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We investigate the large N reduced model of gauge theory on a curved spacetime through the plane
wave matrix model. We formally derive the action of the N = 4 supersymmetric Yang-Mills theory on

R X §* from the plane wave matrix model in the large N limit. Furthermore, we evaluate the effective

action of the plane wave matrix model up to the two-loop level at finite temperature. We find that the
effective action is consistent with the free energy of the N = 4 supersymmetric Yang-Mills theory on S°
at the high temperature limit where the planar contributions dominate. We conclude that the plane wave
matrix model can be used as a large N reduced model to investigate nonperturbative aspects of the N = 4

supersymmetric Yang-Mills theory on R X $3.
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I. INTRODUCTION

Matrix models are strong candidates for the nonpertur-
bative formulation of the superstring theory. For example,
the BFSS matrix model, which was proposed by Banks,
Fischler, Shenker, and Susskind, is the nonperturbative
formulation of the M-theory which is the strongly coupled
limit of the type-IIA superstring theory [1], and the IKKT
matrix model, which was proposed by Ishibashi, Kawai,
Kitazawa, and Tsuchiya, is also the nonperturbative for-
mulation of the type-IIB superstring theory [2,3].
Originally, these models were constructed on flat space-
time backgrounds. So, we have problems whether these
models can describe curved spacetime, and include sym-
metries of the general relativity: the diffeomorphism and
the local Lorentz invariance.

In 2002, fuzzy homogeneous spaces were constructed
using the IKKT matrix model [4]. The homogeneous
spaces were constructed as G/H where G is a Lie group
and H is a closed subgroup of G. The effective actions of
the gauge theory on homogeneous spaces have been inves-
tigated for a fuzzy S? [5], a fuzzy S? X S? [6,7], a fuzzy
52 X §2 X §?[8], and a fuzzy CP? [9]. When a background
field is assigned to bosonic matrices in the IKKT matrix
model, the stability of this matrix configuration can be
examine by investigating the behavior of the effective
action under the change of some parameters of the back-
ground. Through these investigations, we have found that
the IKKT matrix model favors the configurations of four
dimensionality. The same conclusion has been obtained by
various other approaches [10-16].

Recently, there were interesting developments on the
construction of curved spacetime by matrix models.
Hanada, Kawai, and Kimura introduced a new interpreta-
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tion on the IKKT matrix model in which covariant deriva-
tives on any d-dimensional spacetime can be described in
terms of d bosonic matrices in the IKKT matrix model
[17]. In this interpretation, the Einstein equation follows
from the equation of the IKKT matrix model, and symme-
tries of the diffeomorphism and the local Lorentz trans-
formation are included in the unitary symmetry of the
IKKT matrix model.

On the other hand, the formal equivalences between
supersymmetric Yang-Mills theories on curved spacetime
and a matrix model is shown by Ishiki, Shimasaki,
Takayama, and Tsuchiya [18], confirming Lin-
Maldacena’s gauge/gravity correspondence [19]. They
showed the following formal equivalences: the theory
around each vacuum of the supersymmetric Yang-Mills
on R X $? is equivalent to the theory around a certain
vacuum of the plane wave matrix model; the theory around
each vacuum of the supersymmetric Yang-Mills on R X $3
is equivalent to the theory around a certain vacuum of the
supersymmetric Yang-Mills on R X §? with the orbifold-
ing condition imposed [20]. They thus made the connec-
tion between the theory around each vacuum of the
supersymmetric Yang-Mills on R X S* and the theory
around a certain vacuum of the plane wave matrix model
with the orbifolding condition imposed. In this identifica-
tion, S? emerges out of a group of the concentric fuzzy
spheres. Note that the equivalences shown in [18] are
classical, since the equivalences are shown at tree level
and the size of matrices are infinite with the orbifolding
condition imposed. Recently, they extend the equivalence
between the supersymmetric Yang-Mills on R X S* and
the plane wave matrix model at quantum level [21]. The
equivalence is shown up to the one-loop level and the size
of the matrices is finite without the orbifolding conditions.
Moreover, they derive the deconfinement phase transition
of the supersymmetric Yang-Mills on S' X §% at weak
coupling region from the plane wave matrix model [22].
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In order to elucidate these proposals to construct curved
spacetime in matrix models, we investigated the effective
action of the deformed IKKT matrix model with a Myers
term. Since the classical solution satisfies the commutation
relation of the angular momentum, it can be interpreted as
the covariant derivatives on S* or concentric fuzzy spheres
[23]. In both cases, we found that the highly divergent
contributions at the tree and one-loop level are sensitive
to the UV cutoff. However the two-loop level contributions
are universal since they are only logarithmically divergent.
We expect that the higher loop contributions are insensitive
to the UV cutoff since three-dimensional gauge theory is
super renormalizable.

In the large N limit, there is a well-known equivalence
between a gauge theory and a matrix model due to Eguchi
and Kawai [24]. They proved that a large N gauge theory is
equivalent to a matrix model which is dimensionally re-
duced to zero dimension unless the U(1)¢ symmetry is
broken, where d represents the dimension of the original
gauge theory. However, the U(1)? symmetry is spontane-
ously broken in d > 2. So, two improved versions of this
large N reduced model which preserve the U(1)¢ symme-
try were proposed. One is the quenched reduced models
[25-28] and the other is the twisted reduced models [29—
31]. However, in these models the connection is made
between matrix models and gauge theories on flat space-
time. In this paper, we investigate the effective action of the
plane wave matrix model on a group of concentric fuzzy
spheres at finite temperature. We find that the effective
action is consistent with the free energy of the N =4
supersymmetric Yang-Mills on S in the high temperature
limit. It is because planar contributions dominate in the
high temperature limit. We conclude that the plane wave

matrix model can be used as a large N reduced model to
|

'The recent developments are explained in the introduction.
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investigate nonperturbative aspects of the N° = 4 super-
symmetric Yang-Mills theory on R X S3.

The organization of this paper is as follows. In Sec. II,
we formally derive the action of the N = 4 supersym-
metric Yang-Mills on $* from the plane wave matrix
model. In Sec. III, we calculate the effective action of the
plane wave matrix model around a group of concentric
fuzzy spheres at finite temperature. Section IV is devoted to
conclusions and discussions. Some detailed calculations
are gathered in the appendix.

II. N = 4 SUPERSYMMETRIC YANG-MILLS ON
R < $* AS PLANE WAVE MATRIX MODEL

In this section, we formally derive the action of the
supersymmetric Yang-Mills theory on R X S from the
plane wave matrix model in the large N limit.

The authors of [18] observed the following two equiv-
alences between the vacua of different gauge theories and
the plane wave matrix model:

(i) The supersymmetric Yang-Mills theory on R X 2 is
equivalent to the theory around a certain vacuum of
the plane wave matrix model.

(ii) The supersymmetric Yang-Mills theory on R X §3
is equivalent to the theory around a certain vacuum
of the supersymmetric Yang-Mills theory on R X §?
with a generalized compactification procedure in
the S' direction.

From the above equivalences of (i) and (ii), they concluded
that S3 is realized by three matrices. The matrices are as
follows:

Y, = —uL, @.1)

where

(2.2)
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The representation matrix L;, where i =1, 2, 3, is a
reducible representation of SU(2), and obeys the following
commutation relation:

[Li’ Lj] = iEl‘jkLk. (23)
LY where s = —co, - - -, 00, is the (2j, + 1) X (2j, + 1)
representation matrix for the spin j, irreducible represen-
tation of SU(2), and obeys the following commutation

relation:

[LEJ'S], LEjS]] = ieijkLUS]k' 2.4)
Then, the Casimir operator of Llex] is that
LYILUY = ji(j + D1y 4. 2:5)

The matrices (2.2) can be interpreted as n sets of oo fuzzy
spheres with the radius u+/j,(j; + 1), where all the fuzzy
spheres are concentric. In order to make the connection
between the supersymmetric Yang-Mills theory on R X $3
and the plane wave matrix model, it is necessary to impose
the following conditions:

Jso Ji =

Js — i 2(S_t)

(2.6)

t e 00,

) >

Let us start with the plane wave matrix model which is
defined by the following action:

1 dt 1 2
Spw 22—[ { (DoX,)* — (MX el X/, X ])
gpw M
+5 (DoX ) — —X2 +5 [X,,X 5
2 8
1 - _
+-[X,, X, + —AFODOA + —ArmA
4 2 8
1 - 1-
~3 A [X;, A]— 3 A X, A]}, 2.7)

where X and A are vector and Majorana-Weyle spinor
fields, and both fields are N X N Hermitian matrices.
The vector indices i, j, k, and m, n run over as follows:
i,jyk=123and mn =4, ---,9. The covariant deriva-
tive is given by DyO = 9,0 — i[A,, O]. The radius of S>:
ris fixed to 2/ .

Let us consider such a large N limit as follows:

Xi(t) - _/J’vi + Bi(t) x)) Xm(t) - Xm(t’ .X'),

2.8
A() — AL, x), 8

where V; and B; are derivatives and space components of
gauge fields on S° that are defined by Killing vectors (see

Ref. [23] for a review on this subject):
V= K%d,, B;(t,x) = K?A, (1, x), 2.9)

where a = 60, ¢, . The nonvanishing components of
Killing vectors are given by
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0 _ A
Ki=n K =G 2.10)
0
S
sinf

From these Killing vectors, we obtain the metric tensor on
§3 as follows:

g% = KIK?. @2.11)

For example, we consider the following term in the action
of the plane wave matrix model:

1 dt 1
2 |2 Tr{_*<ﬂxi )

. 2
g “ 3 el-jk[X/, Xk]) } (2]2)
PW

By using (2.8), the part of (2.12) can be rewritten as
follows:

1
(Vi + By = S e WV
— W(VIBF — VBI) 4 [B, Bk])) . 2.13)

From the commutation relation for the derivatives on S°:

[vi, Vj] = ifl’jkvk, (214)
we can obtain the following relation:
K{0,K? — K40,K} = i€ K}. (2.15)

Then, we can get the following equation by using (2.14)
and (2.15):

1
- ZgacgbdFabFCdr (2.16)
where

Fub = BaA,, - abAu - i[Au, Ab] (217)

Note that we also rescaled the derivatives on S> as follows:
ipd, — 9, (2.18)

The coupling constant and Tr over matrices have the
following correspondence in the large N limit:

283w _ gSYM’ fd X3t (2.19)
MmN 1672 Vol(S*)
where

Vol ($3) = 27273 (2.20)

and tr denotes the trace operation over SU(n) gauge group.
Then, we can rewrite (2.12) as follows:

ol L e !

Similarly, taking the large N limit of the other terms in the
action of the plane wave matrix model, we can obtain the
action of supersymmetric Yang-Mills theory on R X §3 as

(2.21)
gSYM
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follows:
S 2 fd“ft{ Ve pwr+Xp x pux
i r _—— —
SYM g%YMﬂ X8 4 )75 2 wdm m
1 i- 1-
— —RX2 + - AT'*D A —=AI"[X,, A
2" 2 " 2 (X, A]
1
+ Z [Xm’ Xn]z}’ (222)

where u =0, 1, 2, 3, and R is the scalar curvature of S°.

III. EFFECTIVE ACTION FOR PLANE WAVE
MATRIX MODEL

In the preceding section, we have summarized formal
arguments for equivalence between the gauge theory on

PHYSICAL REVIEW D 79, 065003 (2009)

As in the ordinary background field method in quantum
field theories, we decompose matrices X and A into the
backgrounds and quantum fluctuations, respectively, as
follows:

Xi=pitx,

Xy = P T X, A=x+to,

(3.1)

where p;, p,,, and y are backgrounds, and x;, x,,, and ¢ are
quantum fluctuations. Then, we substitute the decomposed
matrices (3.1) into the action of the plane wave matrix
model, and expand around backgrounds up to the fourth
order with respect to quantum fluctuations. The expanded
action is expressed as follows:

R X $3 and a certain vacuum configuration of the plane Spw = S](,(i,)v + Sg\{, + Sf,zv)v + Sg&, + S{f&,, (3.2)
wave matrix model. However they are formal in the sense
that they need to consider the large N limit. Therefore their ~ where
validity is not automatic especially at the nonperturbative
level, since we need to work with finite N. In this section o _ 1 / {1 PR
’ ’ Spw = dtTri=(9gp;)” — = »
we work with finite N, namely, finite size matrices. To be PV g2 ! 2( oPi) 2P
precise, we introduce the two cutoffs in the theory with i o 1 1
respect to the size and number of the concentric fuzzy + Eeijkp’[p/, K1+ Z[pi’ piP+ 5(80pm)2
spheres. We also put n = 1. In such a set up, we investigate 5 | | )
the effective action perturbatively to check to what extent L T 24 2 2 41 oo P
formal arguments can be justified. ) [pis P 4 P pul 2 X0 0X
3Ip s 1 o Q-
A. One-loop effective action at zero temperature + g X e X lpi X1 = X I"Lpm x ]}’
In this subsection, we evaluate the one-loop effective (3.3)
action of the plane wave matrix model around S3 back-
ground at zero temperature.
|
(1) 1 2k 2 k4 St ijk ik m ok Lo
Sbw = 55 [ diToy—x{ Gp" + pop" + 5 pe Lpi pj1+ Lpi [P, P11 + Lo L™, P¥1] — E{XF X}
8pwH
2
“ ; I, _ . _—_
- xn(ai‘}p” o el p I L [ "1 = ST X}) —1(39pl Ao, p'] = i(39pm)[Ao. p™]
1_ (i 3ip 1. 1
— 5 xI°[Ag, x] + sv<— ax + ——T"x = ST'pi x1 = 51", )(])
2 2 8 2 2
i, 3ip _ 1. . 1
+ (E(ao/\/)ro + ?er - E[Xrl, pil — E[er’ Pm])éﬁ}, (3.4)

1 1 ) . o1
SR = s [[arTel @on)? — i@opdA ¥1 ~ @ox)lAg, p] = 5[40 P — 5 u%2 -
Epwht

1 3i

e lpy, ]

1 1 . o 1 . . 1
+ E[pi’ X - E[pi: X'+ [ps pilI, ©] + 5(30)%)2 — (9o pm)[Ag, X ] — 1(9ox,,)[Ag, p"] — E[AO’ Pl

u?

1 1 ) . 1 1
- ?x%n + E[pi’ xm:l2 + E[pmr xi:l2 + 2[pi’ pm][xl’ xm] - [Pi, xl][pm’ xm] + E[pmr xn]z - E[pm’ xm]Z

i 1 1 3iu 1 1
+ [P pullx™, x™] + 3 eIy + EXFO[AO: o]+ 3 eI[Ap, x] + ?'u eI — EXF’[% e]— 3 el'lp;, ¢]

1 1 1 1
_7—1"1 . _7—1"m _7—1"m _7—1"m
5 ? [xi x] 5 X (X @] 5 ¢ [P ©] i (X X]},

(3.5)
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s —

{_l(aoxi)[AO: x'] = [Ao, pillAo, x'] + Eﬂe’kai[xj, xi] + [ x; 1, x7] = i(0px,,)[Ag, x™]

. . 1 1 .
- [AO’ pm][AO’ xm] + [pi’ xm][xl’ xm] + [pmr xi][-xmr xl] + [pmr xn][xmr xn] + 5 @FO[AOr QD] - 5 qbrl[xil QD]

1
— 5 @, so]}, (3.6)
1 1 1 1 1 1
4
S(P\i[ = m /dt TI'{_ E[Ao, )Ci]z + Z[X,‘, )Cj:|2 - E[Ao, )Cm]2 + E[)Ci, )Cm]2 + Z[Xm, Xn]z}. (37)

[
Since we need to fix the gauge invariance in the action, we ~ where

add the gauge fixing and the Faddeev-Popov terms:
bl
1 1 . , i
SGF = ) fdtTr{— —(aoAO + l[p[, X’]
SpwH 2

L = L . 3.11
+ilp,. X'"]V}, (3.8) ’ Li GAD

1 LDzA]
. 1
SFP = B ) /dtTr{_baoDoC' - b[pi’ [Xl, C]]

Spw M Here, we introduce a cutoff on s at 2A and on the matrix

— b[p, [X™, c]l}, (3.9)  sizeof ngs] at2j, + 1 = N, + s, and the matrix size N of

where ¢ and b are ghost and antighost fields, respectively. L; is finite as follows:

We substitute the matrices Y; which are the classical m o . o .
solution of the plane wave matrix model for backgrounds =@t @ T 2oa 1),
as follows: (3.12)

pi =Y, = —nL;, pm =0, X=0, (310)  Then, we can obtain the following action:
!

Spw = SPW + Sgr + Sep
f dtz Tr{ (81153 + 89> L3 + 2p7[ L, L]+ p28 — 3ip? el L)alt
ng/-L

2
1 (S t)( 8mn62 + 6mn 2£2 ,LL 5mn)x£lf,s) _ %Ags»f)(_a% + /Lzﬁzz)Ag‘S) _ b(s,t)(_a% + /_L2£IZ)C(I,S)

l\)\'—‘l\)

. 3 i . i .
(\ t)(_ll"an uliL; — 1:“ 1—~123)¢,(z,x) _ i(aoxﬁ"’))[AO, xz](r,x) + :U«-EiAE;'[)[Ao, xl](t,s)
i .
+ 2,ue’fk (”)[x x]0) — w L, x(”)[x x/]s) — 1(60x(”))[A0, ]9 — ;Lﬁixg;i")[x’, xm](s)

+ ib(S‘t)BO[AO, C](t,s) + Mb(s’t)-fi[xi: c](t,s) + %(Z?(S’I)FO[AO, gD](t,s) + %gb(s’[)ri[xi, gD](t,s) + %gb“")l“m[xm, gD](t,s)

1 1 1 1 1
+ ) [Ag, x;]02 + Z[xi’ x;]0% + 3 [Ag, x, 1502 + E[xi’ X2 + Z[xm’ xn](s’t)z}, (3.13)
where the suffix (s, r) represents the (s, ) block in the N X t— it, Ay — iA,, I — 410, (3.15)
N matrix. We introduce the following operation:

The classical action Si,()\;, vanishes for the backgrounds
we consider here, and the first order action with respect to
which acts on a (2j; + 1) X (2, + 1) matrix M. Note that  the quantum fluctuations SS&, also vanishes, because the
the above action is obtained after the Wick rotation for the =~ backgrounds satisfy the equations of motion for the plane
time components as follows: wave matrix model. We need the quadratic action with

.E iM == [Li’ M], (314)
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respect to the quantum fluctuations S](,W to calculate the
one-loop effective action of the plane wave matrix model.
To simplify the following calculations, we introduce the
notations as follows:

po = —idy, pi =

Then, the action is given by

§ l-loop _ 277'No ZZ[Z{

gPWIU“ st M

1
3 X0 (81UPY + 2i Fi
+ p2éi + 3i4Leifk?Bk)x§§‘JtH

1
(5,1) ¥ ,LL m (5,0t
2 mlf]M<5n“g)2 o m) nl}M

1 s, 5,0t s, 5,0t
A PRAGY ~ bl P |
(s, 3ip st
13 L L S|
(3.17)
where
P M =[p;,M], FiuM = [fij, M],
oY ! (3.18)
fij = —ilp;, Pj],

and the index w runs from O to 3.

By using the above action Spy ", we can calculate the

one-loop effective action of the plane wave matrix model
on S° as follows:
W = —log / dx,dx,,dAgdbdcdoeSw™".  (3.19)

First, we evaluate the bosonic parts of the effective action
as follows:

Wy = ZZ{ Trlog(8"P% + 2iFy + u?éi
. 1 > w?
+ 3iue/* Py;) + 3 Trlog| 6™ Py + 75’"”
1
+ 5 Trlog(P3) — Trlog(’P%)}. (3.20)
We expand the bosonic parts (3.20) of the effective action
into the inverse power series of P3 = (w? + u2J(J + 1)).

In this way, we obtain the leading term of the bosonic parts
of the one-loop effective action as follows:

~ ZZ{4Trlog(T2) + T L

4 P}
w? 1 )2
2 Bi\p2

where P, = u2J(J + 1). Then, we evaluate the fermionic
parts of the effective action as follows:

(3.21)
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1 i
_ 2 v
gt Eh 1 Trlog(’PF + EFM Fruv

9/.L2)
16 J
Similarly, we expand the fermionic parts (3.22) of the
effective action into the power series of P2 = (w? +

w2J(J + 1)). So, we obtain the leading term of the fermi-
onic parts of the one-loop effective action as follows:

3i
= T Fr + (3.22)

Wg ~ ZZ{ 4Trlog(P:) — TL%:

st h

2
M 1\2
L Tr?zi(—> }
2 F\ P2

where PE = u?J(J + 1). Therefore, we find that the one-
loop effective action of the plane wave matrix model on §°
vanishes to the next leading order in this expansion:

W =Wy + Wg~ 0.

(3.23)

(3.24)

In fact, it vanishes exactly due to supersymmetry [32].

B. Free energy of /N = 4 supersymmetric Yang-Mills
on $*

In this subsection, we calculate the effective action of
the plane wave matrix model on S at finite temperature up
to the two-loop level. In order to study the plane wave
matrix model on S* at finite temperature, we compactify
the Eucliedean time direction with a periodicity 8 = 1/T,
where T is a temperature. Thus, we impose the constraint
of periodicity for the bosonic, ghost and antighost fields as
follows:

A0 =B, x"(0) = x(B),
AP0 = AFB),  c0(0) = c0(p),
b0(0) = ().

(3.25)

So, we can obtain the conditions for frequencies in (3.20)
as follows:

w; = 27T, (3.26)

where [ is the integer. On the other hand, we impose the
constraint of antiperiodicity for the fermion fields as fol-
lows:

P (0) = — (), (3.27)

and hence

w;, = 2mhT, (3.28)

where £ is the half-integers.

Therefore, we can obtain the one-loop effective action of
the plane wave matrix model on S> at finite temperature as
follows:

065003-6
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W 1-loop — Z{Z4Trlog(’?2) - Z4Tr10g(’P )

s,

9 1 9 1
+Z oy Tz—%%Trﬁ

R
2 un (L))

However, since the supersymmetry is broken at finite
temperature, the contributions from the bosons and fermi-
ons do not cancel each other. For example, we consider the
leading terms of the one-loop effective action as follows:

(3.29)

Wi " = 2{24 Trlog((2mIT)? + p2J(J + 1))
!

5.t

— > 4Trlog((2mhT)> + p2J(J + 1))}.
h
(3.30)

It is easy to calculate the sums over / and h by using the
following formulas:

Z log(l’m* + %) — Z 2log(I?m?) = 2logsinhz,
[ =1

(3.31)

o0

Z log(h*7* + %) — Z 2log(h>m?) = 2logcoshz,
h=—oo h=1/2

(3.32)
|

o8 exp(u/J(J +1)/T) + 1

(exp(m/J(JTl /T) - ) Z

s=1J=A+1/2M=—J jj=—A

PHYSICAL REVIEW D 79, 065003 (2009)

where z is the complex number. We may discard the
infinite constants which do not depend on physical parame-
ters. Thus, we can obtain the leading terms of the one-loop
effective action as follows:

W(lo)100p Z{S Trlogsinh(i'u J;;—i_ U)
—8Tr logcosh(%)}

_ 81 exp(uyJ(J +1)/T) — 1 .

%jZM Og<exp(,u\/J(J +1)/T) + 1)

(3.33)

In analogy with the large N reduced model on a flat
background, we rewrite the summations in (3.33) as the
summations of degrees of freedom on S3(J, M, M) and an
extra degree of freedom (s) as follows:

Wl loop __ Z Z 81 CXP(I«WJ(J + 1)/T) -1
© 08 e Y ’
s I MM exp(,u, J(J+ 1)/T) + 1
(3.34)
where M = 1 (s — r). We have introduced a cutoff such that

s <2A, so that the maximal value of J and M are N, and
A, respectively. Then we separate the summation over J
into two parts at the value A as follows:

N‘]
$log exp(u/J(J +1)/T) — 1 (335
Z z Z (exp(,u\/J(J +1)/T) + 1) (3:39)

The second term in the above expression can be safely neglected since we assume that

T < A.

(3.36)

If we further divide this effective action by the overall factor Y, it agrees with that of the supersymmetric Yang-Mills
theory on S°. In this sense, the plane wave matrix model is a large N reduced model of the supersymmetric Yang-Mills

theory on S°.
In this way, we can obtain that

V-5 3
J=0

J
M=——J fj——
< | exp(vk(k +2)/rT) — 1 L

1;)8 Og<exp(\/k(k +2)/rT) + 1)( "

i . g(exp(m/J(JJr )/T) — 1
m— exp(puJ(J +1)/T) + 1

1%,

) S Sl (exp(uw /T) — )(21 Ly
J=0

2 O T T T /1) 1 1

(3.37)
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where we set k = 2J. Here we take the high temperature
limit such that the temperature is much larger than the
inverse radius of §:

1

T>—. (3.38)
r

Thus, this limit represent a flat space limit. The summation
over k can be well approximated by the integrals over

_ Vk(k +2)

T (3.39)

[\S]

2 l -loop __
i =3
st h

1

ZQL 1 _ 2_2
~ 4 (27TlT)2 + w?J(J+1)

,u
- ;7 TrJ(J + 1)(

By taking the high temperature limit such that the tem-
perature is much larger than the inverse radius of S, it can
be evaluated as follows:

o= 3
L O

" (3.43)

In order to examine to what extent a plane wave matrix
model can explore the planar sector of super Yang-Mills
theory on S, we further calculate the two-loop effective
action of the plane wave matrix model at finite tempera-
ture. We describe the detailed calculations of the two-loop
effective action in the appendix. The main conclusion is
that the equivalence is valid in the high temperature limit as
the contributions from the nonplanar diagrams can be
neglected in comparison to those from the planar diagrams
in such a limit. The two-loop effective action is given by

2 2
=27 Spwh_ roT3.

W 2-loop
No

(3.44)

Here, recalling the following relation between the coupling
constants in Sec. II:

28w _ 83y

No—o uNy 1672 (345)
we obtain the following equation:
. ?
Wl = = giywr ' T, (3.46)

We summarize the effective action of the plane wave
matrix model at a finite temperature up to the two-loop
level:

“ 3 2 3 1 5 1
W/Vol(S)=—?T +ZgSYMT +—T+(9

4y 2
(3.47)

QmIT)? + u?J(J + 1)

PHYSICAL REVIEW D 79, 065003 (2009)

We can obtain the following equation:

o0 e =1\ 3,5, 1 )
ST3x% + - 1T). :
/(; dx8 log<ex , 1)<r T x 5 rT (3.40)
This integral is evaluated as
77 1-loop i 373 2 1
Weo &= —3 " T° — 7T + @(—T>. (3.41)

Similarly, we evaluate the subleading terms of the one-loop
effective action:

1
T
YQahT? + g2+ 1)

) Z“ TrJ(J+1)<(27ThT)2 +1M2J(J+1))2}' (3.42)

|

where we have divided the effective action by the volume
of §3. This effective action is equal to S times the free
energy density of the N° = 4 supersymmetric Yang-Mills
theory on $3 [33-37].

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have investigated the properties of the
N = 4 supersymmetric Yang-Mills theory on S° at finite
temperature by using the plane wave matrix model.

We have formally derived the action of the N =4
supersymmetric Yang-Mills theory on R X §3 from the
action of the plane wave matrix model by taking the large
N limit. Furthermore, we have calculated the effective
action of the plane wave matrix model around the S°
configuration at the two-loop level. We have found that
the effective action of the plane wave matrix model agrees
with the free energy of the N* = 4 supersymmetric Yang-
Mills theory on S3 at the two-loop level in the high tem-
perature limit. Therefore, we can conclude that the non-
perturbative properties of the N =4 supersymmetric
Yang-Mills theory on $* at finite temperature can be ex-
plored by the plane wave matrix model. Our results serve
as a nontrivial check that the plane wave matrix model can
be regarded as a large N reduced model of the N =4
supersymmetric Yang-Mills theory on R X S3. However,
the nonplanar contributions at the two-loop level differ
from those on S°. They are rather of S? type since the
propagators carry vanishing M in these contributions. They
can be neglected only in the high temperature limit. In this
sense, a construction of a large N reduced model on a
curved manifold (S° in this case) is successful only in a
flat manifold limit.

It is interesting to investigate nonperturbative properties
of the N" = 4 supersymmetric Yang-Mills theory on S! X
S3 in connection to AdS/CFT correspondence. This corre-
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spondence states that the large N N = 4 supersymmetric
Yang-Mills theory on R X §3 at strong coupling region is
solved in terms of the type-1IB supergravity on AdSs X S°.
We have shown that the N = 4 supersymmetric Yang-
Mills theory on S' X $3 at weak coupling region is con-
sistent with the plane wave matrix model at quantum level.
We hope to evaluate the behavior of the N = 4 super-
symmetric Yang-Mills theory on S' X §* at strong cou-
pling region by using the plane wave matrix model.
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APPENDIX A: TWO-LOOP EFFECTIVE ACTION
OF PLANE WAVE MATRIX MODEL

In this appendix, we calculate the two-loop effective
action of the plane wave matrix model on S* at finite
temperature. The effective action W is evaluated as fol-
lows:

W = —log / dx;dx,,dAydcdbd pe =S

— Wl—loop + W2—100p’ (Al)

where

op

J dx;dx,,dAydcdbdge S e gmp)
&l1=loop

[ dx;dx,,dAydcdbd peSew

WZ-loop — IOg(

el
(e SPWOOP>1P1,

(A2)

and

B . . i g o
- f dfz Tr{i(aoxﬁ-s”))[/\o, x']es) — ,U«(LiAE)S't))[Aoy x']®9) + 5#6”"}65&”[)@» x ] + ,U«(Lixﬁ‘s't))[x'y x/]09)
s, t

+ 1(3()X£2’I))[A0, X)) 4 M(Lixg't))[xi, 1] +1(9ob SN[ Ag, c]®) + w(L;p5)[x, ]E)

1 4 1
3 @UIT[Ag, ]+ — 5 @I [x;, @]*) — 79

1 1 1
— E[AO’ x,, ]2 — E[xi’ x,,]02 — Z[x’"’ x”](s,t)Z}

| =

We define (- - -);p; as a summation over only 1-particle-
irreducible (1PI) diagrams. To simglilfy the following cal-

culations, we combine the action Spy, " as follows:

. 1 B
St = [Py @, 1
Spwi™ JO st
s
+ 5 et 1] = (PO, ]
1_ 1
- ) ¢('V")Fl[xb QD](”) - 4 [Xb XJ](S'M}, (A4)
where the index I = 0, - - -, 9, and we set that
Po = _ia(]’ Pi = _lu‘Li’ Pm = 0’ Xo = AO'
(AS)

(a) (b) ©

FIG. 1.

I, @10 = 2 [Ag 1102 = 1T, 102

(A3)

Now, there are five 1PI diagrams to evaluate which are
illustrated in Fig. 1. The diagrams (a), (b), and (c) represent
the contributions from gauge fields, and (c) involves the
Myers type interaction. The diagrams (d) and (e) represent
the contributions from ghost and fermion fields,
respectively.

1. Propagators
a. Bosonic propagators
First of all, we derive the bosonic propagators of the
plane wave matrix model. From the quadratic terms for the
gauge fields xg‘”) in the action (3.13), we can read out the
propagators of gauge boson modes x% as follows:

//’ RN
) \
"\N\/\/\:
\
/
\\ p)
~So g
( (e

9

Feynman diagrams of two-loop corrections to the effective action [6].

065003-9



YOSHIHISA KITAZAWA AND KOICHIRO MATSUMOTO PHYSICAL REVIEW D 79, 065003 (2009)

/ dtz Tr{ 20D (= 8103 + 82 L2 + p261 — g€k L) ?>}
gPWM

g f a’tZTr{ S3Y el | @ P8 wl + 8 ply(Uy + 1) + p?8Y — iptet L))

11 Ji,.M,;

iw,,t(15) (it s)

XD D enta 8 Vi
Iy Jy,M;

s, (i~ —BN, i . .
- _Z DDA el Vil gZEMg 81,1,05,0,0m,-m,(8V @, + 82 Jy(Jy + 1) + u?8Y

st Il 0, My I M, PW
—ip2el L)x) a6
Note that the quantum fluctuations are expanded by a plane wave and a fuzzy spherical harmonics® as follows:
o) [} J ) .
SEORID YW WL/ D o (A7)
I=—00 J=0 M=—1J

Then, we can obtain the propagator of gauge boson modes as follows:

(x Godd) i) )= Shwm’ (—DMi=Us=id)

_ — — — 81167 100 —u1.- A8
Xity My X1, 0,M, BN, 5”“’122+5UM2J2(J2+1)+M25U_i/-l/2€ljk£k Lh=L%NhJ, M =M, (A8)

We expand this propagator into the power series of (w7 + u?J(J + 1)) = P} as follows:
1 = Lsi—iu( LY eip PiPL+ 0~ ) (A9
S0} + 8T urSy(Jy + 1) + w2 —ipelf L, P2 i fP_%) omeT (’Pz) ’PB (A9)
Therefore, the propagator of gauge boson fields are given by

G0 = 3 XN et i ) @ P T
1,1 J,.My Jy,M,

2 2
Spw M
~ ,PB“IIVO z Z Z {’P2 IM(,PZ) fijleé - M (’Pz) TBITB]}

== J=0M=—J
X eiwl([l_12)(_1)M_(j‘?_'h)Y‘(/]M]L)Y‘(/J:ﬁ4‘), (A10)

where we note that w _; = —27IT = —w,.
In the same way, we can read off the other propagators of bosonic fields as follows:

00 o0 J

g '(u - —(js—7J A’sv'l,\‘lv's
G ()25 (1)) ~ pr DY Z {?2 . _%(ﬁ> o }e1 (0= (— M=) PUdd) plinss) (A11)
[=—o00 J=0 M=
(5.0 (7 | 4(09) Shw - | = i) s ) PUinis)
Ay (046 () = =50 Z Z > ” el (= MUY (A12)
[=—o00 J=0 M= B
<c(st)(t )b(ts)(t )> gPWIu Z Z Z 1w,(tl 12)( 1)M (s— ],)Y(Jr]z)Y(Jst) (A13)

BNy I=—00 J=0 M=—J B

where we expand the other bosonic fields by the plane wave and the fuzzy spherical harmonics as follows:

The fuzzy spherical harmonics is based on the work [18].
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NeY i i i ) g plinis where
S, (t) _ ela),l ”il ® YJ]{/,I.I ,
=00 J=0 M= M Sijk = €ijr,  other frx =0,
00 [ J L= .. =
60y — ot 46D o D) Gij = 8i; other G; =0, (A16)
Ayl (=3 > > elerag), @ Vi,
J=—00 J=0M=—J (A14) HU = TB[TBJ', other H[J == O,
I,, = 6,, otherI; =0.
(st)(,) - Z Z Z el@it (sr) ®Y.(I/[i/1/r), 1
I=—c0 J=0 M=

( ) o b. Fermion propagator

—_ w S0 .]s .11

b0 (1) = Z Z Z ¢ by ® Yy Next, we derive the fermion propagator to read out the
[=moo J=0M= quadratic term of ¢ in the action (3.13) as follows:

Moreover, we can get the following bosonic propagator

from the above propagators:

() (1))

0 0 J

2 2

SpwH 1 . ( 1 )2 K
~ E E E — 67 —iul—= P

BNy {Tﬁ A Tz FuxPs

== J=0M=—J

1 1
+u (TZ) (G Py — Hyy) — 1 (’.732) Gy

271 \2 A Al Al

— %(W) I”}ela),(l]7t2)(_1)M7(]S7.),) Y(J]A\/}h) Y;l]i,/.y)’
B

(A15)

|

[ dtz Tr{ _¢(s t)<_11"030 Mriﬁi _ mTMFIH)QD(”)}

ngM
) (it 3ip ) 50inj)
- [’ erTr{ 33 3 engl @ T (<il0a, - L - TS S el 0 7]
i’ hl JiM, hy Jo,M,
— (s, _ENO i 311“’ K
——ZZ > 3 et g\ Tow0n, = mI L= =T )8, 85,0, 801,01, 1 s (A17)
$,0 hyhy Jy, My Jo, M,y Spwi

where we expanded the quantum fluctuations by a plane wave and fuzzy spherical harmonics as follows:

¢(St)(t)_ Z Z Z elw,,t (SI) ®Y(/S/t. (A18)

h=—o00 J=0 M=

Thus, we obtain the propagator of fermion modes as follows:

(50) (1) Shwh’ 1
<§DhY1J,M, h2;2M2>_ ,BNO F()wh —,L,Lr,ﬁ 3iTMI‘1236h'h261'J25M'M2' (A19)

Here, we expand this propagator into power series of (w7 + u2J(J + 1)) = P% as follows:

1 31,u 1 3u
I‘Ow _ MFI-E _ 3ip I‘12’% 7)2 FIfPFI 4 J)z F123 (7)2> 1—‘”.7:‘F1J1—‘K-,PFK +— <T2) FU.?:FIJF123
hy i 4
4K 9,“ ( )21_‘1(,-]) . 1( )3FIJT FMN]_" TP + @(L) (A20)
g)z FK 4 le: F1J FMN FK ’Pﬁ .

The third term of (A20) is that
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i i/ 1)\2 .
- <?2) R R 5(@) (_/'LfIJKF”M?E?FM = 2iu*T" Pyy)
F

iwf 1)\2
=5 (ﬁ) Fx "M PE Py, — ( ’Pz) I Py, (A21)
F

where we used the multiplication law of the gamma matrices as follows:

rvrk = Tk — §IKP 4 §7KTY, (A22)
Moreover, the last term of (A20) is that
1 171 \3
< 2) TH Frp TN Fryy K Prg = ——(—2) (4T Py PE+ -+ 0) = ( 2) Py + -, (A23)
P 4\Px P

where we also used the multiplication law of the gamma matrices as follows:
[UTMNTK — [IJMNK _ §IM[INK 4 SIN[JMK _ SIK[JMN 4 §IMTINK _ §INTIMK 4 SIK[IMN _ SMKTIIN 4 SNKTIIM
— §IMSINTK 4 §IMSIKTN _ §INSIK['M 4 §IN §INTK _ §IK§INIM 4 §IK §IM[N _ §MK §INT
+ SMKSINTY — SNKSIMI) 4 SNK§IMT, (A24)
Thus, we can obtain the following equation:

1 1 Bip 1
1
/Py — AT P} PP+ =0 P2

9M
el ( 732> TP, + (o( :P4) (A25)
Therefore, we obtain the fermion propagator of the plane wave matrix model as follows:

(e ) = 333 et @) @ Vi Vi
A2 J, M J2,2

ip (1) 3pu?
F123 (ﬁ) f”KI‘IJM ’PII;( PFM g (?2) fIJKF” 7)1(1‘*123
F

00 J

2 2
8pwH Jip 1 w1\
~ BNO hzm JZ()MZJ{TZ I/ TFI 4 sz T3 4 (?2) fIJKF”M :PII:( TFM

3 1 2 ) RPN
- ';L ( )f”K[‘”fPKI‘m = LS (’P2> FlfPFl}elw”(t'ﬂZ)(_1)M7(1"7]’)YS]1\‘4'LII)Y(JJK'5¥. (A26)

2. Feynman diagrams
a. Feynman diagram involving four-point gauge boson vertex (a)

We evaluate the 1PI diagram involving a four-point gauge boson vertex. The four-point gauge boson vertex is given by

Vy = f dtz Tr{ —[x,, x,]<w)2}. (A27)
ngM

It gives rise to the following contribution:

1 B 1
-V = —f dtz Tr{— Xy, X (”)2}
(=Vaipr 2o Jo g 4[ 1 %/]

f dt Z Tr{ (\‘,l)x(ll,u)x(u,v)lx(v,s)J _ )CEX’Z)X(”“)IX(JM'U)X(U’S)J)}.

PW gPWIU“ KN AR
(A28)
We can calculate (— V4)ipr by performing the Wick contraction.
(=Vip = [ dt Z Tr{ (<x(\ 1) (t,u)><x(u,u)1x(v,s)1> + <x$\‘,t)x(z,u)lxx(u,v)ngv,S)> _ <x5&1)x(1,u)l><x(lu,v)x(v,s)1>
s, tu,v
_ <)C(S'I)IX(JI’u)><x<u’U)Jx§v’S)>)}. (A29)
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The leading contribution for the diagram involving four-point gauge boson vertex is given by

Sowh’ f
\% dt Tr
(=Vihpr = 28N, Jo Z

s, tLu,v

{Z > > _5 e 0= (- M) PYs P 5 S
1

Lo Ju Ml

Lz Sl elwn, () *fz)(_ I)Mz—(;y, Ju )Y(/z}‘/;v)Y(./u oJs)
I, J,M, B ’

. B e Al 1 ) B NPV

I, JL,M; = B

L, J,M, = B

1 ) B A A
_Z Z T 51 iw; (1= 77)( 1)M| (s— /r)Y(/\Jr)Y(]t]u z Z ﬁ(sjelwlz(ﬁ fz)(_I)Mz*(Ju*Ju)Y(JJZIMZ)Y(JJZULJX/L

I, J,M; * B

I, Jn,M, B

; 1 . e A
_ Z Z 31 iw; (1= tz)( )Ml_(]; J,)Y(]s ]’)YU’—]?VIIZ z ﬁ8{elw12(l1*12)(_1)M2—(1u_1u)Y(jlzl}i.dl:)y‘(llzy;]j/}z}
1, JiM, Py I, J,M, * B
1\ (MM Gemid=Gumd) Goio) olimid)
= Tr ( ) P el Pt gl 5 & (A30)
,ZU% lzlz JIZM] JZZMZ BNy  J\U; + DI, + 1) M oMy puma
|
Here, we have inserted the complete set as follows: and
1 Trz( 1)M3 (jp Jq Y(./p 2Ju Y(Jq Js) — 5 (A31)
NO ol M M; pu qs 00 Jy ) J> ) J3
. 2=2 > 2 X > 3. (A¥»
Therefore, we can get the leading term 123 =0M ==y =0 My==J5 ;=0 M3="J3
Shwh’
(=Va)ipr ~ —45 ‘1'123,
BNo I, 12%% B Pro3 QB
(A32) b. Feynman diagram involving three-point gauge boson

where Py, 9, and Ry are defined as follows:

Py =lee Vi) Qi) = o V1)

R Y5 = py, P50 (A33)
We have introduced the following wave function:
& = L 000i) Uil Pl

0

[ 1
8PW,U~

s, tu

vertex (b)

We evaluate the 1Pl diagram involving three-point
gauge boson vertices. The three-point gauge boson vertex
is expressed as follows:

Ve — 1
=
8123w2

] P arS TH{— (Pl ¥ 169) (A36)
0 5,1

We can express the contribution corresponding to the
diagram (b) as follows:

1 2
[ > > f dlz Tr{(?lx(j&l))x(t,u)lx(u,s)l _ (Q)Ix‘(]&f))x(t,u)lx(u,s)l}]
gPWM 0

[ dlldtzz[Tr{(? x(‘ f))x(t u)] (u, v)J} TI‘{(T x(‘ t))x(t u)M (u, v)N}

28 witt by

_ Tr{(r‘plxss, t))x(t,u)lx(u,s)J} Tr{(T‘ng\‘;’ t))x(t,u)Nx(u,s)M} _ Tr{(’PIxsy’ t))x(t,u)lx(u,s)l} Tr{(fPng\? t))x(t’”)Mx(”'s)N}

+ TI'{( Q)lx(j‘, 1) )x(t,u)./x(u,s)l} TI'{( ?Mx&;‘ 1))x(t, u)Nx(u, s)M}]'

(A37)

For example, we calculate the first term of (A37) by applying Wick’s theorem.
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[ dl] dl2 Z [TI‘{(:P X(Y l))x(t u)lx(u s)J} TI'{(?MX(V l))x(t u)Mx(u s)N}]
ZgPW:“ s,

= 2g ,u f dl‘ldl‘z Z TrTr{«?ﬂC(f t)(tl))x(u T)N( )><x(t u)l(tl)x(t u)M(t2)><x(u Y)J(tl)(g)Mx(s t)(tz)»

+ <(T,x3“>(r1>)(?Mx§¢“‘><r2)>><x<fvu>’<z1)x@"W(rz>><x<“»v>1(r1)x“")M(zz»
(P ()M (1)) () (P (1)) D (1) (1))} (A38)

Here, we evaluate the particular contraction which is the first term of the above equation as follows:

gPW“ [ dnd, 3 11 S S 5
shu I Ju M1
> Z

1, o, M2

+Z Z —5 elwll(tl tz)( l)Ml (s— ]/)(TBIY‘(/]JAZ))(?BMY(]M JJs) )Z Z

5 Nela)/l(f] fz)( I)Ml (s— /,)(T)Bly(h Ix))Y(]qu

6IM lmlz(tl 12)(_1)M2 (j,— ])Y(/z]u Y(/t.}u Z Z _5] 10)13(11 l‘z)(_])Mg (]I‘_]‘)Y(]uJ&)(RBMYUYJI )
Iy Jo M, R

—_§INgiw, (1= t2)( 1)Ma— G,— ]“)Y(]zJu)Y(]/Ju)

I JuM, Py 12 Jo, M, QB
X Z Z — §Me iw, (1 — tz)( 1)M3 Gu— J:)Y(/u jJ)Y(j; j;l/lg + Z Z _5 M 1(«)[1 (t,— tz)( l)M] (js— JY)(? Y(j; Jz))Y(Ju /s
[ M3R 1, JM, 3
> _51 elon (=0 (= )Ma =G~ /u)y(/f /u)(?BMY(/r ) ) §INglwn (=) (— 1)Ms=( Js)Y(Ju Ny(h J;& }
%JLZMz ZB %1321‘43 R2 TR
1 1 1 _IOPB’RB . . ,\(- )A( )
- Tr— Tr{i(— DM Uil sy el
2 s;ulelle J§421§43N0 No ?IZBQIZSRIZS S
—?ZB —Py- 9 .
+ 51M —1)M2=Gim ]“)Y(Jz /u)Y(h J) o4 B B(_1 M3—(j”—_]Y)Y(]u]\)Y(J 1) } A39
f
where we used the following relation: and the momentum conserved relation:
J
Z (_I)M—(,;—j,)p&%iz)plyﬁ%}) P+ 9y +Ry=0. (A43)
M==J
Therefore, we can simplify as follows:
Z ( l)M (s— /,)(f“p Y(Js]z))Y(]r Js) (A40) 1 7 ) )
M==J <§ V3V3> Y g;v}/vﬂ Z Z 123 ,Pg Qg 1.
We can obtain the following compact equation to calculate e 0 stulyly 123
the other contractions: (A44)

9 gpwi’

z Wi

2 BN, ;llzlz% 123

2Py Py Q,y— P
PyOIRE

1
_VV> ~
<2 > m

B’ RB ‘if
123-

(A41)
Moreover, we use the following relation:
1 N
E(RQB - fPZB - Q}zg)\l’m,

Py QB\P]B = (A42)

c. Feynman diagram involving the ghost interactions (d)

We evaluate the 1PI diagram involving the ghost inter-
actions. The ghost vertex is expressed as follows:
1
1%

¢h T 5 2

f g dry Te{=(Ppe)[x!, ]} (A45)
SpwH™ JO 5,1

We can express the contribution corresponding to the
diagram (d) as follows:
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Grava) =3l [0 TP, e

ng,“

1 1 2
— 7|: - 2 f dlz Tr{(gjlb(s,t))x(t,u)lc(u,s) _ (Q)lb(s,t))C(t,u)x(u,s)l}:l

2 gPW 0 s, Lu
= s [ dnde, T TP Y TP b )
8p /L s,u

— Tr{(le(s,t))x(t,u)lc(u,s)} Tr{(ij(s,t))c(z,u)x(u,s)J} _ Tr{(’Plb(S' t))c(t,u)x(u,s)l} Tr{(T]b(s,t))x(t,u)Jc(u,s)}

+ Tr{(?,b(“"))c(”“)x(“’s)’}Tr{(?,b(”))c(””)x(“’sw}]. (A46)

For example, we calculate the first term of (A46) by applying Wick’s theorem.

[ dtydty 3 [TH{(P, b)) 30! Y Tr{(P blo) b0 (e}

2gPW S, Lu

j dtydty Y TrTe{((Pp) (1)) (1))@ (1)t (1)) (1) (P50 (1))}
2gPWIU“ s,hu

/ dlldlzz TrTr {gpw,u Z z ‘“’fl(fl‘fz)(—1)M1*(jfj,)(g)Bly(/s /r))Y(/u ./5) gPWM

28PWM s,hu I T, M1 ' BNy
% Sl glon(=n)(— 1 )Ma=(ii= my(h Ju) PUsniu) 8ow i’ elon (=) (— 1)M3=G, j;)y(/u /:>(RBMY</S/,> )}
%JZJZIWZ Q’B e TR ’BNO %JzzMx R2

1 ghwi’ o1 { 1 Guidypl Goi) U
_ - — Tr—Tr (_1)M| (s /,)(TBIY J\A;x )leu - 51](_1)M2 G, — /”)Y ]r Ju Y]’ Iu
2 ,BNO SZHIZIZJIZM JZZMZ j§43 NO NO g)Z JiM,y 1 1 Q2

( l)M3 Gu— ];)(R Y(J;M;))y(];}z } (A47)

where we also used the relation (A40). We obtain the following equation to evaluate the other contractions:

1 1 glznwﬂz e Pg-Qp+ Pp-Rp 8pr - Qp
— ViV ~— E E E v Vo, = E E E Wi V. (A48
<2 gh gh)]Pl 2 BN, 123 ’P%Q%’Rz 123 BNy 123 TZ %Rz 123 ( )

s,tuly,l, 123 s,huly,l, 123

Moreover, we obtain the following simplified equation to 07! (t5)
use the relation (A42) and the conservation law of mo- Ve = Shw [ dtz Tr{ 5@ Xy, @] } (AS0)

menta (A43):
The 1PI diagram involving fermion vertices is calculated as

1 1 gawm? follows:
<§ Vgthh> ~ = 3 PV;]V Z Z Z 123 fpz 2 q’123
1PI BN, s,tuly,l, 123 Q <1V V> 1[ 1 [ dZT{ ( 1)1"1[ ](r )}]
1 - 1y Tri= @I [x;, ]
(A49) 25 e 2 Shwh’ i v

1 1
=§|:—f dtZTr{go(“)F’ (t,u) (us)}:l

gPW/‘L s, tu

d. Feynman diagram involving the fermion interaction (e)
Finally, we evaluate the diagram involving fermion in- (AS1)

teractions. The fermion vertex is expressed as follows: We can perform the Wick contractions:
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1
<§ VFVF> ~ / dl]dtzz TrTr

1Pl 2gPW:“ St
Shw ( I i 123 _ M( ) 1M DK )
X I'e —T frx"MPe P
,BN() %JpZMl fPZ FI — 4 fP P2 1JK FM
% I‘A(_l)Mf(ijr)elwhl(tl tz)Y(lle/JIrl)Y(JJlujj/)ll gIPB\);/VM Z Z ?2 S ,5(— 1)M2- =) i@ty (11— zz)Y(j,jM)Y(Jj;/I,VI2
0 1, M,
2 2
Spw M ( L rp Bip 1 npy M( 1 )2 POS PR
X — I Pgp + — —T — ) fror PSS PR PLg
BN, hZJZM P 4 P Pz) ok FoE
X TB(—1)Ms =G~ Jselwns (=t Y(J&V;Z)Y(J Ji) [ (A52)

We can evaluate the traces of products of gamma matrices. We obtain the following result

2
hw i ghw’
< VFVF> zqu< 32 szvvo Z ?2 +64 /PBVIVVO > ?2 )‘Ifm. (A53)

123 I ks

3. Two-loop effective action
a. Bosonic two-loop effective action

We calculate the bosonic two-loop effective action of the plane wave matrix model as follows:

Ao 1 1 gaw
W“’“P:(—V + 2 VaVs + 2V V, > = 322002 N N N ] \If
B 4 2 3V3 2 1PL BNO ATREE 123 ?2 123

1

- gPWIU“ Uit DUni)t plwidt
=-32 TrY )4 Y
,IZ,Z ZJZM JZZMZ ,@ZMg I TR EEM (2 4+ w20 () + D) (@] + w (T, + 1))

20 i) i) Pl
X Tr¥ /1 ) P P, (A54)

Note that on the analogy with the large N reduced model on a flat background. So we obtain that

o nitss s $ S S S 5SS S S

Inly r=1 ;=0 M{==J, 1, =—J, Ja=0 Ma=—1J5 §1,——J, Js=0 My=—J3 ;= —J,

1, + DRI, + D(2J; + 1) (11 J, Js ) (J, b I )2
(0} + p2, () + D) 0] + w?hUs + D)\ M, M, M, 1, M, M;)]’

(A55)

where we define that p/2 = M, g/2 = M,, and (—p — q)/2 = M, and use the following relation:

1 b L\(J T T
20 D) Plinns i,
Tryy,v;l P et N—»( 1)22=2/= \/(2J1+1)(2J2+1)(2J3 1)(M M22 M33)(A/Ill Mzz M33) (AS6)

where (- - ) represents the 3-j symbol of Wigner [38,39]. We have a cutoff such that r < 2A, so the maximal value of J and
M are Ny and A, respectively. Then, we separate the sums over J into two parts at A. After dividing the overall factor ),
we can obtain that

2, + D)2J, + D(2J5 + 1)

BNO Z Z Z Z Z Z z Z Z Z (w[2l + i+ 1))(60122 + whh(J, + 1))

Ll h=0M=—Jy M=—J, J,=0Ma=—Js Ni,=—J, 3=0M3=—J5 pj;=—1J,

J J I\ J J J5 \? 2 2 - — e 2J, + 1)(2J, + 1)(2J; + 1
><< 1 2 3 ) ( ~1 ~2 ~3 ) _ _328pw,U« Z Z Z Z . ( 21 ) 2 2)( 32 ) ‘
Ml M2 M3 Ml M2 M3 BNO 11,1, J;=0 J,=0 J;=0 (wll + M JI(JI + 1))(&)12 + M ‘IZ(JZ + 1))

(AS57)
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Note that we consider the following cutoff scale: T << A. We thus obtain that

(o) [e o)

W2toor — 3 Shwh’ 5 i

BNy 11,1y ky =0 k=0 k3=0

where we set that k; = 2J;, k, = 2J,, and k3 = 2J5. The
summations over k|, k,, and k5 can be approximated by the
integrals over

_Jak +2)

rT

_ Viy(ky +2)

X2
rT

_ V&2

rT

(A59)

X3

In a high temperature limit, we obtain the following equa-
tion:

32gPW'u Zf dxydxydx;r*T?x, 1> T?x, P2 T? x5
1L

1
X
(L, T)* + 2T (27, T)* + X3T?)

2 2 o
= —32M2Mz [ dx,dx,dxs

X1X2X';
((27711)2 + x)(27h)? + x3)°

(A60)

We want to evaluate the sum of the following form:

X2

:Z :Z (27711)2+x (2mly)* + X3

(A61)

Since the function % coth($) has poles at z = 27li and is
everywhere else bounded and analytic, we may express
Eq. (A61) as a contour integral as follows:

1 —X 1 Z]) 1 f —Xp 1
— bdy 5~ coth(Z)— 44 =
2mf G- a2® (2 27 232

22 1 X1 1 X2
X coth| =) = = coth| — ) - = coth[ = ).
cot (2) 2cot (2) 2cot (2)
Then, with a suitable rearrangement of the exponentials in

the hyperbolic cotangent, we obtain that

1+1 1 1 1 1 1
4 2e1—1 2e2—1 e —le2—1"

(A62)

(A63)

Therefore, we can get the bosonic two-loop effective action
as follows:

2 2
NP oW~ [ 1 1
WEo® = —32/577 N jo dxldxzdxm(Z +3
1 1 1 1 1 )
X + = + :
e —1 2e2—-1 et —1le2—1
(A64)

(ky + D(ky + (ks + 1)

(A58)

(‘”1 + " ki(ky + 2))(a) s T ka(ky + 2))

|
b. Fermionic two-loop effective action

We calculate the fermionc two-loop effective action of
the plane wave matrix model as follows:

Shwi’ 1
-32
IBNO hlzhz ,-Pz Q,z

g%wu
+ 64 )‘I’ .
BNO 1122 TZ Q2 123

First, we calculate the first term of the fermionic two-
loop effective action as follows:

(A65)

2
Wiloop _ 35 gPW:U' g \If
F(0) ENO hzhz % ; 123 ’PZ 123
L3030 33>

BN;
0 hyhy stud, My Jo,Ms J3M;

st plUnii)t Uit
X Ty s Vs Ty

1
D)@, + p250; + 1)

(A66)

X
(@, + p?1U; +
O ) Pl iu) Yls)
XTeY 5o Y o Y g
In the same way as the bosonic two-loop effective action,

we obtain that

— 32572280 Shw i [ dx dx,dx;
No hyhy
X1 XoX3

N T T

Similarly, we evaluate the sum of the following form:

00 (o]

Z Z X1 X2
(2mh))* + x? 2mh,)? +

hy=—00 hy=—00

(A68)

Since the function % tanh(3) has poles at z = 27hi and is
everywhere else bounded and analytic, we may express
Eq. (A68) as a contour integral as follows:

1 —x] 74 —x, 1
( )2 J‘“ —x22

— bdr ——L
m f A2 ®

1 1
X tanh(—2> =— tanh(ﬁ) c = tanh(ﬁ).
2 2 2) 2 2

Then, with a suitable rearrangement of the exponentials in
the hyperbolic tangent, we obtain that

(A69)
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1 1 1 1 1 1 1

J—— - — + . A70
4 2e+1 2e2+1 er+len+1 (A70)
Then, we calculate the second term of the fermionic two-loop effective action as follows:
NP 64 1
2-loop __ gPWIU“ [ 2
w dx,dxydx;r>T?x, r*T?x, 1> T? x5
F(1) BN, llzhz (Qal T)? + 2T ((2mh,T)? + x3T?)
_ Cgbun D f dx, dxydx; 15T GlRoL (A7)
14X20X3 .
NO I ((27Tll)2 + x%)((277h2)2 + x%)
Similarly, we calculate the sum of the following form:
X 1 f _X1 1 <Z1) f — X 1 (Zz)
5 = 5— ¢ dz; 5—— 5 coth — ¢ dz;, —— = tanh{ =
Z - (27l )2 +x2 Quhy)* + X2 2mi 2 2)2mi 22 -2 2
1 1 2 2
= — coth = — N1 -
2 ()2 () ( ex‘—l)( e"2+1>
1 1 1 1 1
=—+= - = . (A72)
4 26"'—1 2e?+1 e —le+1
Therefore, we can get the fermionic two-loop effective action as follows:
32 2 1 1 1 1 1 1 1
2-loop _ gPWM 572 [ ( )
W ———1r°T dx dx,dx3x - = +
BN, IEREBBG  2en+1 2641 et tlen+1
6485w 1> 1 1 1 1 1 1 1
+ —2PWT 6T2f dx,dx,dxsx ( - — ) A73
BN, IEREBBE T 2en =1 2em 1 e —lev + 1 (A73)
c. All contributions of two-loop effective action
We summarize the two-loop effective action of the plane wave matrix model at finite temperature as follows:
2 0] __ 1ir2-loo| #72-loop
W 2loop = WP W
3283 u? 00 x) 1 1 1 1 1 1
= 2w r6T2[ dxldx2/ b dx3x3< + +2 )
BN, 0 x; = et —le2—1 et +le2+1 e —le2+1
6483 1> o0 by X X X X X P
= —Mréﬂj dxldx2< ! 2 4N 2_ 4o M 2 >= ot EPWE 6y,
BNy 0 e —le2—1 er+le2+1 e —le2+1 Ny
(A74)
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