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We study the stability of Hopfions embedded in a certain modification Ginzburg-Landau model of two

equally charged condensates. It has been shown by Ward [Phys. Rev. D 66, 041701(R) (2002)] that a

certain modification of the ordinary model results in a system which supports stable topological solitons

(Hopfions) for some values of the parameters of the model. We expand the search for stability into a

previously uninvestigated region of the parameter space, charting an approximate shape for the stable/

unstable boundary and find that, within the accuracy of the numerical methods used, the energy of the

stable knot at the boundary is independent of the parameters.
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I. INTRODUCTION

Topological solitons, be it vortices, knots, instantons, or
other objects, enjoy widespread interest within many fields
of physics, perhaps most notably in the fields of particle
physics and condensed matter, where these objects invari-
ably occur as solutions of the field equations. In condensed
matter physics, topologically stable vortices are also a
routinely seen in experiments. Therefore, it is crucial to
understand the basic properties of topological solitons in
the Ginzburg-Landau and related models. It is against this
background that we have studied the static Ginzburg-
Landau model, also known as the Abelian Higgs model.
Some years ago, it was demonstrated that the archetypal
3D classical field model supporting topologically stable
closed vortices, the Faddeev-Skyrme (FS) model [1–9],
can be embedded in the Ginzburg-Landau model by a
change of variables [10]. There was also an earlier work,
where the FS model was obtained from the Ginzburg-
Landau model in a derivative expansion [11], but this
method does not allow for the investigation of solitons in
the Ginzburg-Landau model since it does not correspond to
any parameter limit. It was further conjectured in Ref. [10]
that the two-component Ginzburg-Landau model should,
due to this embedding, also support the same topological
structures as the FS model does, but more recent studies do
not support this conjecture [12,13]. However, Ward found
[12] that by modifying the model suitably, stable closed
vortices appear as minimum energy configurations of the
theory. We expand on Ward’s work and find the stable/
unstable boundary in the ð�;�Þ parameter space of the
model. We also find that the energy of the stable minimum
energy configuration along the said boundary is constant
(to within the accuracy of the methods used). The results
presented here should also be useful in constructing such
initial configurations in the Ginzburg-Landau model which
relax into a local, nonzero energy minimum instead of the

global one and thus provide a way to construct knotted
solitons in the Ginzburg-Landau model.

II. THE MODEL

The static Abelian Higgs model with two charged Higgs
bosons is mathematically the same as the Ginzburg-
Landau model with two flavors of Cooper pairs or super-
fluids. The paper will use the following notations. The
indices run as follows: j; k; l 2 f1; 2; 3g, � 2 f1; 2g,
�; �; � 2 f0; 1; 2; 3g, the fields are � ¼ ðc 1 c 2ÞT ,
F�� � @�A� � @�A�, B ¼ �jkl@kAl, and the gauge-

covariant derivative has the form D� � @� � i2e
@cA�;

when working in three dimensions (� 2 f1; 2; 3g) we will
also write D � r� i2e

@cA. With these notations, the stan-

dard Lagrangian density of the two-component Ginzburg-
Landau model can be written as

L ¼ @
2

2m�
kD�c �k2 þ Vðc 1; c 2Þ � 1

4F��F
��; (1)

which gives the static energy density

E ¼ @
2

2m�
kDc �k2 þ Vðc 1; c 2Þ þ 1

2�0
kBk2; (2)

where we have used SI units. The form of the potential is
not very important as long as it maintains the SUð2Þ
symmetry of � and enforces the condition k�k ¼
constant � 0 at some limit of the parameters of the poten-
tial; here we have used

Vðc 1; c 2Þ ¼ 1
2�ðj�j2 � 1Þ2: (3)

The electric coupling constant displays an explicit factor of
2 due to the interpretation of the Ginzburg-Landau model
as a superconductor, where the c � become Cooper pairs.
For computational purposes, it is practical to use natural
units, where @ ¼ c ¼ �0 ¼ 1 and rescale the fields by
c � ! c �

ffiffiffiffiffiffiffi
m�

p
. For flexibility, we retain a freely select-

able electric charge but replace 2e ! g, finally obtaining
the energy density (now Dk ¼ @k � igAk)*juolja@utu.fi
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E ¼ 1
2kDc �k2 þ Vðc 1; c 2Þ þ 1

2kBk2: (4)

The remainder of this paper will be in natural units.
The embedding of Babaev et al. [10] is such that a closed

vortex can be defined by the fields c �, leaving the gauge
field A free. Using the new variables thus introduced, one
can define a vector field n as follows. Let � be the usual
Pauli matrices. We then define

n :¼ c �
1 c �

2

� �
�

c 1

c 2

� �
¼

c �
1c 2 þ c 1c

�
2

iðc �
1c 2 � c 1c

�
2Þ

jc 1j2 � jc 2j2

0
@

1
A;

where we demand that j�j> 0 everywhere, consider �
normalized to unity, and limx!1n ¼ n1 exists in order to
obtain a map S3 ! S2. Now the preimage of �n1 forms a
closed loop, the vortex core.

The fact that A is left free means that there is no non-
trivial topology imposed on it and since in the vacuum of

the Ginzburg-Landau modelA is pure gauge, the magnetic
field energy can vanish in all cases. This in turn means that
there is no longer a fourth-order derivative in the energy
density (4) and Derrick’s theorem [14] states that no stable,
topologically nontrivial solutions of the field equations
with nonzero energy exist. Therefore, the collapse of the
magnetic field must be somehow prevented in order to
obtain stable topologically nontrivial configurations in
the model. There are several physical arguments that sug-
gest there might exist physical processes that prevent the
collapse, but here we follow the path set out by Ward, who
used a geometrical argument, by adding into the
Lagrangian the term [we denote �y ¼ ðc �

1 c �
2Þ]:

LW ¼ 1
2�

2k�yD��k2; (5)

which makes the Ginzburg-Landau -Ward energy density

E GLWðxÞ ¼ 1
2kD�k2
zfflfflfflffl}|fflfflfflffl{�EK

þ 1
2kr �Ak2
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{�EB

þ 1
2�

2k�yD�k2
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{�EW

þ Vðc 1; c 2Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{�EP

(6)

and denoting for any subscript z: Ez ¼
R
d3xEz we finally

have the total energy

EGLW ¼ EK þ EW þ EB þ EP: (7)

The extra term, when the parameters �, � ! 1, ensures
that the model becomes exactly the Faddeev-Skyrme
model

E FS ¼ 1
2k@knk2 þ 1

2gFSkn � @jn� @knk2 (8)

and therefore the model supports, at least asymptotically,
stable topologically nontrivial configurations; these solu-
tions are called knot solitons due to their general shape.
This limit of � ! 1 was apparently first observed by
Hindmarsh [11], albeit in a slightly different context.

Ward studied the question whether the solutions of the
limiting model remain stable at finite values of �, �. It was
found that if � ¼ �2 þ 1, there are knot solitons already at
� ¼ 7:1. This is due to the fact that the extra term prevents
the (total) collapse of the magnetic field, but only when �,
� are large enough: for smaller values, no solutions were
found in Ref. [12], although one was found in Ref. [15].

It was recently discovered independently by Babaev [16]
by using physical arguments and by Speight [17,18] by
giving a rigorous mathematical proof, that the energy of the
model has no topological lower bound, even when LW is
added, but instead for all values of the Hopf invariant, the
energy can go to zero. Therefore any stable configurations
found are necessarily only local minima of the energy; on
the other hand, although the plain Ginzburg-Landau model
does not seem to have any stable topologically nontrivial
configurations, they may only be very difficult to find due

to a very small attraction basin of said configurations, thus
requiring very good initial guesses. Investigating such
configurations in closely related models may help in find-
ing these initial configurations.
In Ref. [12] Ward investigated only configurations

where g ¼ 1 and � ¼ �2 þ 1. We will now present results
for the stable/unstable boundary �ð�Þ for g ¼ 1 and � 2
f6; 20g. It was natural to start the investigation from the
values explored by Ward and expand the range of � in both
directions; the limits of this range were eventually set by
available computer capacity.
It is also worth noting that, as usual, Derrick’s theorem

provides a virial theorem for the model. Assume we have a
solution of the field equations, �, A and consider its
energy density under uniform scaling of the coordinates
x ! �x:

EGLWð�Þ ¼
Z

d3xðEKð�xÞ þ EWð�xÞ þ EBð�xÞ
þ EPð�xÞÞ; (9)

which is the starting point of Derrick’s theorem. Now,
following the method used by Derrick, we get after the
change of integration variables x ! �x,

EGLWð�Þ ¼ �EK þ ��1EB þ �EW þ �3 (10)

differentiating with respect to � we get

��2EB ¼ EK þ EW þ 3�2EP: (11)

The stability under scaling requires that this equation holds
for � ¼ 1, since otherwise some other size would be
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energetically more favorable. Thus we have a virial theo-
rem:

EB ¼ EK þ EW þ 3EP: (12)

This must hold for all stable minimum energy configura-
tions, regardless of the parameter values or value of Hopf
invariant (topological charge). For the remainder of the
article, the energy is rescaled by

E ¼ EGLW

4	2
ffiffiffi
2

p

and we shall always use E for energy. This rescaling is
motivated by Ref. [19] and eases comparisons with
Ref. [12].

III. NUMERICAL METHODS

We have discretized the system using single-step for-
ward differences on a rectangular cubic lattice. Since the
energy of the Ginzburg-Landau model is equal to that
of the Abelian Higgs model, the discretization method is
the standard (dropping the time-dependent part) used
for lattice quantum field theories, as described in
Refs. [13,20,21].

The use of a single step in the finite differences approxi-
mation instead of some more sophisticated alternative with
multiple points is simply a trade-off between speed and
accuracy. The discretized equations are very long even
with single-step differences. This does not incur significant
inaccuracy to the computation for two reasons. First, we
are interested mainly in the existence of knotted solitons,
which is not affected by the less accurate approximation—
the exact values of the parameters where the transition
from stable to unstable domain, however, do suffer from
inaccuracies as shall be described later. Second, there is no
accumulation of error during the iterative process in the
optimization algorithms employed.

The term EW was discretized in the same manner as the
kinetic term: we denote �l

j ¼ ð
1
j ; 


2
j ; 


3
j Þ�l, �l 2 f0; 1g

and find all gauge invariant discrete terms of the forms

c �
1ðxþ�0

jÞc 1ðxþ�1
jÞ and c �

2ðxþ�2
jÞc 2ðxþ�3

jÞ;

where �0 þ �2 ¼ �1 þ �3,
P

l�
l < 4, and

c �
1ðxþ�0

jÞc 1ðxþ�1
jÞ and

c �
2ðxþ�2

jÞc 2ðxþ�3
jÞe�iagAkðxÞ;

where
P3

j¼0 �
l ¼ 1. There are 18 such terms, which are

then multiplied by such constants that the sum of the
multiplied terms has the correct continuum limit. This
produces the most general single-step forward-differences
discretization of EW .

Energy minimization was done using several different
gradient-based optimization methods: steepest descents
(SD), Fletcher-Reeves (FR) [22], and Polak-Ribière (PR)
[23] versions of the conjugate gradient method and
Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton method [24–27]. Of these a few simple speed tests
were conducted, with the result that the FR method is
usually fastest, but sometimes the SD method is faster
due to the fact that the other methods spend too much
time performing the line searches. (The effect of using
less accurate line searches was not investigated.) All the
methods are based on gradient directions and thus will only
provide a local minimum. Some of the final configurations
were subjected to simulated annealing in order to see how
deep the minimum is. The annealing could not escape the
minimum in a reasonable amount of time, making it rea-
sonable to believe the minima are relatively deep. We did
not have the computational resources to perform simulated
annealing optimizations of all cases due to the extreme
slowness of the algorithm.
As a test of the accuracy and validity of the programs

used, we reproduced the results of Ref. [12], Sec. 3. The
results agree to within 5%, where our energies are always
higher; this confirms the correctness of the program and
also gives some indication as to the accuracy compared to
other methods. The accuracy of our method could be
increased by using larger lattices and smaller lattice con-
stants, but this kind of brute force approach would require
excessive amounts of memory—we use more than half a
terabyte at maximum—so some more sophisticated meth-
ods would be needed.

IV. RESULTS

The search for the boundary between stable and unstable
domains of ð�; �Þwas done as follows. First, an initial state
was set up in a cubic 1803 lattice with a lattice constant of
1=18. The initial configuration was constructed so that
none of the xyz axes coincide with the axial symmetry of
the soliton. This configuration was then minimized using
one of the above algorithms and various combinations of
ð�;�Þ to determine the rough shape of the boundary. This
initial search is done in a small lattice in full knowledge
that it may not be large enough to accurately distinguish
between configurations which are truly unstable and those
that are unstabilized due to the large value of the lattice
constant. Indeed, all the unstable systems at the boundary
found in this initial search were later proven to be stable in
a more accurate lattice. The search consisted of 72 com-
puter runs, but due to the small lattice, used relatively little
computer time and gave us the rough values around which
to start searching for the boundary in a more accurate
lattice. The number of these computationally much more
expensive runs was 81.
The values of ð�;�Þ were then refined in lattices ranging

from 3603 to 6003. Some unstable configurations were also
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put into lattices of sizes up to 7203 to support the con-
clusion that the instability is real and not caused by dis-
cretization effects. None of these were thus stabilized. The
virial theorem equation (12) was then checked for the
stable configurations at the boundary (i.e. for each � the
stable configuration with lowest �) to see if the configu-
ration really is a solution. Allowing for a 10% inaccuracy,
those that were within the tolerance were considered solu-
tions of the energy minimization. These points are used to
sketch the boundary of the stable configurations. Those
that were outside the tolerance were further investigated.
The reason for inaccuracy proved usually to be due to the
small physical dimensions of the computational lattice: the
knot suffers from pressure exerted by the edge of the box
and cannot reach its preferred size. These configurations
were therefore put into a larger lattice with the same lattice
constant, minimized and the accuracy was checked again.
This process was repeated as many times as necessary to
achieve the desired accuracy—except for two cases as we
will describe later. Whenever the accuracy was reached,
the configuration was considered a solution and added to
those used to sketch the boundary. For some cases the
accuracy was simply a question of lattice constant; these
were recomputed with the same physical dimensions but a
smaller lattice constant in order to reach the desired
accuracy.

The exceptional cases where the process of putting into a
larger box until accuracy is achieved was not completed,
where the pairs ð�;�Þ 2 fð10; 0:2Þ; ð20; 0:14Þg. These are
stable configurations, but the accuracy goal could not be
achieved with the computational capability available due
to the cubic growth of memory requirements of increasing
the lattice size.

After completing the above process, we select for each �
the stable configurations with lowest �; we denote this
value by �min

� . The values ð�; �min
� Þ are displayed as solid

black circles in Fig. 1 together with a curve �ð�Þ sketching
the approximate shape of the continuous boundary and
yellow circles for the largest unstable values of �.
Configurations for different values of � are not always
produced in a lattice of the same size, but despite that,
the boundary curve fits rather well. All the stable dots in
Fig. 1 are confirmed to be solutions by the virial theorem of
Eq. (12), except the cases mentioned above: � 2 f10; 20g.
The boundary approaches the y axis as � ! 0 and x axis as
� ! 1. The latter information is not very useful in con-
structing initial states for normal Ginzburg-Landau model,
but the fact that the boundary seems to approach the y axis
as well might provide helpful insight and allow the con-
struction of an initial state which could be used to find a
topologically stable, nontrivial local energy minimum.

Comparison of the energies of the final configurations
reveals that the energy of the solution for ð�;��Þ is, within
our numerical accuracy, independent of �. This is dis-
played in Fig. 2, where the dots depict the energies of the

solutions, the heights of error bars are chosen according to
how much the solution deviates from the virial theorem
equation (12), and the solid horizontal line is the least-
squares fit for the constant energy, neglecting the anoma-
lous cases � 2 f10; 20g. Also, comparing this energy with
the energies of the unstable configurations at the moment
of loss of topology shows that the unstable configurations
always have lower energy than those at the boundary,
giving even further support to our argument that the insta-
bility is real and not a numerical artefact.
The search for the boundary also provides us, as a by-

product, with information on the shape and size of the final
configurations. All solutions have kept their initial orien-

FIG. 1 (color online). Boundary between stable and unstable
regions: the solid black circles denote pairs of ð�;��Þ, yellow
circles denote the largest unstable values of �, and the curve,
� ¼ 457:65�� þ 0:5��ð1=2Þ, is a sketch of the boundary.

FIG. 2. Energies (black discs) of the stable configurations
closest to the boundary, the heights of the error bars show the
inaccuracy of the solution as determined from the virial theorem,
and the horizontal line is the least-squares fit of a constant
energy.
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tation and overall shape, the only visible difference be-
tween the final configurations is the apparent decrease of
the size of the torus with growing �, as shown in Fig. 3 for
the cases � 2 f6; 8; 12g. It remains an open question
whether the final toroidal configuration obtained from
this initial configuration would shrink to zero as � ! 1
because we were unable to follow the boundary above
� ¼ 12.

Looking at the four terms of the energy function of these
final configurations reveals more details of the interplay
between the various terms. As can be seen from Table I, EK

increases with increasing �, but EW decreases. This is
expected since on the limit � ! 1, we must have EW !
0. Since it was found in [13] that the magnetic field always
approaches zero for unstable systems in the nonmodified
Ginzburg-Landau model, it is interesting to note that there
seems to be no trace of this here: the magnetic energy does
not change appreciably. The variation in the potential
energy is also negligibly small.

V. CONCLUSIONS

We have studied the existence of local minima in a
modified two-component Ginzburg-Landau model and
how the energy of these behaves along the boundary where
the local minima become unstable. It was found that local
minima exist for a wide range of values of the parameter �,
but that there is a limiting value of � for each � below
which the minimum vanishes. It remains open whether
there still is a minimum but our initial configuration has
simply moved ‘‘closer’’ to the global minimum of zero so
that the gradient-based algorithms can no longer reach it.
Also, there can be other local minima. To explore these
possibilities further it is required to use either a set of very
different initial configurations or an algorithm which can
explore a wide region of the configuration space starting
from a single initial configuration such as the genetic
algorithm (which has the downside of being able to escape
the local minima and thus ending up in the trivial global
minimum).
Strikingly, the energy was shown to be constant along

the boundary. This information, along with the fact that
higher values of� are required for lower values of �, might
provide a way to construct an initial configuration in the
ordinary two-component Ginzburg-Landau model, which,
under the minimization of energy, would lead to a nonzero
local minimum. The procedure would, however, require
further insight into how the various terms of the energy
functional behave when � decreases; our numerical
scheme was not designed for this and as such, appears
not to be accurate enough to provide this information. In
contrast to its energy, the size of the minimum energy
configuration decreases as � increases. This requires pro-
gressively smaller values of the lattice constant and thus a
significantly different numerical approach than the simple,
but very large (recall that we used over half a terabyte)
lattices used here. Still, the possibility remains of further
research in both smaller and larger values of �, but as they
are not addressable by the framework used here, it falls
outside the scope of this paper.
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TABLE I. Terms of the energy function of the final configu-
rations of � 2 f6; 8; 12g.
� EK EB EW EP

6 23.740 32.111 7.6571 0.460 53

8 26.739 31.808 5.9745 0.463 35

12 31.580 32.334 2.5649 0.705 55

FIG. 3 (color online). Initial configuration (top left) and three
resulting final configurations: � ¼ 6 (top right), � ¼ 8 (bottom
left), and � ¼ 12 (bottom right). The colored region is the
equator of n (i.e. isosurface where n3 ¼ 0) and the coloring
corresponds to the longitude of n.
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Recherche Opérationnelle 3, 35 (1969).
[24] R. Fletcher, Computer Journal 13, 317 (1970).
[25] D. Goldfarb, Math. Comput. 24, 23 (1970).
[26] D. F. Shanno, Math. Comput. 24, 647 (1970).
[27] C. G. Broyden, J. Inst. Math. Appl. 6, 76 (1970).
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