÞ�: (14)

This equation means that terms in the effective action
including the h field are not renormalized. Note that the
nonsymmetric Lagrangian (4) contains terms that couple
the h field trilinearly which prevents one to derive a simple
equation as (14). Such terms do not exist in Lagrangians
(3) and (5) giving tractable equations of motion for h.
Another gauge where tractable equations for the
(Abelian) Lagrange multiplier can be deduced is the maxi-
mal Abelian gauge.

In the case of linear gauge fixing, as well as in maximal
Abelian gauge [36,37], another local and linear identity
can be deduced from the equation of motion of the anti-
ghost field. We find an analogous relation here if we shift
the ghost field by a space-dependent term � �caðxÞ ¼ �	aðxÞ
and simultaneously change the Lagrange multiplier ac-
cording to �ihaðxÞ ¼ g0

2 f
abc �	bðxÞccðxÞ:

��0

2

��

� ��a
� @�

��

� �Ka
�

þ ��

� �ca
�D�K

a
�

þ g0f
abc

�
� �cbLc þ 1

2
cb
�
�i

��

�hc
�Mc

�

� ��

� �Kb
�

�c
� þ ��

� �Lb
��c þ

�
ihb � ��

�Mb

�
�c

�
¼ 0: (15)

Here, contrary to what happens in linear gauges, we obtain
a third equation by ghost conjugation.

A fourth identity can be deduced by making the follow-
ing change of variables in the functional integral:

�Aa
�ðxÞ ¼ ðD��ðxÞÞa;

�caðxÞ ¼ g0f
abccbðxÞ�cðxÞ;

� �caðxÞ ¼ g0f
abc �cbðxÞ�cðxÞ;

�haðxÞ ¼ g0f
abchbðxÞ�cðxÞ; (16)

which gives the identity:

�
D�

��

�A�

�
a � @�

��

��a
�

¼ g0f
abc

�
cc

��

�cb
þ �cc

��

� �cb
þ Kc

�

��

�Kb
�

þ �Kc
�

��

� �Kb
�

þ hc
��

�hb
þMc ��

�Mb
þ Lc ��

�Lb
þ �Lc ��

� �Lb

þ �c
�

��

��b
�

þ �c ��

��b
þ ��c ��

� ��b

�
: (17)

To our knowledge, no such relation was found in the linear
gauge fixing.
Let us stress that these four identities [Eqs. (14) and (15)

and its conjugate, and (17)] are not fully independent from
the Slavnov-Taylor equation (13). Actually, the change of
variable yielding (15) is obtained by commuting the shift
of h used to deduce (14) and the BRST transformation that
generates (13). Similarly, the transformation (16) is ob-
tained by commuting the anti-BRST transformation with
the transformation that leads to (15). Observe also that
these four equations look like Ward identities for gauged
linear (super)symmetries letting aside some nonhomoge-
neous terms that play the role of gauge-fixing terms. As
mentioned in the Introduction, these terms behave as in
Abelian gauge theories where gauge fixing preserves its
bare form under the renormalization process. This is very
different from Slavnov-Taylor identities, which are non-
linear in � and therefore much harder to handle. The
obtention of local, linear Ward identities is a nontrivial
result and is the heart of the present manuscript.
Equations (14), (15), and (17) are very simple and have

far reaching consequences. However, to our surprise, they
have never been addressed before in the CF model. In the
next two sections, we discuss the consequences of these
relations showing, in particular, that they induce nontrivial
nonrenormalization theorems for some quantities.

TABLE I. Canonical dimension, ghost number, and (ghost) conjugation of different fields and sources.

Field/source A c �c h � � �� K �K L �L M

Dimension 1 1 1 2 1 1 1 2 2 2 2 2

Ghost no. 0 1 �1 0 0 1 �1 1 �1 2 �2 0

Conjugation A �c �c h � �� �� �K �K �L L �M
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III. NONRENORMALIZATION THEOREM FOR
THE COUPLING

The four new identities derived in the previous section
have many consequences on the form of the effective
action. As a concrete example, we analyze in this section
the implications on the renormalization properties of the
model.

The perturbative renormalizability of this model has
been proven by considering five renormalization factors
[17], including the renormalization of the mass. Recently,
however, one of us [38] proved two nonrenormalization
theorems that reduce the number of renormalization factors
from five to three. We now prove in this section and in the
following that these nonrenormalization theorems are, in
fact, a direct consequence of the new identities discussed in
the previous section.

We follow the standard procedure (see, for example,
[11]) of considering terms that can diverge by power
counting and constraining them iteratively. In a loop ex-
pansion, suppose that all divergences have been renormal-
ized at order n� 1. Divergent terms that appear at order n
in the effective action have couplings with positive or zero

dimension. Let us call them ��ðnÞ
div, and take an infinitesi-

mal constant 
. If one calls �ðnÞ
div ¼ Sþ 
��ðnÞ

div, then, in

four dimensions, the most general form for this functional
at order n that satisfies the linear symmetries (a)–(d), takes
the form:

�ðnÞ
div½A; c; �c; h; K; �K;L; �L;M;�;�; ���

¼ �
Z

d4x

�
ZL

�
�LaLa � 1

4
MaMa

�
þ ZK

�Ka
�K

a
�

þ �Ka
�~sA

a
� þ ~�sAa

�K
a
� þ �La~sca þ La~�s �ca

þMað~s �ca þ ~�scaÞ=2
�
þ �̂½A; c; �c; h; �; �; ���: (18)

We introduced the notation ~s and ~�s in terms linear in K, �K,
L, �L, and M in analogy with (11). However, for the mo-
ment, ~sAa

�, ~�sA
a
�, ~sc

a, ~�s �ca, and ~s �ca denote arbitrary opera-

tors depending on fA; c; �c; h; �;�; ��g, of dimension two,
with the same transformations under linear symmetries as
the corresponding bare expressions. In order for ~s and ~�s to

be the symmetries of �̂ discussed just below Eq. (13), we
complement their definitions [again by analogy with (11)
and (7)] by

~siha ¼ 1

2

��̂

� ��a
; (19)

~�siha ¼ � 1

2

��̂

��a ; (20)

~s �ca � ~�sca ¼ 2iha: (21)

For generic operators, one defines ~s as

~s ¼
Z

d4x

�
~sAa

�ðxÞ �

�Aa
�ðxÞ þ ~scaðxÞ �

�caðxÞ
þ ~s �caðxÞ �

� �caðxÞ þ ~shaðxÞ �

�haðxÞ
�

(22)

and similarly for ~�s. It is now easy to check that, with these

definitions, ~s and ~�s are symmetries of �̂.
We now want to solve the Slavnov-Taylor equation (13)

together with Eqs. (14), (15), and (17). The calculation is
lengthy but straightforward. Some details are given in the
Appendix. The resolution simplifies if one introduces the
variables

~ca¼caþZL�
a; ~�ca¼ �caþZL

��a; ~Aa
�¼Aa

��ZK�
a
�;

i~ha¼ ihaþZL

2
ðð ~D���Þaþ ~gfabcð �cb�c� ��bccÞÞ; (23)

where ð ~D��Þa ¼ Z@��
a þ ~gfabc ~Ab

��
c. Z and ~g are at

this level arbitrary constants. In term of these variables, the
solution reads

�̂ ¼
Z

d4x

� ~Z
4
~Fa
��

~Fa
�� þ ZL

2Y
ð@� ~Aa

�Þ2

þ ð ~D�
~�cÞa@�~ca þ @�~�c

að ~D�~cÞa
2Y

� ~g2ðfabc~�cb~ccÞ2
8Y

þ �0

2
~ha ~ha þ i~ha@� ~Aa

� þ ��a~gfabc
�
i~hb~cc

þ ~g

4
fcde~�cb~cd~ce

�
þ ~gfabc

�
i~hb~�cc � ~g

4
fcde~cb~�cd~�ce

�
�a

� ZL

4
ðð ~D���Þa � ~gfabcð ��b~cc � ~�cb�cÞÞ2

� �a
�

�
ið ~D�

~hÞa þ ~g

2
fabcð~�cbð ~D�~cÞc � ð ~D�

~�cÞb~ccÞ
��
;

(24)

with ~Fa
�� ¼ Zð@� ~Aa

� � @� ~A
a
�Þ þ ~gfabc ~Ab

�
~Ac
� and Y ¼ 1�

ZL�0=2. The action of ~s and ~�s on the fields reads

~sAa
� ¼ ð ~D�~cÞa; ~�sAa

� ¼ ð ~D�
~�cÞa;

~sca ¼ � ~g

2
fabc~cb~cc; ~�s �ca ¼ � ~g

2
fabc~�cb~�cc;

~�sca ¼ �iha � ~g

2
fabc~�cb~cc; ~s �ca ¼ iha � ~g

2
fabc~�cb~cc:

(25)

Note that Eq. (24) is written in terms of the bare gauge
parameter �0. The reason being that Eq. (14) ensures that
the h sector of the effective action is not renormalized.
Actually, Eqs. (14), (15), and (17) impose two other rela-
tions:

g0 ¼ ~gY; 1þ ZK ¼ ZY: (26)

These equations are at the core of the nonrenormalization
theorem (see below).
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The action of ~s on h can be deduced from Eq. (19). We
just give here the expression at vanishing sources for the
composite operators:

2iY~sha ¼ i~gY2fabchbcc � �0

Z2
L

4
~gfabc@�A

b
�c

c

þ ~g2

4
fabcfcde �cbcdce � ZLð ~D�@�cÞa: (27)

An analogous formula can be derived for ~�sh.
A straightforward calculation shows that ~s and ~�s are

nilpotent on shell, i.e., when one imposes the equations
of motion for the fields h, c, and �c. Actually ~s and ~�s can be
decomposed in a sum of an off-shell nilpotent symmetry
that has the form of the bare symmetry (7) up to multi-
plicative factors and two trivial symmetries with genera-
tors:

r1c ¼ r1 �c ¼ r1A� ¼ 0; r1h
a ¼ �fabc

��̂

�hb
cc; (28)

and

r2A� ¼ r2c¼ 0; r2 �c
a ¼�i

��̂

�ha
; r2ih

a ¼� ��̂

� �ca
:

(29)

These generators vanish when one imposes the equations
of motion. This is consistent with the on-shell nilpotency of
~s and ~�s.
Note that there appears in � terms that were not present

in the bare action described in Sec. II. There are terms with
two powers of the sources or more and also a term propor-
tional to ð@�Aa

�Þ2. In order to make the theory renormaliz-

able, one needs to include such terms in the bare action.
Fortunately, it is not necessary to perform again the analy-
sis with this new action. Indeed, the precise form of the
bare action is not necessary to deduce Slavnov-Taylor
identities. All that is needed is that the bare action satisfies
the Slavnov-Taylor identities [39]. Therefore, the form of �
given in Eqs. (18), (24), and (25) is stable under renormal-
ization. Let us comment that the term in ð@�Aa

�Þ2 can be

eliminated by a shift proportional to @�A
a
� of the Lagrange

multiplier.
We now make contact with the perturbative results and

concentrate on the A, c, �c sector once the Lagrange multi-
plier has been eliminated by its equation of motion. The
standard parametrization (see, for instance, [25]) of the
effective action reads

�̂ ¼
Z

d4x

�
1

2Zc

ð@� �ca �D�c
a þ �D� �c

a@�c
aÞ

þ 1

2�0Z�

ð@�Aa
�Þ2 �

Z��0g
2
0

8Z2
gZAZ

2
c

ðfabc �cbccÞ2

þ 1

4ZA

�Fa
��

�Fa
��

�
; (30)

with

�D�c
a ¼ @�c

a þ g0
Zg

ffiffiffiffiffiffi
ZA

p fabcAb
�c

c;

�D� �c
a ¼ @� �c

a þ g0
Zg

ffiffiffiffiffiffi
ZA

p fabcAb
� �c

c;

�Fa
�� ¼ @�A

a
� � @�A

a
� þ g0

Zg

ffiffiffiffiffiffi
ZA

p fabcAb
�A

b
�:

(31)

Comparison with Eq. (24)—where h is eliminated by its
equations of motion—yields, together with Eq. (26), the
following relations:

ZA ¼ Z�2 ~Z�1; Zc ¼ YZ�1;

Z� ¼ Y; Zg ¼ YZ2 ~Z1=2:
(32)

One then easily deduces the nonrenormalization theorem:

Zg ¼ Z�1=2
A Z�1

c Z2
�: (33)

We postpone to Sec. V the discussion of this equation
together with another nonrenormalization theorem to be
proven in the next section.

IV. THE MASSIVE CASE

As said in the Introduction, Curci and Ferrari proposed a
very natural generalization of Yang-Mills theory in this
particular gauge [14,15]. One can add a mass term for the
ghosts and gluons that preserves BRST-like symmetries:

L m ¼ m2
0ð12ðAa

�Þ2 þ �0 �c
acaÞ: (34)

The theory remains renormalizable; however, nilpotency
of the BRST symmetry is lost and, as a result, the model is
no longer unitary [15–17] (for a review of the effect of this
mass see [32]). The study performed in the previous sec-
tions is generalized here to include the mass term (34). We
show that the modifications to Eqs. (14), (15), and (17) are
very simple. The other striking result is that no indepen-
dent renormalization factor is needed to renormalize the
mass term.
Let us start by discussing the symmetry content of the

theory in the presence of the mass term. All the linear
symmetries (a)–(d) are preserved. On the contrary the
action is not invariant under the original BRST and anti-
BRST transformations (7), but is invariant under modified
transformations [29], sm ¼ sþm2

0s1 and �sm ¼ �sþm2
0 �s1,

with

s1c
a ¼ s1 �c

a ¼ s1A
a
� ¼ 0; �s1c

a ¼ �s1 �c
a ¼ �s1A

a
� ¼ 0;

s1ih
a ¼ ca; �s1ih

a ¼ �ca: (35)

As already mentioned the new BRST and anti-BRST sym-
metry transformations are no longer nilpotent. Their alge-
bra becomes [29,30]

s2m ¼ m2
0t; �s2m ¼ m2

0
�t; fsm; �smg ¼ �m2

0N: (36)
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The Curci-Ferrari mass term induces a change in the
Slavnov-Taylor equation. The right-hand side of (13) is not
zero anymore and must be replaced by a term proportional
to m2

0:

m2
0

Z
d4x

�
i
��

�ha
ca þ �a

�

��

� �Ka
�

� 2 ��a ��

� �La
þ 2

��

�Ma �
a

�
:

(37)

Slight modifications must be introduced to the new Ward
identities described in Sec. II. Equation (14) is actually not
modified because the mass term (34) is independent of h.
In the second identity, Eq. (15), one must add ��0m

2
0c

a to

the left-hand side. Finally, in Eq. (17), one must add
�m2

0@�A
a
� to the left-hand side.

One easily checks that the divergent part (18) of the
solution of the modified Slavnov-Taylor equation now

reads �ðnÞ
m;div ¼ �ðnÞ

div þm2
0�

ðnÞ
1;div with

�ðnÞ
1;div ¼

Z
d4x

�1
2 ð ~Aa

�Þ2 þ Z�0
�~ca~ca

ZY
� ZK

2
ð~�a

�Þ2

þ 2ZL
�~�
a ~�a

�
: (38)

Note that the renormalization of the mass term does not
require any new renormalization factor. This leads to an-
other nonrenormalization theorem. If one compares the
previous equation at zero sources with the standard pa-
rametrization of the mass term [25],

Z
d4x

m2
0

Zm

�
Aa
�A

a
�

2ZA

þ �0Z�

ZAZc

�caca
�
; (39)

by identification of the A2 terms one deduces that

ZmZA ¼ ZY: (40)

The �cc term does not give new information. Using the
identifications (32), one obtains another nonrenormaliza-
tion theorem:

Z2
� ¼ ZmZAZc: (41)

V. CONSEQUENCES FOR PERTURBATION
THEORY

The two nonrenormalization theorems presented in pre-
vious sections have far reaching consequences for practical
perturbative calculations. First of all, they imply that one
has to calculate as many renormalization factors in CFDJ
gauge as in linear gauges. Moreover, all these renormal-
ization factors can be extracted from the 2-point function
of gluons alone. In fact, one possible set of independent
renormalization factors are Zm (the renormalization for the
composite operator Aa

�A
a
�), ZA, and Z� that can all be

extracted from the zero momentum, transverse, and longi-
tudinal parts at order p2 of the quoted correlation function.
Other choices may even be more convenient in practice

since some of these renormalization factors can be ex-
tracted from the 2-ghost function that has simpler kine-
matics. In any case, there is no need to calculate 3-point or
higher vertices, contrary to what is required in linear
gauges. The price to pay is very small: there is a 4-ghost
vertex, but the required total number of diagrams seems to
be always smaller than that in linear gauges. For example,
the 1-loop beta function for pure gauge can be extracted
from three diagrams only. So, in what concerns perturba-
tive calculations, once nonrenormalization theorems are
exploited, CFDJ gauge is as competitive as linear gauges
(same number of renormalization factors) and might even
be more convenient (all renormalization factors can be
extracted from 2-point functions).
To conclude, let us make three final remarks. First, these

two renormalization factors have been found previously by
one of us. However, the proof of these nonrenormalization
theorems presented in [38] requires extensive use of equa-
tions of motions because it is formulated without the
introduction of the Lagrange multiplier field h. The physi-
cal content of these identities is therefore hidden. Here,
these relations are shown to be consequences of the new
Ward identities. Second, one can check that the 3-loop
renormalization factors [25] satisfy the two nonrenormal-
ization theorems (33) and (41). Actually, it was observed in
[40] that the 3-loops renormalization factors satisfy the
identity (41) without giving a general proof. Finally, for
the Landau gauge (� ¼ 0), Z� ¼ 1 and one recovers the

well-known nonrenormalization theorem for the coupling
constant [35] as well as the more recent one for the mass
[41].

VI. SUPERSPACE INTERPRETATION

A. Flat superspace

It has been shown in the 1980s that reinterpreting the
theory in a superspace enables one to give a geometric
meaning to the symmetries of the model, in particular, to
BRST and anti-BRST symmetries [21,26–28]. We review
here the superfield formalism and subsequently reinterpret
the newWard identities described in the previous section in
this context.
In the following, we consider a 4þ 2-dimensional

superspace, with four standard bosonic coordinates, noted
x�, and two Grassmannian—anticommuting—coordinates
� and ��: �2 ¼ ��2 ¼ � ��þ ��� ¼ 0. The (super)fields are
now functions of x�, �, and ��. In the following, capital
indices vary on the four bosonic directions � and on the
two Grassmannian directions: for instance xM ¼ ðx�; �; ��Þ.
Because of the Grassmannian character of � and ��, the
Taylor expansion in powers of these variables gives a finite
number of terms:

fðx�; �; ��Þ ¼ f00ðx�Þ þ �f10ðx�Þ þ ��f01ðx�Þ
þ ���f11ðx�Þ; (42)
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with fijðx�Þ ¼ @i�@
j
��
fðx�; �; ��Þj�¼ ��¼0. Observe that the

derivatives with respect to � and �� are nilpotent, just as
BRST and anti-BRST symmetries. It is actually possible to
make this analogy stronger, if one writes a four-
dimensional field � and its BRST/anti-BRST variations
as a 4þ 2-dimensional superfield �

�ðxMÞ ¼ �ðx�Þ þ ��s�ðx�Þ � ��s�ðx�Þ þ ���s�s�ðx�Þ;
(43)

where now it is clear that s and �s act on the superfield as @ ��

and �@�, respectively.
Note moreover that the vectorial superfields, similar to

the gauge field, have 4þ 2 components A�, A�, and

A ��, which have ghost numbers 0, 1, and�1, respectively.
One can therefore merge the four-dimensional gauge field,
the ghost, antighost, and all BRST/anti-BRST variations of
these fields in a unique vectorial superfield:

A �ðxMÞ ¼ A� þ ��sA� � ��sA� þ ���s �sA�;

A�ðxMÞ ¼ cþ ��sc� ��scþ ���s�sc;

A ��ðxMÞ ¼ �cþ ��s �c� ��s �cþ ���s�s �c;

(44)

where we have omitted the color index and the bosonic
space variable. The BRST/anti-BRST symmetries can
therefore be interpreted as the invariance under translation
in the Grassmannian directions. It is important to under-
stand at this level that the components �, ��, and � �� of the

fields A�, A�, and A �� are not independent of the � ¼
�� ¼ 0 part of the fields. Indeed, these are explicit functions
of A�, c, �c, and h, as given in Eqs. (7) and (8).
Consequently, the superfield is constrained and cannot be
used as it stands in a functional integral. These constraints
are sometimes called ‘‘transversality conditions’’ [21,26–
28,42]. Besides this difficulty, another problem in order to
construct a consistent superfield formulation for Yang-
Mills theory has been the nonexistence for Yang-Mills
theory of a superrotation symmetry mixing bosonic and
fermionic coordinates [21].

The symmetries t and �t and N given in Eq. (6) also have
a simple geometric interpretation in superspace: they cor-
respond to the invariance under ‘‘rotations’’ in the
Grassmannian directions.

The Lagrangian is easily recast in terms of superspace
and superfield. One finds for instance [21]

L GF ¼ �
Z

d�d ��
1

2
AMgMNAN; (45)

with g a metric in the superspace, defined as

gMN ¼

8>>>><
>>>>:

��� if M ¼ �;N ¼ �;
��0=2 if M ¼ �; N ¼ ��;
�0=2 if M ¼ ��; N ¼ �;
0 otherwise:

(46)

The gauge-fixing term appears formally as a mass term in

the theory. Observe that �0 appears as a different normal-
ization of the bosonic and fermionic coordinates that can
be reabsorbed by a change of variables, in the same way as
the speed of light can be eliminated in Minkowskian space.
The source term can also be written as [21]

L sources ¼
Z

d�d ��AMgMNJ N (47)

with

J � ¼ �� � ��K� � �K��þ ���J�;

�0

2
J � ¼ �þ �

M� iR

2
þ ��Lþ ����;

�0

2
J �� ¼ ��� ��

Mþ iR

2
� � �Lþ ��� ��: (48)

The Yang-Mills term does not have such a nice super-
space expression. One can however write it as [21]

L YM ¼
Z

d�d ��
1

4
���ðF a

��Þ2 (49)

with

F a
�� ¼ @�Aa

� � @�Aa
� þ g0f

abcAb
�Ac

�: (50)

After this review of the supersace formalism, let us now
come to the interpretation of the supergauge symmetries
described in Sec. II. The infinitesimal gauge transforma-
tions can actually be written in the very concise form:

�Aa
M ¼ @M�

a þ g0f
abcAb

M�
c; (51)

where� is an arbitrary function of xM. This transformation
has exactly the same form as a standard gauge transforma-
tion in Yang-Mills theory. To make contact with the ex-
pressions of Sec. II, we just need to write the Taylor
expansion of � in powers of � and ��:

�ðxMÞ ¼ �ðx�Þ þ ��	ðx�Þ þ �	ðx�Þ�þ ����̂ðx�Þ: (52)

This transformation not only gives the right gauge trans-
formation of the physical fields A, c, �c, and h, but also
gives consistent gauge variations for their BRST and anti-
BRST variations. Moreover, the Ward identities have a
very natural interpretation. Indeed, the Yang-Mills part of
the action (49) is manifestly invariant under the supergauge
transformation. The gauge-fixing term (45) breaks this
symmetry. However its variation under (52) is linear in
the field,

�LGF ¼ �
Z

d�d ��Aa;M@M�
a; (53)

and one can therefore deal with it in the corresponding
Ward identity.

B. Curved superspace

If the superspace formulation of the massless CFDJ
model has been known for quite some time, the corre-
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sponding formulation for the massive CF model has never
been addressed before. This is the aim of this section. The
important observation in this respect is that the BRST and
anti-BRST transformations sm and �sm (that were associated
with translations in the Grassmannian sector in the mass-
less case) do not anticommute. Their anticommutator is
indeed proportional to m2

0 times a rotation in the

Grassmannian coordinates. This is very similar to what
happens when one studies the commutation relations of
the rotations of the sphere in the limit of infinite radius,
where the sphere approaches a plane. At leading order in
the curvature, two rotations can be interpreted as trans-
lations (that commute) and the third corresponds to the
rotation of the plane. We therefore expect that the theory in
the presence of a mass term is associated with a superfield
theory in a curved superspace, with curvature proportional
to m0.

The calculations in a curved superspace require the
introduction of a formalism similar to the one of general
relativity. Actually all the standard formulas in a curved
space have their superspace equivalent that differ by some
signs. We followed the formalism and conventions of
[43,44], except that we work with left derivatives. In
particular, we consider the supercovariant derivative of a
superverctor V N:

DMV N ¼ @MV N þ �N
MPV

P (54)

with Christoffel symbols

�C
AB ¼ ð�1Þbc

2
ðð�1Þabþb@BgAD þ ð�1Þb@AgBD

� ð�1ÞdðaþbÞþd@DgABÞgDC: (55)

Here and below, the lowercase letters are 1 if the associated
uppercase is fermionic and 0 otherwise. The covariant
derivative DM should not be confused with the derivative
D� associated with the gauge group, which we used up to

now.
As in standard Riemann geometry, superspace symme-

tries are described by the Killing vectors that satisfy the
equation

DMXN þ ð�1ÞmnDNXM ¼ 0: (56)

Taking the Lie bracket of two Killing vectors X and Y,

½X;Y�M ¼ XP@PYM �YP@PXM (57)

gives another Killing vector. The corresponding algebra is
the Lie algebra of the isometry group of the superspace.
Moreover, the Killing vectors generate the infinitesimal
field transformations under isometries again by the Lie
bracket:

AM ! AM þ 
½X;A�M: (58)

In the following we consider the metric

gMN ¼

8>>>><
>>>>:

��� if M ¼ �;N ¼ �;

� �0

2 ð1þm2
0
���Þ if M ¼ �; N ¼ ��;

�0

2 ð1þm2
0
���Þ if M ¼ ��; N ¼ �;

0 otherwise:

(59)

Observe first that it identifies with (46) in the limitm0 ! 0.
Moreover, it is compatible with Poincaré and symplectic
symmetry groups but does not respect the translation in-
variance in Grassmannian coordinates. A similar super-
space was considered in [45] in a pretty different context
context. From Eq. (55) one can deduce that the nonzero
Christoffel symbols are

��
� ��

¼ ���
���
¼ �m2

0�; �
��
� ��

¼ ��
��
���
¼ �m2

0
��: (60)

Using the expression for the scalar curvature of Ref. [43],
one finds that the superspace has a finite and homogeneous
scalar curvature R ¼ �12m2

0=�.
In order to verify that it does correspond to the CF model

we calculated the most general Killing vector, obtaining

X � ¼ a� þ R��x�;

X� ¼ �ð1þm2
0
���Þ þ ���� ��;

X �� ¼ ��ð1þm2
0
���Þ þ ���þ ���:

(61)

The part proportional to a� corresponds to translations and
the one proportional to R�� ¼ �R�� to rotations in bo-
sonic coordinates. The parts proportional to �� and �
correspond to the symmetries t and �t, respectively, while
the part proportional to � corresponds to the ghost number.
Finally, the parts proportional to �� and � correspond to
BRST and anti-BRST symmetries, respectively (observe
that they become translations whenm0 ! 0). By a straight-
forward calculation one can verify that the Lie bracket of
the Killing vectors generates the Lie algebra of symmetries
of the CF model as described in Sec. IV. It is also an easy
task to verify that the Killing vectors generate the right
field transformations for the fields A; c; �c and h as defined
in Sec. IV. Finally, one can verify that the only renormaliz-
able Lagrangian compatible with the symmetries of the
curved superspace is that of the CF model.

VII. CONCLUSION

In the present paper, we have shown that the CFDJ gauge
fixing of Yang-Mills theory verifies four nontrivial local
and linear Ward identities. This result has many conse-
quences. First, it allows the deduction of two nonrenorm-
alization theorems that reduces the number of independent
renormalization factors from five to three. Consequently, in
perturbation theory, one has to calculate as many renor-
malization factors as in linear gauges. Moreover, as dis-
cussed in Sec. V, all these renormalization factors can be
extracted from the 2-point functions alone. We expect that
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this simplifies considerably the perturbative calculations in
Yang-Mills theory.

Another important result of the present paper is that the
obtained Ward identities can be interpreted in the super-
field formalism for Yang-Mills theory as consequences of
supergauge transformations. The generalization to the the-
ory with a CF mass term is simple and it is shown to be
equivalent in the superfield formalism to a curvature of the
superspace in the Grassmannian coordinates. Up to now,
however, the superfields are constrained by the so-called
transversality condition. As a consequence, one cannot use
them as they stand in a functional integral. Let us stress that
the existence of this supergauge symmetry reinforces our
conviction that the superfield formalism is of prime im-
portance in this field. This pushes one to look for the
description of the model in terms of unconstrained super-
fields. More precisely, one would like to build a theory in
which the transversality constraints appear dynamically
(very much like the �4 potential of the Landau-Ginzburg
action that imposes, in the low-temperature limit, a hard-
spin constraint) and are not imposed at hand as external
constraints. Such a realization would be a good starting
point to build a fully consistent quantization of the Yang-
Mills theory in the superspace. This work is in progress.
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APPENDIX: SOLVING SLAVNOV-TAYLOR
IDENTITY

In this Appendix we give some details of the derivation
of Eqs. (22) and (24). We first substitute the expression
(18) into the Slavnov-Taylor identity (13) and analyze the
terms quadratic in the sources K, L, �K, �L, and M. One
easily finds that ~sA and ~sc do not depend arbitrarily on c, A,

�, and �, but only through ~ca and ~Aa
� [see Eq. (23)].

If one now studies the terms linear in K, L, �K, �L, andM,
one finds four independent constraints. The two relations

~s 2Aa
� ¼ 0; ~s2ca ¼ 0; (A1)

give the nilpotency in a particular sector. One also finds

~s~�s Aa
�ðxÞ ¼ �ZK

��̂

�Aa
�ðxÞ �

��̂

��a
�ðxÞ �

ZL

2

�
~D�

��̂

�h

�
a
:

(A2)

Adding to this equations its conjugate, one deduces

f~s;~�sgAa
� ¼ 0; (A3)

which again expresses the nilpotency in another sector. The
fourth relation reads

~s~�s �ca ¼ �ZL

��̂

�ca
þ ��̂

��a � i
~gZL

2

��̂

�hb
fabc~�cc: (A4)

Now, the most general operators of dimension two,
respecting Lorentz invariance, global color invariance,
the symmetry (6), ghost-number conservation, the defini-
tion (19), and nilpotency (A1), are written in (25).
Equations (A2) and (A4) take a simpler form if one

introduces the variable ~ha defined in Eq. (23). Taking as

independent variables ~A�, ~c, ~�c, ~h, ��, �, and �� one

deduces

~s~�s �ca ¼ ��̂

��a ; ~s~�s Aa
� ¼ � ��̂

��a
�

: (A5)

Note that at this level we have explicit expressions for the ~s
and ~�s variations of fields A, c, and �c but not h. However, the
left-hand sides of Eqs. (A5) can be computed without
knowledge of the variations of h. Therefore, we have an

explicit expression for the derivatives of �̂ with respect to
� and � (and by conjugation of ��). One can then integrate
these trivial differential equations and obtain the depen-

dence of �̂ on these variables. As a result, we only need to

find the part of �̂ that does not depend on the sources. The

dependence on h (and then on ~h) is trivially deduced from
(14). The remaining part is obtained by imposing the

invariance of �̂ under ~s. One finally obtains the result
(24).
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