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The stochastic vacuum model for QCD, proposed by Dosch and Simonov, is fused with a worldline

casting of the underlying theory, i.e. QCD. Important nonperturbative features of the model are studied. In

particular, contributions associated with the spin-field interaction are calculated, and the validity of both

the loop equations and of the Bianchi identity is explicitly demonstrated. As an application, a simulated

meson-meson scattering problem is studied in the Regge kinematical regime. The process is modeled in

terms of the helicoidal Wilson contour along the lines introduced by Janik and Peschanski in a related

study based on an AdS/CFT-type approach. Working strictly in the framework of the stochastic vacuum

model and in a semiclassical approximation scheme, the Regge behavior for the scattering amplitude is

demonstrated. Going beyond this approximation, the contribution resulting from boundary fluctuations of

the Wilson loop contour is also estimated.
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I. INTRODUCTION

The confrontation of nonperturbative issues associated
with dynamical processes constitutes a problem of great
importance which definitely merits attention if QCD is to
attain the status of a complete and fully self-consistent
theory. Clearly, the most concrete advancement in formu-
lating a nonperturbative casting of QCD is traced to
Wilson’s proposal [1], which paved the way for the lattice
formulation of gauge field theories in general. Remarkable
results have been produced, especially in relation to the
study of static properties of hadrons [2], finite temperature
properties of the theory, etc.

On the analytical front, important theoretical progress,
relevant to nonperturbative, dynamical explorations of
QCD, has been achieved within the context of the loop
equations [3–6], while, in recent years, (super)string theory
has, through the AdS/CFT conjecture [7–9], opened new
pathways for approaching the nonperturbative domain of
QCD, albeit in the sense of some supersymmetric version
of the theory and within the context of unified schemes.

Generally speaking, the nontrivial aspects of QCD as a
relativistic gauge field theoretical system stem from the
fact that the non-Abelian gauge symmetry entering its
description incorporates an inherent nonlinearity even be-
fore interaction terms with matter field agents are intro-
duced. Theoretical schemes aiming at a heads-on
analytical confrontation of nonlinear quantum field sys-
tems do, of course, exist, possibly the most concrete one
being expressed in terms of the infinite battery of
Schwinger-Dyson equations. Even in this case, however,
the relevant computational procedure for the solution of
these (integral) equations is not only methodologically
complex but, more importantly, unless totally summed,
there is no a priori guarantee that they are in the position
to capture the full nonperturbative content of any given

field theoretical system and/or describe its expected vari-
ous phases.
A notable field theoretical approach aiming at the study

of nonperturbative issues in QCD, such as confinement,
chiral symmetry breaking etc., has been proposed by
Dosch and Simonov [10–12] and is called the stochastic
vacuum model (SVM). By design, the construction of the
model takes into consideration the nontrivial structure of
the QCD vacuum state [13], while, at the same time, it
secures a role for the Stokes’ theorem (non-Abelian casting
thereof) through which electric-magnetic duality issues
can be fully taken into account. The basic building blocks
of the SVM scheme are the, so-called, field-strength cor-
relators, the definition of which will be given later, while
for its computational strategy it employs the so-called field
(strength) correlators method, FCM for short. For the
reader not familiar with the SVM, we hope that the infor-
mation provided in this paper will sufficiently illustrate the
reasoning behind its definition, as well as its properties and
physical content. For a deeper insight into the model, one is
referred to the original papers [10–12] and/or the excellent
review articles [14,15], which also present a variety of its
applications.
The characteristic aspect of the present work is that it

adopts, as a basic methodological tool, the worldline cast-
ing of gauge field theoretical systems [16] appropriately
adjusted to the SVM. Our goal is to confront genuinely
nonperturbative issues associated with dynamical pro-
cesses of physical interest. At the same time—and at a
purely theoretical level—we hope that the present effort
will offer new insight into further promoting the effective-
ness of the SVM as a credible and viable theoretical tool
for exploring the nonperturbative content of QCD.
The aim of the first part of this paper (Secs. II and III) is

to accomplish the task of carrying out cumbersome com-
putations which reveal fundamental properties of the SVM
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that are of immediate relevance to our specific purposes,
and to establish the consistency of the model with the loop
equations [3–6], as well as the Bianchi identity (BI) for
QCD. Clearly, such an occurrence strengthens the credi-
bility of the SVM as a theoretical construction which is
consistent with QCD as a whole, i.e. in the sense that it
goes beyond perturbation theory. Our main theoretical
application will be realized in the second part (Secs. IV
and V) where we undertake the description of a, theoreti-
cally simulated, meson-meson scattering process at the
high energy, small momentum transfer, kinematical
(Regge) regime. The relevant description of such a dy-
namical process necessarily ‘‘protrudes’’ into the nonper-
turbative domain of QCD as represented, in our case, by
the SVM.

Our presentation is organized as follows. In Sec. II, we
discuss general aspects which prepare the ‘‘fusing’’ of the
worldline description of a non-Abelian gauge field theo-
retical system, such as QCD, with the SVM. We start by
focusing our attention on a situation where a matter field
entity of spin j interacts with a set of non-Abelian gauge
field modes as it propagates along a closed contour in
(Euclidean) space-time, hence subjected to a spin-field
interaction. The basic dynamical content of the process
will be displayed by two alternative formulations. The first
focuses on the (closed) Wilson contours traced by the
particle entity. The second is based on a shifted field-
strength tensor that is integrated over an arbitrary surface
bounded by the closed contour. Obviously the (non-
Abelian) Stokes’ theorem plays a central role in relating
the two descriptions, an occurrence of central importance
to our purposes, given that the Stokes’ theorem enters the
SVM scheme in a major way.

We shall subsequently introduce the so-called cluster
expansion [14,15,17], which employs the field-strength
correlators, the basic dynamical quantities of the overall
description. In fact, the cluster expansion is the essence of
the stochastic nature of the model and provides the key
element for quantifying the stochastic vacuum hypothesis.
Once the aforementioned task is accomplished, we shall be
in a position to derive, as a first general result, the equation
that determines the surface over which the two-point cor-
relator must be integrated.

Section II deals also with fairly demanding calculations
within the context of the worldline formalism whose first
result is the derivation of an explicit expression for the spin
factor. The latter represents the genuinely nonperturbative,
spin-field interaction dynamics and necessarily enters [18]
the analysis of the meson-meson scattering process.
Section III is devoted to the verification of the loop equa-
tions and of the Bianchi identity in the framework of the
adopted approach. We consider these results to be of
importance since they solidify the credibility of the SVM
as a construction which reproduces sound, theoretical
properties of QCD, and demonstrate the compatibility
with its nonperturbative content.

In Sec. IV we present a semiclassical calculation of a
simulated meson-meson scattering amplitude. The Wilson
loop that carries the dynamics of the process is a helicoidal
embedded in a four-dimensional background. The calcu-
lation is performed in the framework of the SVM and leads
us to a Regge-type behavior for the amplitude valid in the
physical region of the scattering. Corrections related to the
fluctuations of the aforementioned Wilson contour will be
discussed in Sec. V. In the same section the contribution of
the spin factor is examined. Some concluding comments
will be made in the closing section.

II. WORLDLINE FORMALISM AND FIELD-
STRENGTH CORRELATORS

In this section, certain basic features of the field corre-
lator method [15] will be reviewed in the context of the
worldline casting of a quantum, gauge field theoretical
system interacting with a matter particle mode of a given
spin j. More explicitly, the particle entity is taken to
propagate along a given, closed, contour (worldline) while
interacting with a dynamical set of non-Abelian gauge
fields A. According to our introductory discussion, the
main objective is to introduce the necessary tools to facili-
tate nonperturbative, theoretical explorations of QCD in
the framework of the SVM.
One of the most important advantages of the worldline

formalism is that it allows one to reduce the physical
amplitudes to weighted integrals of averaged Wilson loops
[16]. In this connection, one can apply powerful tech-
niques, such as the cluster expansion, both at the perturba-
tive (in the sense of series resummation) and at the
nonperturbative level. For the latter, the worldline formal-
ism proves to be quite crucial because one can develop
methods based on a background gauge fixing strategy [18–
22], which enables one to treat the nonperturbative fields as
background.
Let us, then, consider a particle entity of spin j prop-

agating from some point and back to the same point while
interacting dynamically with a non-Abelian gauge field
systemA. The basic structure of the quantum mechanical
amplitude associated with such a process is written in the
worldline formalism (all indices suppressed; Euclidean
formalism adopted) as follows [16]:

KðLÞ ¼ Tr
Z
xð0Þ¼xð1Þ

Dxð�Þ exp
�
� 1

4L

Z 1

0
d� _x2

�

�
�
P exp

�
i
Z 1

0
d� _x �Aþ L

Z 1

0
d�J � F

��
A
;

(1)

where it should be noted that the parameter L has dimen-
sions m�2 and must be integrated over through a weight
factor expð�Lm2Þ in order to obtain a result with physical
content. The matrices J�� stand for the Lorentz generators,

pertaining to the spin of the propagating entity.
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Accordingly, the last term represents the spin-field
interaction.

The above expression for KðLÞ can be recast into the
form [16]

KðLÞ ¼ Tr
Z
xð0Þ¼xð1Þ

Dxð�Þ exp
�
� 1

4L

�
Z 1

0
d� _x2

�
P exp

�
i

2
L
Z 1

0
d�J � �

��

�

�
�
P exp

�
i
Z 1

0
d� _x �A

��
A
; (2)

where

�

����ðxð�ÞÞ ¼ lim
�!0

Z �

��
dhh

�2

�x�ð�þ h
2Þ�x�ð�� h

2Þ
(3)

defines a regularized expression for the area derivative [3–
6].

Strictly speaking, expression (2) has a well-defined
meaning only for smooth [23] loops. On the other hand,
when such expressions are used for the purpose of describ-
ing physically interesting processes, the contour is forced
to pass through points xi where momentum is imparted by
an external agent (field). Such a situation is mathematically
realized by inserting a corresponding chain of delta func-
tions �½xð�iÞ � x� in the integral, which produces a loop
with cusps, in which case the action of the area derivative
operator entering (3) must be understood piecewise, i.e.,

P exp

�
iL

2

Z 1

0
d�J � �

��

�
¼ � � �P exp

�
iL

2

Z �2

�1

d�J � �

��

�

� P exp

�
iL

2

Z �1

0
d�J � �

��

�
:

(4)

The first step towards the application of the FCM is
taken by employing the non-Abelian Stokes’ theorem
[24] with the help of which one can write (the symbol Ps

stands for surface ordering [14])

W½C� � 1

NC

Tr

�
P exp

�
i
I
C
dx �A

��
A

¼ 1

NC

Tr

�
Ps exp

�
i
Z
SðCÞ

dS��ðzÞG��ðz; x0Þ
��

A
:

(5)

The above expression is valid for any loop C with disc
topology, irrespectively of the surface SðCÞ. We also men-
tion that for the area element we adopt the standard ex-
pression

dS�� ¼ 1

2
d2�

ffiffiffi
g

p
t��ð�Þ; t��ð�Þ ¼ 1ffiffiffi

g
p �ab@az�@bz�;

a; b ¼ 1; 2; ð�1; �2Þ ¼ ð�; sÞ: (6)

Finally, in relation (5) we have set [14,15]

G��ðx0; zÞ ¼ 	ðx0; zÞF��ðzÞ	ðz; x0Þ (7)

with

	ðz; x0Þ ¼ P exp

�
i
Z z

x0

dw �A
�

(8)

a phase factor [14,15] which is a parallel transporter known
also, in the SVM nomenclature [17], as a connector. The
reference point x0 is chosen arbitrarily on the surface S; the
curve that joins the points x0 and z is also arbitrary.
It can be proved [24] that (5) depends neither on the

surface nor on the contour used to define the connector (8),
as long as the non-Abelian Bianchi identities are satisfied.
In the loop language such a requirement can be cast into the
following statement:
The relation

�

�z
ð�Þ Tr
�
P exp

�
i
Z
SðCÞ

dS��ðzÞG��ðz; x0Þ
��

A
¼ 0

(9)

is valid independently of the surface choice provided that

��
��@xð�Þ


�

����ðxð�ÞÞW½C� ¼ 0; (10)

which corresponds to the Bianchi identity for the gauge
system [6].
The simplest way to prove the non-Abelian Stokes’

theorem is to adopt the contour gauge [15]

A �ðxÞ ¼
Z 1

0
ds@sz�ðs; xÞ @

@x�
z
ðs; xÞF�
ðzðs; xÞÞ; (11)

with fz�ðs; xÞ; s 2 ½0; 1�g an arbitrary, smooth curve from

the reference point x0 to some point x:

z�ð0; xÞ ¼ x0�; z�ð1; xÞ ¼ x�: (12)

Indeed, using Eq. (11) one can immediately see that

I
dx�A�ðxÞ ¼

Z 1

0
d�

Z 1

0
ds@sz�@�z�F��ðzÞ

¼ 1

2

Z 1

0
d�

Z 1

0
ds�ab@az�@bz�F��ðzÞ

¼ 1

2

Z
d2�

ffiffiffi
g

p
t��ðzÞF��ðzÞ: (13)

For the gauge choice (11) the vector potential satisfies the
condition t�ðxÞA�ðxÞ ¼ 0, with t�ðxÞ ¼ @szðs; xÞjs¼1,

which implies that the connector (8) can be considered as
the unit matrix in the contour gauge. In any case, the
presence of the connectors in (7) guarantees gauge
invariance.
The next step towards the application of the FCM is to

introduce the so-called cluster expansion [10–12,14,15,17]
for the Wilson loop, formally written as
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W½C� ¼ 1

Nc

Tr exp

�X1
n¼1

in

n!

Z
SðCÞ

dS�n�n
� � �dS�1�1

� hhG�n�n
ðzn; x0Þ � � �G�1�1

ðz1; x0Þii
�
; (14)

where the symbol hh� � �ii translates as follows:
hhOð1Þii ¼ hOð1Þi;

hhOð1ÞOð2Þii ¼ hPsðOð1ÞOð2ÞÞi � 1
2hðOð1ÞihOð2Þi

� 1
2hðOð2ÞihOð1Þi;

hhOð1ÞOð2ÞOð3Þii ¼ hPsðOð1ÞOð2ÞOð3ÞÞi
� 1

2ðhPsðOð1ÞOð2ÞÞihOð3Þi
þ cycl:perm:Þ þ 1

3ðhOð1ÞihOð2Þi
� hOð3Þiþ cycl:perm:Þ þ � � � ; (15)

and is reminiscent of the cluster expansion in statistical
mechanics. It is pointed out that, due to the color neutrality
of the vacuum, expectation values of all correlators in (14)
are proportional to the unit matrix in color space. This
makes color ordering unnecessary.

Equation. (14) quantifies the formulation of the SVM. It
turns out [14,15] that the most important contribution to
the cluster expansion comes from the two-point correlator:

�ð2Þ
��;
�ðz� z0Þ ¼ 1

Nc

TrhG��ðz; x0ÞG
�ðz0; x0ÞiA

¼ 1

Nc

TrhF��ðzÞ	ðz; z0ÞF
�ðz0Þ	ðz0; zÞiA:
(16)

The above equation defines the field-strength correlator, a
quantity which constitutes the basic building block of the
model.

Some natural assumptions are incorporated in the above
definition. The first has to do with the Lorentz invariance of
the vacuum, which is explicitly indicated in the left-hand
side of (16) by the fact that the correlator depends on the
distance between the points z and z0. The second is that, on
the other hand, the correlator does not depend on (the
gauge parameter) x0. This is a credible assumption, taking
into account the fact that we have been working, from the
very beginning, with a gauge invariant amplitude.
Accordingly, the basic assumption of the SVM leads to
the statement that

W½C� / exp

�
� 1

2

Z
SðCÞ

dS��ðzÞ

�
Z
SðCÞ

dS
�ðz0Þ�ð2Þ
��;
�ðz� z0Þ

�
; (17)

where the surface element enters through the use of the
(non-Abelian) Stokes’ theorem.

Two important points should now be made. First, the last
expression is supposed to be valid in a certain limit.

Explicitly, it is assumed [10–12,14,15] that the vacuum
fluctuations establish a correlation length Tg beyond which

correlations decay very fast. If � is an order of magnitude
estimation for the two-point correlator, relation (17) is
considered as an asymptotic approximation which is valid

in the limit T2
g

ffiffiffiffi
�

p ! 0. The second is that, while expres-

sion (14) does not depend on the particular surface one uses
for the application of the non-Abelian Stokes’ theorem,
approximation (17) does. Thus, the stochasticity assump-
tion transforms relation (9) to an equation which deter-
mines the dominant surface in the cluster expansion. To
quantify this statement we write

A½C� ¼ 1

2

Z
SðCÞ

dS��ðzÞ
Z
SðCÞ

dS
�ðz0Þ�ð2Þ
��;
�ðz� z0Þ;

(18)

from which it is easily determined that

�A

�z�ð~�Þ
¼ � 1

2

ffiffiffiffiffiffiffiffiffi
gð~zÞ

q
t��ð~zÞ

Z
SðCÞ

dS
�ðz0Þ½~@��ð2Þ
��;
�ð~z� z0Þ

þ ~@��
ð2Þ
��
�ð~z� z0Þ þ ~@��

ð2Þ
��;
�ð~z� z0Þ�; (19)

where we have written ~@� � @
@~z�

. The calculation of the

derivative of the correlator (16) needs to take into account
[15] the presence of the connectors 	ðz; x0Þ. In
Appendix A we show that

@

@z�
	ðz; x0Þ ¼ iA�ðzÞ	ðz; x0Þ � iI�ðz; x0Þ; (20)

with

I�ðz; x0Þ ¼
Z 1

0
dtð@t!�Þ@!


@z�
	ðz; !ÞF�
ð!Þ	ð!; x0Þ;

! ¼ !ðt; zÞ; !ð1; zÞ ¼ z; !ð0; zÞ ¼ x0: (21)

Given the above equations, we conclude that

@�G�ðz; x0Þ ¼ 	ðx0; zÞD�F�ðzÞ	ðz; x0Þ
þ i½I�ðz; x0Þ; G�ðz; x0Þ� (22)

and consequently write

@� ~G��ðz; x0Þ ¼ 	ðx0; zÞD�
~F��ðzÞ	ðz; x0Þ

þ i½I�ðz; x0Þ; ~G��ðz; x0Þ�; (23)

where we have set ~G�� ¼ 1
2 �

���G�.

The above analysis establishes the following relation
[15] among the derivatives of the correlator:

1

2
�����@��

ð2Þ
��;
� � @� ~�

ð2Þ
��;
�

¼ 1

Nc

TrhD�
~F��ðzÞF
�ðz0Þ	ðz0; zÞiA

���
�ðz; z0Þ; (24)

where
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��
�ðz; z0Þ ¼ 1

Nc

Trh ~F��ðzÞI�ðz; z0ÞF
�ðz0Þ	ðz; z0Þ

� ~F��ðzÞ	ðz; z0ÞF
�ðz0ÞI�ðz0; zÞiA: (25)

Thus, if one assumes the validity of the Bianchi identities
D�

~F�� ¼ 0, one concludes that

@��
ð2Þ
��;
� þ @��

ð2Þ
��;
� þ @��

ð2Þ
��;
� ¼ �������
�: (26)

Accordingly, Eq. (9) can be represented as follows:

�A

�z�ð~�Þ
¼ 1

2

ffiffiffiffiffiffiffiffiffi
gð~zÞ

q
t��

Z
SðCÞ

dS
�ðzÞ�������
�ð~z� zÞ

¼ 0: (27)

It is worth noting that ��
� is a three-point correlation

function, and it would be identically zero if we were
considering an Abelian gauge theory so that the above
relation becomes, really, an identity, telling us nothing
about the particular surface involved in Stokes’ theorem,
an expected result given that relation (17) is exact in the
framework of QED. An extensive discussion of the physi-
cal content of the correlator ��
� can be found in [14,15].

According to the analysis presented in the aforementioned
references, confinement in QCD occurs due to the nonzero
value of the (non-Abelian) correlator ��
�. Equation (27)

indicates that this correlator also defines the relevant sur-
face on which the two-point correlator ‘‘lives.’’

Now, it has been demonstrated [10–12,14,15] that, in the
asymptotic limit j ~z� z j� Tg, Eq. (27) determines the

surface S bounded by the contour C as the minimal one. To
demonstrate this we employ the following general Lorentz
structure representation [14,15] for the two-point correla-
tion function:

�ð2Þ
��;
�ð�zÞ ¼ ð��
��� ������
ÞDð�zÞ

þ
�
1

2

@

@�z�
½ð�z
��� � �z���
ÞD1ð�zÞ� � ð�$ �Þ

	
;

(28)

where we have set �z ¼ z� z0.
It is easy to see that

1
2 �

����@��
ð2Þ
��;
� ¼ ��
��@�D ¼ ��
�: (29)

With the help of the above relation, Eq. (27) can be cast
into the form

�

�z�ð~�Þ
Z
SðCÞ

dS��ðzÞ
Z
SðCÞ

dS��ðz0ÞDðz� z0Þ ¼ 0: (30)

The functions D and D1 have been measured in lattice
calculations [25] and have been found to decrease very fast
as j z� z0 j2! 1. In the considered region it was found

that both of them are of the form fðjz�z0j2
T2
g

Þ and that they go

exponentially fast to zero for j z� z0 j >Tg. In this region,

we write

zð�0Þ ’ zð�Þ þ ð�0 � �Þa@azð�Þ;
j z� z0 j2 ’ ð�0 � �Það�0 � �Þbgab: (31)

In the considered limit and taking into account that
t��t�� ¼ 2, we find

�

�z�ð~�Þ
½�SþOðT4

g�Þ� ¼ 0; (32)

where the string tension

� � T2
g

2

Z
d2wDðw2Þ (33)

has been introduced and where we have also written

S �
Z

d2w
ffiffiffiffiffiffiffiffiffiffi
gðwÞ

q
(34)

for the area of the surface bounded by the Wilson curve. In
the last equations we used the dimensionless parameter
w� ¼ 1

Tg
ðz� z0Þ�, and we have written gabðwÞ ¼

@aw�@bw� as the induced metric. Accordingly, it follows

that, in the limit Tg ! 0, the surface on which the two-

point correlation dominates is the minimal one.
Now we turn our attention to the spin factor, whose role

is to incorporate the spin-field interaction in the framework
of the worldline formalism. We mention that in the present
work we shall be dealing with massive fermions. It should
be noted, at the same time, that the spin factor can also be
extended [21,22] for the case of massless bosons of spin 1.
Accordingly, the calculations to be presented in this section
can easily be extended to bosonic fields.
We start by inserting into the SVM formula for the

Wilson loop, cf. Eq. (17), the worldline integral expression
(1), the basic goal being that of calculating the spin-field
interaction with the help of the area derivative operator
defined in (3). Once this is accomplished the stage will be
in place for performing specific calculations of physical
interest.
We start by introducing the spin factor by formally

casting Eq. (1) into the form

KðLÞ ¼ Tr
Z
xð0Þ¼xð1Þ

Dxð�Þ exp
�
� 1

4L

Z 1

0
d� _x2

�
��ðjÞ½C�e�A½C�; (35)

where the quantity

�ðjÞ½C� � eA½C�P exp

�
i

2

Z 1

0
d�J � �

��

�
e�A½C� (36)

defines the spin factor characterizing a particle entity
propagating on the Wilson curve A½C�. Its calculation is
not trivial and requires a number of steps, the first of which
is to determine the action of the area derivative operator on
A.
The first objective of the computation of the spin factor

is to study the change in A½C� induced by an infinitesimal
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variation of the boundary. The relevant problem is formu-
lated as follows:

�A

�x�ð�1Þ ¼
Z 1

0
ds½að�1; sÞ _zð�1; sÞ�0

Z
SðCÞ

dS��ðz0Þ�ð2Þ
�;��

þ
Z 1

0
dsað�1; sÞ _zð�1; sÞz0�ð�1; sÞ

Z
SðCÞ

dS��ðz0Þ

� ð@��ð2Þ
�;�� þ @�

ð2Þ
��;��Þ; (37)

where the dot denotes a (partial) derivation with respect to
�, while the prime shows a derivation with respect to s.
Moreover, the correlators depend on the distance j
zð�1; sÞ � zð�0; s0Þ j , and we have written �zð�Þ

�x�ð�1Þ ¼
���ð�� �1Þð�1; sÞ.
Using Eq. (26), Eq. (37) is recast into the form

�A

�x�ð�1Þ ¼
Z 1

0
ds½að�1; sÞ _zð�1; sÞ�0

Z
SðCÞ

dS��ðz0Þ�ð2Þ
�;�� �

Z 1

0
dsað�1; sÞ _zð�1; sÞz0�ð�1; sÞ

�
Z
SðCÞ

dS��ðz0Þð@��ð2Þ
�;�� � ��������Þ

¼ _xð�1Þ
Z
SðCÞ

dS��ðz0Þ�ð2Þ
�;��½xð�1Þ � zð�0; s0Þ� þ

Z 1

0
dsað�1; sÞ _zð�1; sÞz0�ð�1; sÞ

�
Z
SðCÞ

dS��ðz0Þ��������½zð�1; sÞ � zð�0; s0Þ�: (38)

The last term in the above relation is zero on account of
condition (27):

_zð�1;sÞz0�ð�1;sÞ
Z
SðCÞ

dS��ðz0Þ��������½zð�1;sÞ�zð�0;s0Þ�

¼1

2

ffiffiffiffiffiffiffiffiffi
gðzÞ

q
t�ðzÞ

Z
SðCÞ

dS��ðz0Þ��������ðz�z0Þ: (39)

We have consequently determined that

�A

�x�ð�Þ ¼ _xð�Þ
Z
SðCÞ

dS��ðz0Þ�ð2Þ
�;��½xð�Þ � zð�0; s0Þ�:

(40)

In order to find the area derivative [cf. Eq. (3)], we need
to calculate the second functional derivative of A, at the
points xð�1Þ ¼ xð�þ h

2Þ and xð�2Þ ¼ ð�� h
2Þ. From the

definition of the area derivative we also surmise that only
terms ��0ðhÞ are relevant. Accordingly, it is straightfor-
ward to surmise that

�A

����ðxð�ÞÞ ¼
Z
SðCÞ

dS��ðz0Þ�ð2Þ
��;��½xð�Þ � zð�0; s0Þ�:

(41)

It is also easy to determine that

�

���2�2ðxð�2ÞÞ
�

���1�1
ðxð�1ÞÞA

¼ �ð2Þ
�2�2;�1�1

½xð�2Þ � xð�1Þ�; (42)

while all higher derivatives give null contributions.
On the basis of the above analysis we determine

�ðjÞ½C� ¼ 1� iL

2

Z 1

0
d�1

Z
SðCÞ

dS � �ð2Þðz� x1Þ � J þ
�
iL

2

�
2 Z 1

0
d�2

Z �2

0
d�1

�
�J � �ð2Þðx2 � x1Þ � J

þ
Z
SðCÞ

dS � �ð2Þðz� x2Þ � J
Z
SðCÞ

dS ��ð2Þðz� x1Þ � J
�
þ

�
iL

2

�
3 Z 1

0
d�3

Z �3

0
d�2

Z �2

0
d�1

�
J ��ð2Þðx2 � x1Þ � J

�
Z
SðCÞ

dS � �ð2Þðz� x3Þ � J þ J ��ð2Þðx3 � x2Þ � J
Z
SðCÞ

dS ��ð2Þðz� x1Þ � J �
Z
SðCÞ

dS � �ð2Þðz� x3Þ � J

�
Z
SðCÞ

dS � �ð2Þðz� x2Þ � J
Z
SðCÞ

dS ��ð2Þðz� x1Þ � J þ � � �
�
: (43)

In the above expression we have omitted terms in which
the field-strength correlator �ð2Þ depends on distances be-
tween two nonsuccessive points. For example, the last line
of the above equation does not include the correlator
�ð2Þðxð�3Þ � xð�1ÞÞ. The reason is that such a correlator
[14,15,17,25] is assumed to behave as fðjx3�x1j2

T2
g

Þ ’
fð _x2 ð�3��1Þ2

T2
g

Þ, which, in turn, means that its contribution is

suppressed by powers of T2
g

ffiffiffiffi
�

p
. Accordingly, we obtain

the following expression for the spin factor:

�ðjÞ½C� ¼Pexp

�
� iL

2

Z 1

0
d�

Z
SðCÞ

dS ��ð2Þðz� xÞ � J

þL2

4

Z 1

0
d�2

Z �2

0
d�1J ��ð2Þðx2� x1Þ � J

�
: (44)
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We have arrived at a result of considerable interest for
our purposes, which we would like to analyze further. Let
us start from the second term in the exponent, which is of
special interest [26] and represents the interaction of the
quark color-magnetic moment with the non-Abelian back-
ground. In particular, let us refer to the representation (28)
of the two-point correlator, which we rewrite in the form

�ð2Þ
��;
�ð �xÞ ¼ ð��
��� ������
ÞðDþD1Þ

þ ð �x� �x
��� � �x� �x���
 � ð�$ �ÞÞD0
1; (45)

where we have denoted D0
1 ¼ @

@ �x2
D1ð �xÞ.

Using expression (45) we find

J���
ð2Þ
��;
�ð �xÞJ
� ¼ 2J2ðDþD1Þ þ 4ðJ � �xÞ2D0

1: (46)

For the case at hand, we have that J�� ¼ i
4 ½��; ���, so we

can easily determine that

J���
ð2Þ
��;
�ð �xÞJ
� ¼ 6ðDþD1Þ þ 3�x2D0

1: (47)

Expression (47) is positive definite and is associated [27]
with the ghost tachyonic pole which appears in the fermi-
onic, or the gluonic, propagator—an issue we shall not
discuss further in this paper.

Now, with the help of the result (41), the first term in the
exponential (44) can be recast into the formZ 1

0
d�

Z
SðCÞ

dS � �ð2Þðz� xÞ � J ¼
Z 1

0
d�J��

�A½C�
����ðxð�ÞÞ :

(48)

It is convenient, for the applications we have in mind, to
rewrite the above relation, by referring to the variation of
A½C� as it has been computed in Eq. (40):

�A½C�
�x�ð�Þ � g�½xð�Þ�: (49)

The above function is reparametrization invariant; thus
_x�g� ¼ 0.

Taking into account the result displayed in Eq. (40), we
can write

_x �

�A½C�
����ðxð�ÞÞ ¼ g�½xð�Þ�: (50)

An obvious solution to the above equation is

�A½C�
����ðxÞ ¼ 1

_x2
½ _x�g�ðxÞ � _x�g�ðxÞ�: (51)

It can also be shown [28] that the above equation is the only
possible solution. The proof follows, basically, dimen-
sional arguments: Making the changes x ! 
x and � !

�, the area derivative of A½C� scales like 1


2 . The same

scaling behavior goes for the function g, as can be easily
concluded from Eq. (40). Thus, the term appearing in (51)
has the right scaling properties. Any other term must be an

antisymmetric combination K�� which scales as 1

2 and is

perpendicular to the velocity, i.e., _x�K�� ¼ 0. However,

such a combination expressible in terms of the boundary
xð�Þ cannot be found. It thereby follows that the first term
in the exponential which defines the spin factor readsZ 1

0
d�

Z
SðCÞ

dS ��ð2Þðz� xÞ � J

¼
Z 1

0
d�

_x�g� � _x�g�

_x2
J��: (52)

III. LOOP EQUATIONS AND THE BIANCHI
IDENTITY

In this section we shall proceed to assess the capacity of
the SVM to expedite nonperturbative investigations in
QCD by examining whether Eq. (17), as formulated within
the framework of the stochastic approach, satisfies the
Polyakov/Makeenko-Migdal equations formulated in
loop space. The latter constitute the most credible proposal
for achieving a nonperturbative casting of the theory,
equivalently, one which provides a solid basis for conduct-
ing nonperturbative investigations within its framework.1

In addition, we shall explicitly demonstrate the validity of
the Bianchi identity. We claim that these propertiesmust be
satisfied if one is to assert that the expression for the
Wilson loop, as given in Eq. (17), is to constitute a credible
approximation to the full theory.
Now, the loop equation for a contour without self-

intersections can be stated [6] as follows:

@xð�Þ�
�

����ðxð�ÞÞW½C� ¼ lim
�!0

Z �þ�

���
d~�

�

�x�ð~�Þ
�

����ðxð�ÞÞ
�W½C� ¼ 0: (53)

Its verification constitutes the first, as well as the simplest,
test the SVM must pass. To this end, let us insert Eq. (28)
into Eq. (41), whereupon, using the fact that the boundary
is a closed contour, we determine

�

����ðxð�ÞÞA¼
Z
d2�0�ab@az�ð�0Þ@bz�ð�0ÞD½zð�0Þ�xð�Þ�

þ1

2

Z 1

0
d�0½ _x�ð�0Þðx�ð�0Þ�x�ð�ÞÞ

�ð�$�Þ�D1½xð�0Þ�xð�Þ�: (54)

Our next step is to take the functional derivative of the
above equation. Our task becomes relatively easy as we
notice, from Eq. (53), that we only need those terms which
contain the delta function �ð~�� �Þ. Accordingly, we ob-
tain

1One might consider this approach as the continuum space
casting of lattice gauge theories, which defines the ‘‘going’’
standard for such investigations.
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�

�x�ð~�Þ
�A½C�

����ðxð�ÞÞ ¼
Z

d2�0�ab@az�ð�0Þ@bz�ð�0Þ �

�x�ð~�ÞDðzð�0Þ � xð�ÞÞ þ 1

2

Z 1

0
d�0½ _x�ð�0Þðx�ð�0Þ � x�ð�ÞÞ

� ð� $ �Þ� �

�x�ð~�ÞD1ðxð�0Þ � xð�ÞÞ þ 3

2
�ð�� ~�Þ

Z 1

0
d�0 _x�ð�0ÞD1ðx0 � xÞ: (55)

We now write

�

�x�ð~�ÞDðzð�0Þ � xð�ÞÞ ¼ �ð�� ~�Þ@Dðz� xÞ
@x�

¼ ��ð�� ~�Þ @Dðz� xÞ
@z�

(56)

and similarly for the derivative of D1. Thus

@xð�Þ�
�A½C�

����ðxð�ÞÞ ¼ �
Z

d2�0�ab@az�ð�0Þ@bz�ð�0Þ

� @

@z�
Dðz� xÞ � 1

2

Z 1

0
d�0½ _x�ð�0Þ

� ðx�ð�0Þ � x�ð�ÞÞ � ð� $ �Þ�
� @

@x0�
D1ðx0 � xÞ þ 3

2

I
d �x�D1ð �xÞ:

(57)

Since the boundary is a (closed) loop, we conclude that
the first term takes the formZ

d2�0�ab@az�ð�0Þ@bz�ð�0Þ @

@z�
Dðz� xÞ

¼
Z

d2�0�ab@aDðz� xÞ@bz�ð�0Þ

¼ �
Z 1

0
d�0 _x�ð�0ÞDðx0 � xÞ ¼ �

I
C
d �x�Dð �xÞ: (58)

With the same reasoning we have for the second termZ 1

0
d�0½ _x�ð�0Þðx�ð�0Þ � x�ð�ÞÞ � ð� $ �Þ� @

@x0�
D1ðx0 � xÞ

¼ �
Z 1

0
d�0 _x�ð�0Þðx�ð�0Þ � ðx�ð�ÞÞ @

@x0�
D1ðx0 � xÞ

¼ �2
I
C
d �x� j �x j2 @

@ j �x j2 D1ð �xÞ: (59)

Accordingly,

@xð�Þ�
�A½C�

����ðxð�ÞÞ ¼ �
I
C
d �x�

�
Dð �xÞ þ 3

2
D1ð �xÞ

þ j �x j2 @

@ j �x j2 D1ð �xÞ
�
: (60)

Given that the functions D and D1 depend only on the
distance j �x j , the right-hand side (rhs) of the above equa-
tion vanishes and the loop equation is satisfied. In fact,
what is known is that the minimal area satisfies the
Makeenko-Migdal equation asymptotically. The above re-

sult, on the other hand, can be considered as new in the
sense that it is an exact result in the framework of the
stochastic vacuum hypothesis.
Our next concern is to confirm the BI in the framework

of the SVM. The reason we are interested in such a con-
firmation is based on the fact that the zigzag, or back-
tracking, symmetry characterizes the Wilson loop
functional: It is invariant under reparametrizations of the
form xð�Þ ! xðð�ÞÞ, even if 0 < 0. It can be shown [24]
that a Stokes-type functional, of which the Wilson loop is a
prime example, which respects the aforementioned sym-
metry also satisfies Eq. (10), and can be written in the form

��
��@xð�Þ


�

����ðxð�ÞÞW½C�

¼ 1

Nc

��
��

�
5
F�� exp

�
i
I
C
dx �A

��
A

¼ 0: (61)

The above relation forms the bridge between the zigzag
symmetry and the BI in the framework of a gauge field
theory.
As it is now obvious, the area S ¼ R

d2w
ffiffiffi
g

p
does not

respect the zigzag symmetry, and in this sense e��S is not a
good representative forW½C�. On the other hand, the action
A½C� in the stochastic approximation is invariant under
zigzag parametrizations, but due to the truncation e�A it
is not obvious that it is a Stokes-type functional. We are
thereby obliged to confirm that the BI is explicitly satisfied
and that, consequently, the stochastic approximation pro-
duces Stokes-type functionals. To this end we first observe,
using Eq. (41), that

��
��@xð�Þ


�

����ðxð�ÞÞ e
�A½C�

¼
�
��
��

Z
SðCÞ

dS�ðzÞ@
�ð2Þ
��;�ðz� xÞ

�
e�A½C�: (62)

Using Eq. (29) we find that

��
��
Z
SðCÞ

dS�ðzÞ@
�ð2Þ
��;�ðz� xÞ ¼ 2X�; (63)

where we have set

X� ¼
Z
SðCÞ

dS����ðz� xÞ: (64)

Now, we have established that the surface over which we
integrate the correlators is determined by Eq. (27).

Multiplying that equation by ���
0�0�0 we determine

t��X� þ t��X� þ t��X� ¼ 0: (65)
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The above equations form a homogeneous system whose
only solution is X� ¼ 0, a result which, together with Eqs.
(61) and (62), confirms the validity of the BI within the
framework of the SVM.

IV. MESON-MESON SCATTERING

In addition to confinement, which constitutes a pro-
foundly nonperturbative problem, there do exist specific
dynamical processes, whose theoretical confrontation also
calls for nonperturbative methods of analysis. One such
situation arises in connection with the theoretical descrip-
tion of high energy scattering amplitudes for which the soft
sector of the theory is involved. From the experimental
point of view, one such case arises in connection with
Regge kinematics, directly entering the theoretical descrip-
tion of, among others, diffractive and low-x physics pro-
cesses. In this section we shall study a simulated case of a
meson-meson scattering process whose quark-based de-
scription is of the general form

ð1�1Þ þ ð2�2Þ ! ð3�3Þ þ ð4�4Þ:
We adopt a standard picture, which has already been
employed in the QCD literature (see, for example, [29–
31]), according to which quark 1 from the first meson and
antiquark �2 from the second meson are very heavy, in
comparison to the incoming total energy, and hence their
worldlines from the gluon field action are considered to
remain intact and can be described in the framework of the
eikonal approximation. The light pairs �1; 2 and �3; 4, on the
other hand, are annihilated and produced in the t channel,
where the eikonal approximation is not valid and a full
treatment is needed for their description. In the worldline
framework the process is schematically pictured in space-
time by the straight eikonal lines ð1 ! 3Þ and ð�2 ! �4Þ,
describing an intact quark and antiquark, and by the curves
ð�1 ! 2Þ and ð�3 ! 4Þwhich correspond, respectively, to the
annihilated and produced quark-antiquark pairs. The struc-
ture of the field theoretical amplitude can be written as
follows (see Fig. 1):

Gðx4; x3; x2; x1Þ ¼ hiSFðx4; x3 j AÞiSFðx3; x1
j AÞiSFðx1; x2 j AÞiSFðx2; x4 j AÞiA:

(66)

In the above expression iSF is the full fermionic propagator
which, in the framework of the worldline formalism, as-
sumes the form [16]

iSFðy; x j AÞ ¼
Z 1

0
dLe�Lm2

Z
xð0Þ¼x
xðLÞ¼y

Dxð�Þe�ð1=4Þ
R

L

0
d� _x2

�
�
m� � � _xðLÞ

2

�
�ð1=2ÞðL; 0ÞP

� exp

�
i
Z L

0
d� _x �A

�
; (67)

where �ðjÞ is the so-called spin factor for the matter
particles entering the system. For us, it means that j ¼ 1

2 .

Inserting the above formula into Eq. (66) we find

Gðx4; x3; x2; x1Þ ¼
Y4
i¼1

Z 1

0
d�i�ð�i � �i�1Þe�ð�i��i�1Þm2

i

�
Z

xð0Þ¼x4
xð�4Þ¼x4

Z
Dxð�Þ�½xð�3Þ � x3�

��½xð�2Þ � x1��½xð�1Þ � x2�
� exp

�
�1

4

Z �4

0
d� _x2ð�Þ

�
ðspin structureÞ

�
�
Pexp

�
i
I
C
dx �A

��
A
; (68)

where the term spin structure corresponds to the following
expression:

ðspin structureÞ ¼ Y1
i¼4

�
mi � 1

2
� � _xð�iÞ

�
�ð1=2Þð�i; �i�1Þ

ð�0 � 0Þ: (69)

In principle, the Wilson loop appearing in Eq. (68)
incorporates the dynamics (perturbative, as well as non-
perturbative) of the process. In the framework of the SVM
it assumes the form�
Pexp

�
i
I
C
dx �A

��
A

¼ exp

�
�1

2

Z
SðCÞ

dS��ðzÞ
Z
SðCÞ

dS
�ðz0Þ�ð2Þ
��;
�ðz� z0Þ

�
� e�A½C�: (70)

In the present Section we are going to calculate the
amplitude (68) using the above expression, which gives

FIG. 1. The helicoidal geometry of the Wilson loop in
Euclidean space.
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the structure of the Wilson loop in the framework of the
SVM. The particular method to be adopted is a kind of a
‘‘semiclassical’’ approximation based on a combined mini-
mization of the action A½C�—see Eq. (39)—with respect to
the surface S½C�, and of the surface S½C�with respect to the
boundary C. The reasoning behind this procedure is that,
according to Eq. (68), in order to obtain the full amplitude
it does not suffice to determine the minimal surface
bounded by a given specific contour; one needs to proceed
even further and sum over all possible boundaries with a
weight of the form

S½x� ¼ 1

4

Z �4

0
d� _x2 þ A½C�: (71)

The above-described approximation will allow us to
determine the dominant contribution to the worldline in-

tegral (68) in the stochastic limit T2
g

ffiffiffiffi
�

p � 1.

The variation g�½xð�Þ� of A½C� under changes of the

boundary is given by Eq. (39). Accordingly, the correlator
contributions become stationary for the ‘‘classical’’ trajec-
tory

g�½xcl� ¼ 0: (72)

Using the expansion for the correlator according to Eq.
(28), it is easy to see that

g�½xð�Þ� ¼ 2 _xð�ÞR�½xð�Þ� � 1
2
_xð�ÞQ�½xð�Þ�; (73)

with

R�½xð�Þ� ¼
Z
SðCÞ

dS�ðz0ÞD½xð�Þ � zðs0; �0Þ� (74)

and

Q�½xð�Þ� ¼
Z

d�0½ _x�ð�0Þðxð�0Þ � xð�ÞÞ
� ð� $ Þ�D1½xð�Þ � xð�0Þ�: (75)

It is worth noting that the above expressions are repar-
ametrization invariant. Also, in the last relation the inte-
gration covers the whole range of the � variable. Following
Refs. [30,31] the minimal surface bounded by two infinite
rods at a relative angle � has (in four-dimensional
Euclidean space) the shape of a (three-dimensional) heli-
coid, which is the only surface that can be spanned by
straight lines [32]. In the process considered the eikonal
lines 1 ! 3, �2 ! �4 play the role of the ‘‘rods,’’ while the
angle � is connected, via analytic continuation [33], to the
logarithm of their total energy s.

Given the above specifications, consider the following,
helpful parametrization of the boundary C: For 0< �< �1
we have a straight line segment, xð1Þ, going from the point
x4 to the point x2. Moreover, introducing the length 2T ¼
j x4 � x2 j for convenience and reparametrizing according
to � ! 2T

�1
�� T, we write

xð1Þ� ¼ ð�; 0; 0; 0Þ; �T < � < T; (76)

with xð1Þ� ð�TÞ ¼ x4, x
ð1Þ
� ðTÞ ¼ x2.

The second eikonal line xð3Þð�Þ, �2 < �< �3, goes from
the point x1 to the point x3 at a relative angle �with respect

to xð1Þ, while a distance b (impact parameter) separates the
two linear contours in the transverse direction. Introducing
the distance 2T1 ¼j x3 � x1 j and reparametrizing accord-
ing to

� ! T1

�
2

�3 � �2
�� �3 þ �2

�3 � �2

�
; (77)

we write

xð3Þ� ð�Þ ¼ ð�� cos�;�� sin�; b; 0Þ; �T1 < �< T1;

with xð3Þ� ð�T1Þ ¼ x1, x
ð3Þ
� ðT1Þ ¼ x3.

In the following we shall assume, just for convenience,
that

2T ¼j x4 � x2 j � j x3 � x1 j¼ 2T1:

For �1 < �< �2, we have a helical curve xð2Þ� ð�Þ, which
joins the points x2 ¼ xð2Þ� ð�1Þ and x1 ¼ xð2Þ� ð�2Þ, represent-
ing the exchanged light quarks. Now, performing the
change � ¼ b

�2��1
ð�� �1Þ, we write

xð2Þ� ð�Þ ¼
�
	ð�Þ cos��

b
;	ð�Þ sin��

b
;�; 0

�
;

0<�< b (78)

The continuity of the boundary requires

xð1Þ� ðTÞ ¼ xð2Þ� ð0Þ ¼ x2 and xð2Þ� ðbÞ ¼ xð3Þ� ð�TÞ ¼ x1;

or

	ð0Þ ¼ 	ðbÞ ¼ T: (79)

The final helical curve is xð4Þð�Þ, which, for �3 < �< �4,

joins the points x3 ¼ xð4Þð�3Þ and x4 ¼ xð4Þð�4Þ. Making
one more, final reparametrization, namely, � ¼ b

�4��3
ð��

�3Þ, we write

xð4Þ� ð�Þ ¼
�
�	ð�Þ cos��

b
;�	ð�Þ sin��

b
;�; 0

�
;

0<�< b: (80)

Once again, Eq. (79) takes care of the continuity of the
boundary. Now, the minimal surface is bounded by the
(four) curves specified by Eqs. (76)–(80) and can be
spanned by straight lines parametrized as follows:

z�ð�Þ ¼ T � �

2T
xð4Þ� ð�Þ þ T þ �

2T
xð2Þ� ð�Þ

¼
�
�

T
	ð�Þ cos��

b
;
�

T
	ð�Þ sin��

b
;�; 0

�
: (81)
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It can be easily proved that the surface defined by the above
equation is minimal, irrespectively of the function 	:

@�

�ð _z � z0Þz0� � z02 _z�ffiffiffi
g

p
�
þ @�

�ð _z � z0Þ _z� � _z2z0�ffiffiffi
g

p
�
¼ 0:

(82)

One observes that the minimization of the surface is not
enough for the complete specification of the parametriza-
tion of the helicoid. Accordingly, we go back to Eq. (72),
which determines the boundary that dominates the path
integration (68). A first observation is that, due to the
antisymmetric nature of R� and Q�, the function g�
vanishes when x�ð�Þ represents a straight line. Thus Eq.

(72) is trivially satisfied for the eikonal sector of the
boundary. Nontrivial contributions are coming only from

the helices xð2Þ� and xð4Þ� . One can simplify Eq. (73) by
computing the leading behavior of the functions R� and

Q� using the fact that the functions D and D1, as defined

in the SVM scheme—and measured in lattice calculations
[25]—decay exponentially fast for distances which are
large in comparison with the correlation length Tg. In

this connection and upon writing

xð�0Þ ¼ xð�Þ þ ð�0 � �Þ _xð�Þ þ 1
2ð�0 � �Þ2 €xð�Þ þ � � � ;

we find, for the second term in Eq. (73),

_xQ� ¼ 1

2
½ð _x2Þ €x� � ð _x � €xÞ _x��

Z b

0
d�0ð�0 � �Þ2D1

�
�
_x2
ð�0 � �Þ2

T2
g

�
þ � � �

¼ 1

j _x j
�
€x� _x � €x

_x2

�
1

Tg1

þ � � � ; (83)

where2

1

1

� T4
g

Z 1

0
dww2D1ðw2Þ:

In the last expression we have used, as in Eqs. (33) and
(34), the dimensionless parameter w ¼j z j =Tg. It must be

noted that the coefficient 1=1 is a small number. Taking
into account that Tg is of the order of 0.1 fm and the string

tension [see Eq. (33)] � ’ 0:18 GeV2, it is readily seen
that 1=1 ¼ Oð�T2

gÞ.
Noting that

z�ð�; � ¼ TÞ ¼ xð2Þ� ð�Þ; z�ð�; � ¼ �TÞ ¼ xð4Þ� ð�Þ;
@�z�ð�; �Þ ¼ _z�ð�; �Þ ¼ 1

2T
½xð2Þ� ð�Þ � xð4Þ� ð�Þ�; (84)

the leading behavior of the first term of the rhs of (73) can
be easily determined. One finds

_xR� ¼ 1

2
_x2
�
_z� � ð _x � _zÞ

_x2
_x�

�Z T

�T
d�0

�
Z b

0
d�0D

�
_x2
ð�0 � �Þ2

T2
g

�
þ � � �

¼ 2T j _x j
�
_z� � ð _x � _zÞ

_x2
_x�

�
�2

Tg

þ � � � ; (85)

where we have introduced the parameter

�2 � T2
g

Z 1

0
dwDðw2Þ �Oð�Þ: (86)

Thus, the function g takes, to leading order, the form

g� ¼ 1

j _x j Tg

�
4T�2 _x2

�
_z� � _x � _z

_x2
_x�

�

� 1

21

�
€x� � _x � €x

_x2
_x�

��
: (87)

Now, we recall from its definition that the g function
provides a measure of the change of A½C� when the Wilson
contour is altered as a result of some interaction which
reshapes its geometrical profile. In this sense, it contains
important information concerning the dynamics of the
problem under study. The structure of the g function, as
it appears in the above equation, is quite general and
exhibits its dependence not only on the boundary, but on
the minimal surface as well. It is worth noting that this fact
is strictly associated with the non-Abelian nature of the
theory since the function D—and consequently �2—dis-
appears [14,15] in an Abelian gauge theory.
Taking into account that for the helicoid parametrization

the velocity _x has three nonzero components, while €x and _z
have only two, we conclude that Eq. (72) can be satisfied
only if

4T�2 _x2 _z� � 1

21

€x� ¼ 0: (88)

Inserting the helical parametrization into Eq. (88), one
easily finds that the function 	 must be a constant. Now,
taking into account Eq. (79), we determine this constant to
be the length T. It is then very easy to see that this result
leads to the conclusions

_x � _z ¼ 0; _x � €x ¼ 0 (89)

and

_x 2 ¼ � 1

8�21

�2

b2
¼ 1þ T2�2

b2
: (90)

This equation cannot be satisfied in Euclidean space. In
Minkowski space the angle � becomes imaginary, � !
�i� ’ �i lnð s

m2Þ [s is the total energy of the ‘‘heavy’’

quarks that form the rods and mð’ m1 ’ m3Þ their mass],
and Eq. (90) has a positive definite solution:2We have omitted terms suppressed by powers of T2

g.
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T2�2

b2
¼ 1� 1

8�21

�2

b2
: (91)

In the last equation we have analytically continued only
the angle between the rods and not the parameter T.
Our reasoning is based on the one presented in [31]:
Eqs. (79) and (90) define a contour of the steepest descent
for the path integration. For such a contour the parameter T
is determined to be imaginary (the formulation is still
Euclidean and � is real). After performing the T integration
the only parameter remaining for analytic continuation is
the angle between the rods. Equation (91) indicates that,
equivalently, one can first analytically continue the angle
variable to imaginary values, leaving the T parameter real.
In any case it is obvious that the impact parameter must
grow with the incoming energy—Tgb� lns—a conclusion

which is in agreement with the landmark result of Cheng
and Wu [34].

The preceding analysis obviously repeats itself for the

two helical curves xð2Þ and xð4Þ and has led us to a specific
parametrization for theWilson loop, which plays the domi-
nant role in the path integration in Eq. (68). We are now in
a position to determine the leading contribution to the
action (71):

Scl ¼ 1

4

Z �4

0
d� _x2clð�Þ þ A½C�cl: (92)

Our first step is to expand the second term of the

integrand in powers of T2
g

ffiffiffiffi
�

p
. The first term of such an

expansion is the familiar Nambu-Goto string. The next
term, which reveals the rich structure of the SVM, is the
so-called ‘‘rigidity term,’’ representing the extrinsic curva-
ture of a surface embedded in a four-dimensional [35]
background:

A½C� ¼ �
Z

d2�
ffiffiffi
g

p þ 1

0

Z
d2�

ffiffiffi
g

p
gab@at��@bt��

þ � � � ; (93)

where � is the string tension as defined in Eq. (32).
The coefficient of the rigidity term reads

1

0

� 1

32
T4
g

Z
d2ww2ð2D1ðw2Þ �Dðw2ÞÞ �Oð�T2

gÞ:
(94)

Terms proportional to T6
g entering the expansion in

Eq. (93) will be considered negligible in our analysis. We
have also omitted the term

R
d2�

ffiffiffi
g

p
R, since in two dimen-

sions the curvature is a total derivative. Using the helicoid
parametrization (81), with 	 ¼ T, the Nambu-Goto term
in Eq. (93) takes the form

Z
d2�

ffiffiffi
g

p ¼
Z T

�T
d�

Z b

0
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�2

b2

s

¼ bT

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

q
þ 1

p
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

q
þ p

��
;

(95)

where p ¼ T�
b .

To proceed further we analytically continue to
Minkowski space where we can use Eq. (91) to determine

bT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

q
! bT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T2�2

b2

s

’ b

�
1� 1

81�
2

�2

b2

�
1=2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81�
2

p
’ bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81�
2

p þOðT3
gÞ (96)

and

bT

p
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

q
þ p

�
! bT

�iT�=b
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T2�2

b2

s
� i

T�

b

�

’ �b2

2�
� bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81�
2

p þOðT3
gÞ: (97)

Thus

�
Z

d2�
ffiffiffi
g

p ! ��b2

2�
: (98)

In the same framework, the contribution of the rigidity
term takes the formZ

d2�
ffiffiffi
g

p
gab@at��@bt��

¼
Z T

�T
d�

Z b

0
ds

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�2

b2

q �
�2

b2
þ 1

2

�4

b4
�2
�

¼ �

�
3

2
lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

q
þ pÞ þ 1

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

q �
: (99)

It follows that in Minkowski space we have

1

0

Z
d2�

ffiffiffi
g

p
gab@at��@bt�� ! � 3�

40

�: (100)

For the full estimation of the classical action [cf. Eq. (92)],
one should also take into account the presence of the
classical kinetic term. Nontrivial contributions come

from the helical curves xð2Þð�1 ! 2Þ and xð4Þð�3 ! 4Þ:
b

4ð�2 � �1Þ
Z b

0
dsð _xð2ÞÞ2 þ b

4ð�4 � �3Þ
Z b

0
dsð _xð4ÞÞ2

¼ b2 _x2

4ð�2 � �1Þ þ
b2 _x2

4ð�4 � �3Þ : (101)
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Now we have to take into account that both �2 � �1 and

�4 � �3 must be integrated with weights e�ð�2��1Þm2
0 and

e�ð�4��3Þm2
0 , respectively. These integrals, as it turns out, are

dominated by the values �2 � �1 ¼ �4 � �3 ¼ bj _xj
2m0

, lead-

ing to a final kinetic contribution of the form

2m0b j _x j¼ 2
m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81�

2
p �: (102)

Here, m0ð’ m2 ’ m4Þ is the (current) mass of the light
quarks; thus the result expressed by (102) can be consid-
ered negligible.

From the above analysis we conclude that

Scl 	 ��b2

2�
� 3�

40

�: (103)

Putting aside, for now, the possible corrections to A½C�
which arise from fluctuations of the boundary as well as the
spin-factor contribution, let us consider the result (103) as a
whole, except for terms �mass. To obtain the final ex-
pression for the scattering amplitude one must integrate
over the impact parameter:Z

d2b exp

�
i ~q � ~b� ��

2�
b2
�
/ exp

�
� 1

2��
q2�

�
: (104)

Combining (103) and (104) we find, for the scattering

amplitude, a Regge behavior of the form s
0
Rð0ÞtþRð0Þ with

0
Rð0Þ ¼

1

2��
and Rð0Þ ¼ 3�

40

: (105)

The form of the slope a0Rð0Þ, indicated in the last equa-
tion, is the same as the one obtained in Ref. [32]. In that
work the authors have applied, in the framework of the
SVM, a different method based on the path-integral-
Hamiltonian duality, and consequently, their result is con-
fined in the region t > 0. In this sense our result extends the
same value a0Rð0Þ ¼ 1=2�� ’ 0:9 GeV�2 for all the val-
ues of square momentum transfer.

It is well known [26,32] that the intercept aRð0Þ receives
a significant contribution from nonperturbative corrections
to quark self-energy. We shall comment on this interesting
issue in the next section. The result indicated in Eq. (105)
does not take into account the aforementioned corrections;
thus it is very sensitive to different lattice data or parame-
trizations. For example, using Ref. [25], the coefficient
1=a0 of the rigidity term is negative and one needs [32]
the large (and negative) quark self-energy corrections to
restore the phenomenological value of the intercept. On the
other hand, adopting a certain [17,36] parametrization for
the functions D and D1 (see Appendix B) one obtains for
the string tension the value � ¼ 0:175 GeV2 and for the
coefficient of the rigidity term the value 1=a0 ¼ 0:276.
With these numbers we obtain for the Reggeon slope the
value a0Rð0Þ ¼ 0:91 GeV�2 and for the Reggeon intercept
the value aRð0Þ ¼ 0:65 in good agreement with the phe-

nomenological values 0
Rð0Þ ¼ 0:93 GeV�2 and Rð0Þ ¼

0:55 [37].

V. BOUNDARY FLUCTUATIONS AND THE ROLE
OF THE SPIN FACTOR

As repeatedly mentioned in our narration, corrections to
the amplitude (68), beyond semiclassical ones, are ex-
pected to arise from fluctuations of the boundary of the
surface on which the two-point correlator lives.
Fluctuations of the surface itself can be taken into account
by higher order correlators. This, in fact, is the big differ-
ence which distinguishes the SVM approach from Nambu-
Goto-type approaches.
We begin our related considerations by expanding the

action (71) around the helicoid classical solution:

S ¼ Scl � 1

2

Z �4

0
d�yð�Þ €xclð�Þ þ 1

2

Z �4

0
d�

Z �4

0
d~�y�Þ

�
�
� 1

2
��

@2

@�2
�ð�� ~�Þ þ �2A½C�

�xclð�Þ�x�ð~�Þ
�
y�ð~�Þ

þ � � � ; (106)

where y ¼ x� xcl.
Using the results of Secs. II and III one can easily

determine that

�2A½C�
�xð�Þ�x�ð~�Þ ¼ _x�ð�Þ _x�ð~�Þ�ð2Þ

�;��½xð�Þ � xð~�Þ�

� @

@�
�ð�� ~�Þ

Z
SðCÞ

dS
�ðz0Þ�ð2Þ
�;
�

� ½zð�0 � xð�Þ� þ _xð�Þ
Z

dsð~�; sÞ
� _z
ð~�; sÞz0�ð~�; sÞ���
����

� ½zð~�; sÞ � xð�Þ�; (107)

where we have written

�z�ð�; sÞ
�x�

¼ ����ð�� ~�Það~�; sÞ:

The second term on the rhs of Eq. (107) is simply the area
derivative which, as we have seen in Sec. III, has the

general form �A½C�
���

� g _x� � g� _x. Thus, for the classical

solution g½xcl� it gives zero contribution. It is, furthermore,
easy to verify that the third term in (107) also disappears
for x ¼ xcl. We, therefore, conclude that

�2A½C�
�xclð�Þ�xcl�ð~�Þ

¼ _xcl�ð�Þ _xcl� ð~�Þ�ð2Þ
���½xclð�Þ � xð~�Þ�:

(108)

Inserting Eq. (107) into Eq. (108) and taking into ac-
count that the dominant contribution to the two-point
correlator comes from the region � 	 ~�, we find
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S 	 Scl þ
Z b

0
d�yð�Þ

�
� 1

2

m0

j _x j��

@2

@�2

þ 
2

Tg

!�ð�Þ
�
y�ð�Þ: (109)

Let it be remarked that to arrive at the above relation we
have adopted the expansion of the two-point correlator
indicated in Eq. (28). We have also used the helicoid
parametrization, observing, at the same time, that the
eikonal lines give null contribution. One further realizes
that the contributions of the two helical curves to the linear

term in (106) cancel each other, since €xð2Þ� ðsÞ ¼ � €xð4Þ� ðsÞ
and �2 � �1 ’ �4 � �3 � bj _xj

2m0
.

The nontrivial contribution of the helical curves is in-
corporated in the term

!� ¼ �� � 1

2 _x2
ð _xð2Þ _xð2Þ� þ _xð4Þ _xð4Þ� Þ; (110)

the origin of which is the second functional derivative; cf.
(106). The mass parameter 
2 in (109) has the same source
and is defined as


2 �j _x j T2
g

Z 1

0
dw

�
Dðw2Þ þD1ðw2Þ þ d

dw2
D1ðw2Þ

�
:

(111)

The differential operator entering Eq. (109) has no zero
eigenvalues since the classical solution is, in fact, the one
that annihilates the g function. Accordingly, the calculation
of the path integral over y ¼ x� xcl does not require any
particular regularization. A straightforward calculation
shows that

det!� ¼ 1

_x2

�
1� 1

_x2

�
¼ T2�2=b2

1þ �2=b2
: (112)

Thus the matrix!� can be diagonalized and the y integral

can be easily performed. However, in the limit m0 ! 0 it
can be immediately seen that the integration over the
boundary fluctuations gives prefactors which are powers
of the logarithm of the incoming energy, and as far as the
Regge behavior is concerned, they cannot change the
behavior that was determined in the previous section.

The next task is to take up the issue of the spin-field
dynamics contribution to the scattering amplitude. As seen
in Sec. III a spin factor is associated with each segment of
the worldline path. This factor receives contributions from
two sources. The first one is

Z
d�

Z
SðCÞ

dS ��ð2Þðz� xÞ � J

¼
Z

d�
_x�g� � _x�g�

_x2
i

4
½��; ��� (113)

and is obviously zero for the classical trajectory (72).

The other term has the form

P ¼ 1

8

Z
d�

Z
d�0J���

ð2Þ
��;
�ðx� x0ÞJ
�

¼ 3

4

Z
d�

Z
d�0ðDþD1Þ þ 3

8

Z
d�

Z
d�0ðx� x0Þ2D0

1:

(114)

In the stochastic limit, within which we are working, the
integrals in the above equation give an appreciable contri-
bution only for j xð�Þ � xð�0Þ j	j _x jj �� �0 j� Tg. More

concretely, consider the contribution to (114) from the
helical curve ð�1 ! 2Þ. A straightforward calculation shows
that the analytically continued result is

P ¼ �ðt2 � t1Þ2 M
4

�
; (115)

where we have written � ¼ it for the time variable and
denoted

M4 ¼
�
8

R1
0 dwDðw2ÞR1

0 dww2D1ðw2Þ
�
1=2 Z 1

0
dw

�
Dðw2Þ þD1ðw2Þ

þ 1

2

d

dw2
D1ðw2Þ

�
: (116)

As has been mentioned in Sec. III and discussed in [27],
contribution (115) has an interesting role as far as the form
of the fermionic propagator is concerned. As it has been
shown in [26,32] this nonperturbative ‘‘paramagnetic’’
contribution corrects the self-energy of a bound light quark
and, consequently, the Regge intercept without changing
the slope. We shall not discuss this interesting issue here,
leaving it for a forthcoming study. In this paper we bypass
the problem using the parametrization [17,36].
The remaining spin structure is summarized in the chain

I ¼ Y1
i¼4

mi

�
1� 1

2mi

� � _xðiÞð�iÞ
�
; (117)

which must be sandwiched between the external spinor
wave functions representing the incoming and outgoing
quarks (in the simple picture wherein the meson wave
function is just the product of free spinors). The nontrivial
dynamics of the process is now incorporated into the fact

that the vectors xðiÞ� , i ¼ 1, 2, 3, 4, forming the boundary of

the helicoids, are three-dimensional vectors with j _xðiÞ j2¼
const. For i ¼ 1, 3, the factor in (117) becomes the opera-

tor 1� ��pðiÞ

jpðiÞj .
For i ¼ 2, 4, the matrices

I2 ¼ 1� 1

2m

b

�2 � �1
� � _xð2ÞðbÞ ! 1� � � _xð2ÞðbÞ

j _xð2Þ j (118)

and
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I4 ¼ 1� 1

2m

b

�4 � �3
� � _xð4ÞðbÞ ! 1� � � _xð4ÞðbÞ

j _xð4Þ j (119)

are also representations of projection operators. As shown
in [31] the matrices (118) and (119) are the direct product
of two 2� 2 matrices, each of which are, by themselves,
projection operators. Given these observations it becomes
a matter of simple algebra to find that the standard kine-
matics is reproduced.

VI. CONCLUDING REMARKS

The central objective of this paper was to assess the
merits of the stochastic vacuum model of Dosch and
Simonov as a credible representative of QCD. From a
methodological standpoint we employed the path-integral
approach for the casting of the theory, a practice that has
been proved an ideal tool for the exploration of its non-
perturbative aspects on which the present study is focused.
In the first part of the paper—and at a purely theoretical
level—we verified both the loop equations and the Bianchi
identity through the SVM, an occurrence which further
solidifies the credibility of the model. We have also derived
an explicit expression for the spin factor that represents the
nonperturbative spin-field dynamics and necessarily enters
the analysis of physical processes. In the second part of the
paper we assessed the effectiveness of the SVM, always in
its path-integral casting, to confront a dynamical problem
where a nonperturbative treatment is essentially important.
More explicitly, we appropriately modeled a meson-meson
scattering process in the Regge kinematical regime. In a
semiclassical approximation and always working in the
framework of the stochastic vacuum model, we found a
Regge-type behavior for the scattering amplitude with
linear Regge trajectories. The specific methodology we
followed is entirely based on the capability of the SVM
to represent the nonperturbative content of QCD, and,
perhaps, it traces a way for analytically calculating
Regge trajectories in the physical region of scattering,
i.e., square momentum transfer t < 0.
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APPENDIX A

We give here the proof of relation (20), which appears in
the text and whose role is significant for the derivation of
the equation that determines the surface on which the two-
point connector lives. We begin by writing the expression
for the connector in Eq. (8):

	ðz; x0Þ ¼ P exp

�
i
Z z

x0

dw �A
�

¼ P exp

�
i
Z 1

0
d� _wð�Þ �Aðwð�ÞÞ

�
; (A1)

where w�ð0Þ ¼ x0�, w�ð1Þ ¼ z�. Taking the functional

derivative of (A1) we find

�	

�w�ð�0Þ ¼ i
Z 1

0
d�P exp

�
i
Z 1

�
d� _w �AðwÞ

�
½@��ð�� �0Þ

þ �ð�� �0Þ _w�@�A�ðwÞ�P
� exp

�
i
Z �

0
d� _w �AðwÞ

�
(A2)

or

�	

�w�ð�0Þ ¼ i�ð1� �0ÞA�ðzÞP exp

�
i
Z z

x0

dw �AðwÞ
�

� i�ð�0ÞP exp

�
i
Z z

x0

dw �AðwÞ
�
A�ðx0Þ

þ ig _w�ð�0ÞP exp

�
i
Z z

w0
dw �AðwÞ

�

� F��ðwð�0ÞÞP exp

�
i
Z z

x0

dw �AðwÞ
�
: (A3)

Accordingly, it follows that the variation of the connector
reads

�	 ¼ A�ðzÞ�z�	ðz; x0Þ � i	ðz; x0ÞA�ðx0Þ�x0�
þ

Z 1

0
d� _w�ð�Þ	ðz; wð�ÞÞF��ðwð�ÞÞ	ðwð�Þ; x0Þ

� �w�ð�Þ: (A4)

Keeping everything but the end point constant, one imme-
diately deduces that

@	

@z�
¼ A�ðzÞ	ðz; x0Þ �

Z 1

0
d� _w�ð�Þ	ðz; wð�ÞÞ

� F�
ðwð�ÞÞ	ðwð�Þ; x0Þ @w


@z�
: (A5)

APPENDIX B

In this appendix we present a parametrization of the
functions D and D1 used extensively in the present paper.
This parametrization is supported by lattice data and is
extensively discussed in Refs. [17,36].
The exact relations defining the functions are

D ¼ �2ðN2
C � 1Þ

2NC

G2

24
�DN;

D1 ¼ �2ðN2
C � 1Þ

2NC

G2

24
ð1� �ÞD1;N;

(B1)

where DN and D1;N are functions which determine the
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structure of the two-point correlators, as defined in [17].
The factor G2 is defined as follows:

G2 � h0 j g2

4�2
F
��ð0ÞF

��ð0Þ j 0i ¼ 2NC

4�4
�ð2Þ

��;��ð0Þ:
(B2)

For the above correlator we shall adopt the value given in
Ref [8], namely, G2 ¼ ð0:496Þ4 GeV4. The value of the
numerical quantity � in (B1) is estimated in the same
reference to be 0.74. The ansatz for the functionDN is [17]

DNðzÞ ¼ 27

64

1

a2

Z
d4keik�z

k2

½k2 þ ð3�8aÞ2�4
; (B3)

where

a �
Z 1

0
dzDNðzÞ: (B4)

A simple calculation shows that

DNðzÞ ¼ wK1ðwÞ � 1

4
w2K0ðwÞ; w ¼ 3�

8a
j z j; (B5)

with K� denoting a Bessel function. The correlation length
Tg can be deduced from Eq. (B5):

Tg ¼ 8a

3�
: (B6)

The estimated value of a is

a 	 0:35 fm or Tg 	 0:297 fm: (B7)

With the help of ansatz (B3) and using (B7), one can
determine the string tension:

� ¼ 1

2
T2
g

Z
d2wDðwÞ

¼ 1

2
T2
g

�2ðN2
C � 1Þ

2NC

G2

24
�
Z

d2w

�
wK1ðwÞ � 1

4
w2K0ðwÞ

�
(B8)

or

� ¼ 1

2
T2
g

�2ð2N2
C � 1Þ

2NC

G2

24
�2� ¼ a2G2��

32

81

	 0:175 GeV2: (B9)

The ansatz for the function D1;N is deduced from the

equation [17,36]

�
4þ z�

@

@z�

�
D1;NðzÞ ¼ 4DNðzÞ (B10)

or

D1;NðzÞ ¼ 1

z4

Z z

0
dw½4w4K1ðwÞ � w5K0ðwÞ�: (B11)

The coefficient of the rigidity term entering Eq. (94) can
now be calculated:

1

0

¼ 1

32
T4
g

Z
d2ww2½2D1ðwÞ �DðwÞ�

¼ 1

32
T4
g

�2ðN2
C � 1Þ

2NC

G2

24

Z
d2ww2½2ð1� �ÞD1;NðwÞ

� �DNðwÞ�

¼ 1

32
T4
g

�2ðN2
C � 1Þ

2NC

G2

24
2ð1� �Þ32� 	 0:276: (B12)
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