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3LMPT, CNRS-UMR 6083, Université de Tours, Parc de Grandmont, 37200 Tours, France
(Received 10 December 2008; published 4 March 2009)

The radiation loss of small-amplitude oscillons (very long-living, spatially localized, time-dependent

solutions) in one-dimensional scalar field theories is computed in the small-amplitude expansion analyti-

cally using matched asymptotic series expansions and Borel summation. The amplitude of the radiation is

beyond all orders in perturbation theory and the method used has been developed by Segur and Kruskal in

Phys. Rev. Lett. 58, 747 (1987). Our results are in good agreement with those of long-time numerical

simulations of oscillons.

DOI: 10.1103/PhysRevD.79.065002 PACS numbers: 11.10.Lm, 11.27.+d

I. INTRODUCTION

Time-dependent spatially localized solutions in various
field theories, which are long-living in the sense of staying
localized much longer than the light crossing time, had
been already found in the 1970s [1–4] and ever since they
are still attracting considerable interest [5–8]. An obvious
reason for interest is the unexpected longevity of these
objects, all of which exhibit nearly periodic oscillations
in time. The presence of at least one real massive scalar
field seems to be necessary in order that such long-living,
spatially localized field oscillations—oscillons—could
form. Since oscillons appear in the course of time evolution
starting from rather generic initial data, this provides an-
other reason to consider them of physical importance.
Oscillons have been found to form in physical processes,
e.g., as a result of vortex-antivortex annihilation in a two-
dimensional Abelian Higgs model [9], domain wall col-
lapse in �4 theory [10], QCD phase transition [11], or
during symmetry breaking in a three-dimensional
Abelian Higgs model [12]. Therefore there is some reason
to believe that oscillons (or configurations close to them)
influence the dynamics, and they play a role in phase
transitions, cosmology, and the dynamics of extended ob-
jects (cosmic strings, domain walls, etc.), see, e.g., [13–
16]. Importantly oscillons have been also found in the
bosonic sector of the standard model [17–19]. There are
attempts for including fermion fields in the study of oscil-
lons [20]. Oscillons resemble breathers of the one-
dimensional sine-Gordon (SG) theory, with the important
difference that unlike true breathers they are continuously
losing energy by slow radiation. An oscillon just like a
breather possesses a localized ‘‘core,’’ but differs signifi-
cantly in its ‘‘radiative’’ region outside of the core.
Oscillons have been observed in various spatial dimen-
sions, from d ¼ 1 up to d ¼ 6 [21,22], there is, however,
a marked difference between oscillons in d � 2 and in d >
2. In dimensions d ¼ 1, 2 oscillons can be well described
by an adiabatic time evolution of breatherlike configura-

tions with an ever-decreasing amplitude and with an in-
creasing frequency tending towards a limit determined by
the mass threshold [23–25]. In higher dimensions there are
various types of oscillons; they exhibit instabilities and
their behavior is more complex [7,8,26]. Oscillons have
been studied on a 1þ 1 dimensional expanding back-
ground in Refs. [27,28].
In this paper we consider oscillons in scalar field theo-

ries with a general self-interaction potential in one spatial
dimension. So far most work on oscillons has been either
purely numerical or based on various approximations. For
example, oscillon energy and lifetime have been recently
estimated in Ref. [29]. Our starting point is the small-
amplitude expansion [30,31] which yields breatherlike
configurations with spatially localized cores. The small-
amplitude expansion yields an asymptotic series for the
core. Solutions of the field equations are either periodic in
time or are radiating. In the first case standing wave tails
are present outside of the breather core, whereas in the
radiative case there are outgoing waves. The latter corre-
spond to oscillons. Following Segur and Kruskal [32] and
adapting the approach developed in Refs. [33,34] we com-
pute analytically one of the most important physical char-
acteristics of oscillons, the amplitude of the outgoing wave
responsible for their eventual demise. Although strictly
speaking our results are only valid for small-amplitude
oscillons, this is not a major drawback, since in d ¼ 1
the long-time behavior of any oscillon (which is what we
are interested in) is determined by that of the small-
amplitude one. The energy loss of a small-amplitude os-
cillon in d ¼ 1 to leading order can be written as

dE

dt
¼ �Ae�B=E; (1)

where E is the energy of the oscillon core, and A and B are
constants determined by the theory. The corresponding
equation for the �4 theory has been found first in
Ref. [32]. Geicke [35] has verified numerically the asymp-
totic energy loss following from Eq. (1), i.e., EðtÞ � B= lnt.
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Since this is not a completely straightforward numerical
exercise (one has to prepare very good initial data, one
needs long-time simulations to high precision, etc.) we
have also made a detailed numerical investigation. For
small enough amplitudes, ", one has E / " and it is clear
that the energy loss is beyond all orders in ". In this work
we compute the constants A, B analytically, using matched
asymptotic expansion and Borel summation techniques, as
well as by an independent numerical method. Also we have
been able to give convincing numerical evidence for the
validity of the radiation law (1) by preparing good initial
data and performing long-time simulations. We have also
checked the validity of our analytical and numerical results
on the example of the sine-Gordon theory where A is
exactly zero.

The plan of this paper is the following: First, in Sec. II A
we present the essential points of the small-amplitude
expansion in a one-dimensional scalar field theory and
relate it to the Fourier expansion of time-periodic solu-
tions. Then we analytically extend the solution of the mode
equations to the complex plane. In Sec. II B we relate the
radiative tail of oscillons to an exponentially small correc-
tion to the asymptotic expansion. In Sec. II C the radiation
law, Eq. (1), is derived. In Sec. II D we determine the
amplitude of the exponential correction by solving numeri-
cally the Fourier mode equations in the complex plane. In
Sec. II E the Borel summation procedure is used to calcu-
late this correction analytically. In the second half of the
paper numerical simulations are presented supporting the
earlier analytical results. In Secs. III A and III B we intro-
duce the methods used in numerical simulations and for
generating good initial data starting from the small-
amplitude expansion and employing a tuning, respectively.
In Sec. III C we estimate the lattice effects by putting the
sine-Gordon breather on the lattice and measuring its
energy loss. In Sec. III D we investigate �4 oscillons
evolving from initial data extracted from the small-
amplitude expansion. We found that the functional form
of the theoretical radiation law, Eq. (1), fits our data points;
however, the fitted value of A differs from the theoretical
one. One reason for the disagreement is the exceptionally
small value of A in the �4 theory. Furthermore we have
performed simulations starting with the initial data of Ref.
[35]. In Sec. III E we investigate oscillon radiation in a
specific �6 theory where the value A is maximal. In this
case our numerical results agree with the theoretical one
with satisfactory precision.

II. ANALYTIC APPROACH TO OSCILLON
RADIATION

A. Small-amplitude expansion

We consider a real scalar theory in a 1þ 1 dimensional
Minkowski space-time, with a general self-interaction po-
tential, Uð�Þ. The equation of motion is just a nonlinear
wave equation (NLWE) given by

��;tt þ�;xx ¼ U0ð�Þ ¼ �þ X1
k¼2

gk�
k; (2)

where� is a real scalar field. In Eq. (2) the mass of the field
is chosen to be 1, and it has been assumed that the poten-
tial, Uð�Þ, can be written as a power series in � where the
gk are real constants.
As explained in detail in Refs. [30,31] small-amplitude

solutions of Eq. (2) can be represented by the series:

� ¼ X1
k¼1

"k�kð�; �Þ; (3)

where " is a small parameter and the coordinates have been

rescaled as � ¼ !t and � ¼ "x, with ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p
. The

time dependence of the functions �kð�; �Þ is found to be
determined recursively by a set of (forced) oscillator equa-
tions. For example the first few �k can be written as

�1 ¼ p1ð�Þ cos� �2 ¼ 1

6
g2p

2
1ð�Þðcosð2�Þ � 3Þ

�3 ¼ p3ð�Þ cos�þ 1

72
ð4g22 � 3�Þp3

1ð�Þ cosð3�Þ;
(4)

where p1ð�Þ, p3ð�Þ are given in terms of the parameters of
the potential and of a single function, Sð�Þ as

p1ð�Þ ¼ Sð�Þffiffiffiffi
�

p ;

p3ð�Þ ¼ 1

�5=2

��
1

24
�2 � 1

6
�g22 þ

5

8
g5 � 7

4
g2g4 þ 35

27
g42

�

� Zð�Þ � 1

54
�g22Sð�Þð32þ 19S2ð�ÞÞ

�
; (5)

together with Z ¼ Sð4� S2Þ=3, and �¼5g22=6�
3g3=4>0. The function Sð�Þ is a globally regular solution
of the following nonlinear equation:

d2S

d�2
� Sþ S3 ¼ 0: (6)

By fixing the center of symmetry at � ¼ 0 the regular
solution of Eq. (6) is given simply by

Sð�Þ ¼ ffiffiffi
2

p
sechð�Þ: (7)

The only condition on the potential ensuring the existence
of an exponentially decreasing solution to Eq. (6) is the
positivity of the parameter �. It is clear that each term in
the series Eq. (3) is exponentially decaying in space and is
periodic in time, hence if it would converge it would yield
exponentially localized breathers. It has been demonstrated
by Segur and Kruskal [32] for the example of the�4 theory
with Uð�Þ ¼ �2ð�� 2Þ2=8 that the small-amplitude ex-
pansion (3) does not converge, actually it is an asymptotic
series. Nevertheless for sufficiently small values of " this
asymptotic series constitutes an excellent approximation
for oscillons of frequency !ð"Þ over a large interval in �
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[31]. The physical reason for the absence of spatially
localized, exactly time-periodic breathers is simply that
for generic potentials, time-dependent solutions of the
NLWE (2) radiate. This makes it very plausible that the
asymptoticity of the series (3) in general models is due to
radiative phenomena. An interesting prototype exception,
i.e., when (3) converges, is the celebrated breather solution
of the sine-Gordon theory, whereUð�Þ ¼ 1� cosð�Þ. The
SG breather can be written as

�ðx; tÞB ¼ 4 arctan

�
" sinð!ð"ÞtÞ
!ð"Þ coshð"xÞ

�

¼ 4 arctan

�
"ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� "2
p Sð�Þ sin�ffiffiffi

2
p

�
: (8)

It is a simple matter now to show that the small-amplitude
expansion of the SG breather yields a convergent series,
indeed. Let us note here that in Eq. (8) j"j< 1, and it is not
necessarily small. By performing the " expansion of (8) we

obtain

�ð�; �ÞB ¼ ffiffiffi
2

p
"Sð�Þ½2þ "2 � "2S2ð�Þ=4� sin�

þ ffiffiffi
2

p
"3S3ð�Þ sinð3�Þ=6þOð"5Þ (9)

and it is easy to see that this series converges for j"Sj< 1,

thus for " < 1=
ffiffiffi
2

p
the small-amplitude expansion of the

SG breather converges.
For a given theory the series (3) is unique. Since all of its

terms are time-periodic, it represents a family of breather-
like solutions in the sense of an asymptotic series. At this
point it is natural to look for time-periodic solutions of the
NLWE Eq. (2) by expanding the field� in a Fourier series:

�ð�; �Þ ¼ X1
k¼0

�kð�Þ cosðk�Þ; (10)

leading to an infinite set of mode equations for the �k

�
"2

d2

d�2
� 1

�
�0 ¼ g2�

2
0 þ g3�

3
0 þ

�
3g3
2

�0 þ g2
2

� X1
m¼1

�2
m þ g3

4

X1
m;p;q¼1

�m�p�q�m;�p�q þ . . . ;

�
"2

d2

d�2
þ ðn2!2 � 1Þ

�
�n ¼ ð3g3�2

0 þ 2g2�0Þ�n þ
�
3g3
2

�0 þ g2
2

� X1
m;p¼1

�m�p�n;�m�p

þ g3
4

X1
m;p;q¼1

�m�p�q�n;�m�p�q þ . . . ; n ¼ 1; 2; . . . ; (11)

where �m;�p�q ¼ �m;pþq þ �m;p�q þ �m;�pþq þ
�m;�p�q. A remarkable simplification takes place, if the
potential is symmetric around zero, i.e., g2k ¼ 0 for k ¼
1; 2; . . . . In this case only the odd Fourier coefficients are
nonzero in the Fourier expansion and the mode equations
take the form:�

"2
d2

d�2
þ ðn2!2 � 1Þ

�
�n

¼ g3
4

X1
m;p;q¼1

�m�p�q�n;�m�p�q þ . . . ;

n;m; p; q ¼ 1; 3; 5 . . . : (12)

Equations (11) admit solutions with a spatially well-
localized core and an oscillating (standing wave) tail
whose amplitude tends to a constant for jxj ! 1. The
asymptotic tail can be approximated as consisting of a
superposition of standing waves of frequencies n!, n ¼
2; 3; . . . . We note that for bounded solutions all modes �n

for n > 1 contain two parameters which can be interpreted
as an amplitude and a phase of the corresponding fre-
quency standing wave. We are interested in solutions for
which the amplitudes of the tails are much smaller than that
of the core, and these are the ones related to oscillons.
Because of the existence of the asymptotic standing wave

tail these solutions are not unique. Intuitively it is clear that
for a given frequency, solutions with the smallest possible
amplitude standing wave tail should be close to the ‘‘inner
part’’ of oscillons. It is quite plausible that for a fixed value
of ", the solution with a minimal amplitude tail and being
symmetric with respect to the origin is actually unique.
This hypothesis is supported by the results of Ref. [26],
where such breather-type solutions have been named qua-
sibreathers. Another type of quasibreather is the (most
likely unique) solution, for which all modes, �n ! 0 ex-
ponentially for say x ! �1, with a small-amplitude os-
cillating tail in the other direction. We shall refer to such
objects as asymmetric quasibreathers.
For sufficiently small values of " the tail amplitudes

become exponentially small in ". In this case the core can
be treated separately from the tail, and a linear superposi-
tion of the two is a very good approximation to the solu-
tion. One can verify that the small-amplitude expansion of
(11) reproduces the terms of the asymptotic expansion (4).
We remark that the small-amplitude expansion represents
an essentially unique core. As already mentioned the am-
plitude of the standing wave tail isOðexpð�1="ÞÞ, i.e., it is
beyond all orders in perturbation theory. Segur and Kruskal
(SK) [32] has worked out a method to compute this ‘‘tran-
scendentally small’’ amplitude on the example of the �4

theory using matched asymptotic series expansion. In the
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following we shall use the SK method to find the amplitude
of the standing wave tail of quasibreathers when " ! 0.
The main idea of the SK method is to define an ‘‘inner’’
problem in the complex �-plane in the neighborhood of the
singularity of S closest to the real axis. Clearly it is located
at � ¼ �i�=2 where the function S has a simple pole. In
fact close to the pole at i�=2

SðyÞ ¼ � i
ffiffiffi
2

p
"y

þ i
ffiffiffi
2

p
"y

6
þOðð"yÞ3Þ; (13)

where the rescaled variable y is defined as

� ¼ i�=2þ "y: (14)

The inner problem is defined by the rescaled variables near
the singularity and keeping only the leading terms in ". For
example, for symmetric potentials the inner equations are

�
d2

dy2
þ ðn2 � 1Þ

�
�n ¼ g3

4

Xþ1

m;p;q¼1

�m�p�q�n;�m�p�q

þ . . . (15)

where it has been also used that!2 ¼ 1 to leading order in
". We look for such solutions of the mode equations of the
inner problem, which can be matched to the solution of the
outer problem. In our case the outer problem is defined by
the analytic continuation of the small-amplitude expansion
from the real axis. The matching region is parametrized in
the following way:

�
j"yj � 1ð"y ! 0Þ; jyj � 1ðjyj ! 1Þ;

�� � argðyÞ � ��

2

�
: (16)

Making use of the fact that the leading " order of�n on the
real axis is proportional to "nSn it follows that in the
matching region

�0 ¼
Xþ1

k¼2

að0Þk

yk
þOð"2Þ (17)

�n ¼ Xþ1

k¼n

aðnÞk

yk
þOð"2Þ (18)

where the coefficients aðnÞk are uniquely determined by the

small-amplitude expansion on the real axis. The first few
terms in the expansion (17) and (18), up to order 1=y4, can
be written as

�0 ¼ g2
�

1

y2
þ . . .

�1 ¼ � i
ffiffiffi
2

p
ffiffiffiffi
�

p 1

y
� i2

ffiffiffi
2

p

3�2
ffiffiffiffi
�

p
�
1

24
�2 þ 8

9
�g22 þ

5

8
g5

� 7

4
g2g4 þ 35

27
g42

�
1

y3
þ . . .

�2 ¼ � g2
3�

1

y2
þ . . . �3 ¼ i

ffiffiffi
2

p ð4g22 � 3�Þ
36�3=2

1

y3
þ . . . :

(19)

B. Correction beyond all orders

In this subsection we will construct an exponential cor-
rection to the asymptotic series, Eq. (19), which after
matching to the outer region determines the amplitude of
the standing wave tail. A correction beyond all orders to a
divergent series might seem meaningless at first glance,
however, following Ref. [32], we can give meaning to the
method by finding a place where at least the imaginary part
of the original series converges. This region is the imagi-
nary axis Rey ¼ 0, where the algebraic asymptotic series
(19) is real, so Im�n ¼ 0, and the imaginary part of the
series converges trivially. We divide �n into real and
imaginary parts,

�n ¼ �n þ i�n; (20)

and decompose the inner version of Eq. (11) (with " ¼ 0
and using the variable y) into real and imaginary parts.
Then one can linearize the imaginary parts of the mode
equations, and obtain coupled linear differential equations
for �n along the imaginary axis. These equations contain
�m terms multiplied by various powers of �k. As a first
approximation, in the matching region these can be ne-
glected, and one gets decoupled homogeneous linear dif-
ferential equations with constant coefficients for �n. For
�0 the solutions are�0 ¼ expð�yÞ, which are oscillating,
nondecreasing functions in the direction of the imaginary
axis and have to be omitted, as they cannot be matched to
the " expansion on the real axis. The solutions for �1 are
linear in y and the matching conditions forbid them as in
the previous case. The solutions �n for n > 1 which are
tending to zero as Imy ! �1 are

�n ¼ �n expð�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
yÞ: (21)

Because of linearization one cannot determine the ampli-
tudes �n; methods to calculate them will be presented in
the next subsections.
If �2 � 0 the dominant among the exponential correc-

tions is �2 which will yield the leading term in the radia-
tion. It is possible to get correction terms to �n by taking
into account terms proportional to �k in the differential
equations and substituting them by the leading-order terms
of the asymptotic expansion. Also considering the coupling
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between different �n, we get

�2 ¼ �2 expð�i
ffiffiffi
3

p
yÞ
�
1þ 2i

ffiffiffi
3

p ðg22 � 3�Þ
9�y

þO
�
1

y2

��

þO
�
1

y
expð�i

ffiffiffi
8

p
yÞ
�
: (22)

In the case of symmetric potentials �2ks are absent, so the
dominant contribution comes from

�3 ¼ �3 expð�i
ffiffiffi
8

p
yÞ
�
1� i

y
ffiffiffi
2

p þO
�
1

y2

��

þO
�
1

y2
expð�i

ffiffiffiffiffiffi
24

p
yÞ
�
: (23)

Similar exponential correction appears in the neighbor-
hood of the singularity �i�=2. We should still match the
correction to the imaginary part, Eq. (22), to the solution on
the real axis. Hence we linearize the equation of �2, (11)
about the quasibreather core and get the following solution:

��2 ¼ C sinð ffiffiffi
3

p
xþ �Þ; (24)

where C and � are arbitrary constants. We analytically
continue ��2 to the complex plane. We match it to the
exponential correction (22) obtained in the inner region
around the pole i�=ð2"Þ, and to the corresponding expres-
sion around �i�=ð2"Þ. This determines C and �

C ¼ 2�2 exp

�
�

ffiffiffi
3

p
�

2"

�
; � ¼ 0: (25)

Neglecting contributions from higher Fourier modes the
derivative of the field � in the origin oscillates as

@x�jx¼0 ¼ 2�2 exp

�
�

ffiffiffi
3

p
�

2"

� ffiffiffi
3

p
cosð2tÞ: (26)

For symmetric potentials the above matching procedure
works in a completely analogous way. The original prob-
lem of determining a periodic solution of the field equa-
tion, Eq. (2), is well posed if we impose boundary
conditions. We use the boundary conditions introduced
by Segur and Kruskal in Ref. [32], namely, we require
the field to vanish at x ! �1 and that the solution remains
bounded. These requirements provide sufficient conditions
to make the solution unique. We obtained a time-periodic
solution of the field equation which is asymmetric with
respect to x ¼ 0. It is clearly not a breather, since it has a
standing wave tail in x ! þ1 and in this sense it is weakly
localized.

We can add a transcendentally small standing wave to
�2 as it solves the corresponding linearized mode equation
about the asymmetric quasibreather (AQB) denoted by
�AQB, and it will give the leading-order transcendental

term in the new solution. Therefore one can write a sym-
metric configuration �S in the following form:

�S ¼ �AQB þ�st; (27)

where �st denotes a transcendentally small standing wave.

�st has to make �S symmetric about the origin. This
requirement is enough to uniquely determine it. The de-
rivative of �AQB at x ¼ 0 is given by (26), hence

�st ¼ 2�2 exp

�
�

ffiffiffi
3

p
�

2"

�
cosð ffiffiffi

3
p

xþ 	Þ
sin	

cosð2tÞ; (28)

where 	 is an arbitrary constant. The symmetric configu-
ration with the minimal amplitude tail, corresponding to
	 ¼ �=2, has been named quasibreather in Ref. [31]. This
result is consistent with our knowledge about symmetric
solutions, as when we take into account the standing wave
tail in one mode, one of the two free parameters is required
for symmetrization. From Eq. (28) one immediately gets
the standing wave tail of the asymmetric quasibreather:

�AQB ¼ 4�2 exp

�
�

ffiffiffi
3

p
�

2"

�
sinð ffiffiffi

3
p

xÞ cosð2tÞ
for x ! þ1: (29)

In conclusion we were able to determine the asymptotic
field of the asymmetric and symmetric quasibreathers up to
one parameter �2 (�3). InSecs. II D and II E we will deter-
mine this parameter.

C. Radiation law for small-amplitude oscillons

We can construct a symmetric time-dependent solution
of the field equation by repeating the same steps as in the
time-periodic case and replacing the standing wave �st

with a moving wave �rad. Let us denote the oscillon field
with �osc. Then from �osc ¼ �AQB þ�rad it follows that

�rad ¼ �2�2 exp

�
�

ffiffiffi
3

p
�

2"

�
sinð ffiffiffi

3
p

xþ 2tÞ: (30)

We find that the amplitude of the tail of the quasibreather
determined by 	 ¼ �=2 is equal to the amplitude of the
outgoing radiation from the corresponding oscillon. This
property has been already noted in Ref. [26].
After the little digression on quasibreather tails and the

determination of the oscillon radiation field we focus on
the radiation law. The asymptotic oscillon field from Eq.
(30) is

�osc ¼ 2�n exp

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p

2"

�
sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
x� ntÞ

for x ! þ1; (31)

�osc ¼ �2�n exp

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p

2"

�
sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
xþ ntÞ

for x ! þ1; (32)

where n ¼ 2 for asymmetric potentials and n ¼ 3 for
symmetric potentials.
The energy carried away by these oscillating tails deter-

mines the time-averaged radiation powerW of the oscillon:
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dE

dt
¼ W ¼ �4n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
�2
n exp

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p

"

�
: (33)

Since the radiation field is transcendentally small, it is
reasonable to assume that during its time evolution the
core of the oscillon goes through undistorted quasibreather
states. This statement will be referred to as the adiabatic
hypothesis. The energy content E of the core of the quasi-
breathers as a function of " (or equivalently as a function of
its frequency !) is easily determined, it is given by

E ¼ 2"

�
þOð"3Þ: (34)

Now the equation determining the change of the core
energy with time (energy loss) for oscillons can be seen
to be of the form given by Eq. (1). From Eq. (1) one can
easily deduce that the leading-order late-time behavior of
the energy is given as

EðtÞ 	 B

lnt

�
1� 2 ln lnt

lnt

�
: (35)

In this subsection the radiation law for small-amplitude
oscillons has been determined up to a single unknown
parameter, A. The problem of finding A or what is equiva-
lent the parameters �2 or �3 will be done in the following
two subsections.

D. Determining the radiation amplitude by solving the
complex mode equations numerically

In this subsection we numerically determine the leading
radiation amplitude coefficients, namely �2 for asymmetric
potentials and �3 in the case of symmetric potentials. First,
we consider the �4 theory, in which case the only non-
vanishing coefficients in the expansion of the potential are
g2 ¼ � 3

2 and g3 ¼ 1
2 . We consider various order trunca-

tions of the Fourier mode Eqs. (11) in the region close to
the singularity. To illustrate our method we present in more
details the calculations for the simplest truncated system
that radiates, i.e., that for which only up to cosð2�Þ modes
are kept. For the inner problem, in the " ! 0 limit, the
mode Eqs. (11) are

@2�0

@y2
��0 ¼ 1

2
�3

0 �
3

2
�2

0 þ
3

4
ð�2

1 þ�2
2Þð�0 � 1Þ

þ 3

8
�2

1�2;

@2�1

@y2
¼ 3

2
�2

0�1 þ 3

4
�1ð�2 � 2Þð2�0 þ�2Þ

þ 3

8
�3

1;

@2�2

@y2
þ 3�2 ¼ 3

2
�2

0�2 þ 3

4
�2

1ð�0 þ�2 � 1Þ � 3�0�2

þ 3

8
�3

2: (36)

Expanding the mode equations into powers of 1=y

�i ¼
X1
j¼1

aðiÞj
1

yj
; (37)

we find that all coefficients are fixed after choosing að1Þ2 and

the sign in að1Þ1 ¼ �2i=
ffiffiffi
3

p
. Furthermore, að0Þj ¼ 0, for j <

2 and aðjÞi ¼ 0 for j < i. In order to agree as well as
possible with (19) obtained from the " expansion evaluated

at the singularity region we set að1Þ2 ¼ 0 and að1Þ1 ¼
�2i=

ffiffiffi
3

p
. Then it turns out that aðiÞiþ1þ2j ¼ 0 for all integer

j. Raising the truncation order high enough by adding more
Fourier modes to the system all coefficients will neces-
sarily agree with (19). The expansion consistent with (36)
is

�0 ¼ � 1

y2
� 131

12y4
� 461381

1728y6
� 631478123

51840y8
þO

�
1

y10

�
;

�1 ¼ � iffiffiffi
3

p
�
2

y
þ 17

3y3
þ 103877

1728y5
þ 8278867

5760y7
þO

�
1

y9

��
;

�2 ¼ 1

3y2
þ 16

9y4
þ 107597

5184y6
þ 19189237

38880y8
þO

�
1

y10

�
: (38)

According to expansion (38) the imaginary part �2 ¼
Im�2 vanishes to all orders on the imaginary axis.
However, this is not a convergent but an asymptotic series,
and the actual solution of (36) may include an exponen-
tially small correction to �2 on the imaginary axis, in
accordance with (22). Of course, the value of �2 will
depend on the chosen boundary conditions. The method
introduced by Kruskal and Segur [32] is to integrate the
differential equations numerically along a constant Imy ¼
yi line from a large negative Rey ¼ yr value to the axis
Rey ¼ 0. The boundary conditions at y ¼ yr þ iyi are
given by the expansion (38) and its derivative, truncated
to an appropriate order in 1=y. This works well for modes
�i with i 
 1, but �0 has the tendency to exponentially
blow up along constant Imy lines. This numerically prob-
lematic issue can be avoided by treating the equation for
�0 as a two-point boundary value problem, setting�0 ¼ 0
at the axis point y ¼ iyi and using the asymptotic series as
the boundary value at y ¼ yr þ iyi. The other modes are
treated as initial value problems by specifying their value
and first derivatives at y ¼ yr þ iyi. We note that in the
case of symmetric potentials �2i ¼ 0 everywhere, and the
integration procedure simplifies to the pure initial value
problem. In that case the first radiating mode is �3.
For the actual numerical integration of the�4 system we

have chosen various yi values in the interval ½�5;�13�, yr
in ½�20;�500�, and the expansion in the initial data was
truncated to orders from 4 to 20. The equations were
generated by Maple, and its default boundary value prob-
lem differential equation solver was used for the numerical
integration. For yr <�50 the obtained values for�2 were
only changing in the fourth digits on varying yr. The choice
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of truncation order in 1=y in the initial data was not
changing the results in their less than fourth digits if the
order was chosen larger than 8. In Table I. we present the
obtained yi dependence of the imaginary part �2, when
yr ¼ �300 and the initial data is of order 15. According to

(22) we approximate �2 to leading order as �ð0Þ
2 ¼

�2 expð
ffiffiffi
3

p
yiÞ. The 1=y correction gives a more precise

result �ð1Þ
2 ¼ �2 expð

ffiffiffi
3

p
yiÞ=ð1� 1=ðyi

ffiffiffi
3

p ÞÞ. We note that

for the special case of the �4 theory the coefficient of the

1=y2 correction in�2 vanishes, and hence �
ð1Þ
2 is also valid

to second order. For larger values of jyij it is possible to
improve the precision by adding even higher-order
corrections.

From Table I. we may give a first estimate on the actual
value of the radiation amplitude as �2 ¼ ð8:45� 0:03Þ �
10�3. However this value turns out to change drastically
when adding higher Fourier modes to the system (36). In
Table II. we give the calculated values for �2 when keeping
Fourier modes up to order cosðn�Þ. It is somewhat surpris-
ing that the addition of the cosð3�Þ mode changes the sign
of �2, while the magnitude is quite close to the proper
value. The addition of higher than �6 modes does not
make any significant change in the value of �2. As a
conclusion, we can state that �2 ¼ ð�8:454� 0:01Þ �
10�3. The numerical value obtained by Kruskal and
Segur differs by a factor of 2 due to their use of complex
notations for the Fourier modes. In our units their result is
ð�9:0� 2:0Þ � 10�3.

In the case of symmetric potentials �i ¼ 0 for even i,
and the numerical integration method simplifies consider-
ably. A specific example we have looked at is a specific�6

theory, with U0ð�Þ ¼ ���3 þ�5. When using the
mode equations only for �1 and �3 we get �3 ¼

�0:91026. Adding the fifth and seventh modes changes
the result to �0:90982 and �0:90977, respectively. Since
the addition of even higher modes does not make a signifi-
cant change, we can state that for the �6 theory

�3 ¼ �0:9098� 0:0001: (39)

An important check of the reliability of our method is to
calculate �3 for the sine-Gordon potential Uð�Þ ¼
1� cosð�Þ. In this case, when taking into account all the
mode equations and all expansion coefficients in the ex-
pansion of the potential, the exact result is known to be
zero. Instead of changing these independently, when we
solved mode equations up to order �i we assumed that
gj ¼ 0 for j > i. As it can be seen from Table III., the

results appear to tend to zero fast as i increases.

E. Determining the radiation amplitude by Borel
summation of the algebraic asymptotic series

In this subsection we will solve Eq. (15) using the
algebraic asymptotic series ansatz (18) in the neighbor-
hood of the singularity. Our considerations will be appli-
cable to the case of symmetric potentials. At the end of this
subsection we will briefly discuss the problem of asym-
metric potentials. The solution is unique as we have to
match it to the original asymmetric quasibreather contin-
ued analytically from the real axis. We truncate both the
Taylor expansion of the potential and the Fourier expan-
sion in order to have a finite set of equations and will work
until we reach convergence as in Sec. II D.

We will demonstrate how the determination of aðnÞk co-

efficients works for big k in leading order of k in the case of
the minimal system �1 and �3 with a cubic nonlinearity.

TABLE I. Dependence of the exponential correction �2 on the location of the integration line Imy ¼ yi for the �
4 theory truncated

at cosð2�Þ. The corresponding radiation amplitudes �ðnÞ
2 are also given by taking into account n-th order corrections in 1=y.

yi �2 �ð0Þ
2 �ð1Þ

2 , �ð2Þ
2 �ð4Þ

2 �ð6Þ
2

�4 9:58187 � 10�6 0.00977982 0.00854627 0.00885621 0.00858961

�6 2:86915 � 10�7 0.00935565 0.00853442 0.00863027 0.00859166

�8 8:74658 � 10�9 0.00911169 0.00849838 0.00853980 0.00853022

�10 2:69068 � 10�10 0.00895494 0.00846614 0.00848769 0.00848446

�12 8:31980 � 10�12 0.00884615 0.00844008 0.00845283 0.00845151

TABLE III. Radiation amplitude �3 for the sine-Gordon theory
truncated to order i in both the mode equations and potential
expansion.

i �3

4 2.32

6 �0:2316
8 8:35 � 10�3

10 1:14 � 10�5

12 7:2 � 10�7

TABLE II. Dependence of the radiation amplitude on the order
of the used Fourier expansions in the �4 theory.

n �2

2 8:45 � 10�3

3 �7:115 � 10�3

4 �8:431 � 10�3

5 �8:454 � 10�3

6 �8:454 � 10�3

COMPUTATION OF THE RADIATION AMPLITUDE OF . . . PHYSICAL REVIEW D 79, 065002 (2009)

065002-7



Since að1Þk and að3Þk are vanishing for even k we redefine the
coefficients in order to get a more convenient form:

�1 ¼ i
X1
k¼1

Ak

y2k�1
(40)

�3 ¼ i
X1
k¼2

Bk

y2k�1
: (41)

We will show in the following that the behavior consistent
with Eq. (15) to leading order in k is

Ak � Bk

2k2
(42)

Bk � Kð�1Þk ð2k� 2Þ!
8k�1=2

: (43)

The constantK can be determined by solving the equations
up to some large order k and matching the gained coef-
ficients to the determined asymptotic behavior. To do so,
we write up the mode equations:

d2

dy2
�1 ¼ 3g3

4
�1ð�2

1 þ�1�3 þ 2�2
3Þ (44)

�
d2

dy2
þ 8

�
�3 ¼ g3

4
ð�3

1 þ 6�2
1�3 þ 3�3

3Þ; (45)

and then determine the equations for the coefficients of
1=y2k�1 keeping only terms of order ð2k� 4Þ!:

ð2k� 3Þð2k� 2ÞAk�1 þ 3g3
4

A2
1Bk�1 ¼ 0 (46)

ð2k� 3Þð2k� 2ÞBk�1 þ 8Bk þ 3g3
2

A2
1Bk�1 ¼ 0: (47)

It is easy to figure out the value of A1 from the matching

conditions (19), which gives A1 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�8=ð3g3Þ
p

.
(Obviously we get the same result with an indeterminate
sign by solving Eq. (44) for the coefficient of 1=y3.) Using
the value of A1 we get the asymptotic behavior of Ak from
Eq. (46) already given in Eq. (42). From Eq. (47) we can
even determine the Oð1=k2Þ corrections to the asymptotic
behavior of Bk for large k as

Bk � Kð�1Þk ð2k� 2Þ!
8k�1=2

�
1þ 1

k
þ 5

4k2

�
: (48)

This formula enables us to determine the numerical value
of K very precisely from Bks with moderate k value.

By examining the structure of the equations and making
use of the fact that the algebraic asymptotic series of �n

starts only at 1=yn it is easy to prove that the above
asymptotics do not change. Even the Oð 1

k2
Þ corrections to

Bk are not affected by the involvement of further modes or
higher-order nonlinearities. The only effect of the intro-

duction of further Fourier modes and higher-order nonline-
arities which originate in the self-interaction potential is
the changing of the value K.
On the one hand, this result gives the proof of the

asymptoticity of the series, i.e., the coefficients are not
more gravely divergent than ð2k� 2Þ!. On the other
hand, this property allows us to Borel-sum the series. It
will turn out that the behavior of the Borel-summed series
in the vicinity of its singularity gives us the dominant
radiation field configuration, i.e., the exponentially small
imaginary correction to �3 on the imaginary axis, in the
matching region.
The first step in the Borel summation is

VðzÞ ¼ X1
k¼1

iBk

ð2k� 1Þ! z
2k�1 � X1

k¼1

iK
ð�1Þk
2k� 1

�
zffiffiffi
8

p
�
2k�1

¼ �K

2
ln

�
1þ iz=

ffiffiffi
8

p

1� iz=
ffiffiffi
8

p
�
: (49)

This Borel-summed series has logarithmic singularities at

z ¼ �i
ffiffiffi
8

p
. The Laplace transform of VðzÞ will give us the

Borel-summed series of �3 which we denote by ~�3

~� 3ðyÞ ¼
Z 1

0
dte�tV

�
t

y

�
: (50)

The integrand of Eq. (50) has logarithmic singularities at

t=y ¼ �i
ffiffiffi
8

p
. It has been explained in Ref. [34] how to

compute the integral. We only take into account the singu-

larity t=y ¼ i
ffiffiffi
8

p
and not t=y ¼ �i

ffiffiffi
8

p
, because we would

like to get the correction in the imaginary part of �3 for y
points with negative imaginary parts, as we aim to ap-
proach the real axis. For Imy < 0 the other singularity
stays away from the integration path, while the singularity

from t=y ¼ i
ffiffiffi
8

p
appears for t ¼ i

ffiffiffi
8

p
y. In order to define

the integral for Rey ¼ 0 we use the analyticity of ~�3.
When y is in the matching region determined by Eq. (16)
the singularity in t is in the lower half-plane, i.e., the
contour in Eq. (50) is above the singularity. When Rey !
0 the singularity tends to the real axis and the contour must
stay above the singularity. The logarithmic singularity of
Vðt=yÞ does not contribute to the integral and integrating
on the branch cut starting from it yields the imaginary part

Im ~�3ðyÞ ¼
Z 1

i
ffiffi
8

p
y
dte�t K�

2
¼ K�

2
exp½�i

ffiffiffi
8

p
y�: (51)

This result agrees with that of Eq. (23), hence we were able
to determine �3 analytically:

�3 ¼ K�

2
: (52)

We already gave the method for determining the value of
K by solving linear equations recursively for the coeffi-
cients of the algebraic asymptotic series up to some large k
values. In the first step, we will show that our method is
consistent with the fact that the sine-Gordon breather does
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not radiate. We will truncate the SG potential in various
orders and determine the value of K by solving the com-
plex mode equations with the algebraic asymptotic series
ansatz. We will experience a monotonous decrease in the
value of K as we increase the order of the Taylor expan-
sion. This can be interpreted in the following way. K
determines the increase in the coefficients of the algebraic
asymptotic series which correspond to the coefficients
appearing in the small-amplitude expansion. As we get
closer to the SG theory the asymptotic series for small-
amplitude quasibreathers in the truncated SG theory grows
less and less. On the other hand, this means that the
corresponding oscillons would radiate more slowly, as
the radiation amplitude is proportional to K. In the limit
of SG theory we should get a convergent series in the
small-amplitude expansion and thus a nonradiating
breather. Our numerical experiences show that we can
even use a smaller number of mode equations than the
biggest power in the Taylor expansion to reach satisfactory
convergence for the value of K for the given theory. We
collected the results for K in the truncated SG theory in
Table IV.

In the second step wewill be looking for a symmetric�6

theory in which oscillon radiation is the fastest, i.e., K
takes the biggest value. We will use this theory in numeri-
cal simulations for the verification of the theoretical radia-
tion law for oscillons because we hope to most accurately
measure the radiation rate in this theory. We will make use
of the fact that g3 can be defined into the fields, thus the
only essential parameter in a symmetric �6 theory is g5.
(g3 < 0 in order to have a localized solution of Eq. (6).) To
do so, we solved the theory for �1-�7 up to k ¼ 30 with
the coefficient g5:

Uð�Þ ¼ 1

2
�2 � 1

4
�4 þ g5

6
�6 (53)

U0ð�Þ ¼ ���3 þ g5�
5: (54)

The value of K as a function of g5 can be found in Fig. 1.
We calculated K form B30 in the figure, however the exact
value of k only matters in the sixth digit. We only deal with
positive g5s as they are the ones with a stable vacuum. We

see two zeros in this domain. This does not mean that we
found breathers in the corresponding theories; these points
represent oscillons, the dominant radiation field of which is
in fifth mode,�5. These configurations are extremely long-
living objects. The first zero is very close to the SG theory
for which g5 ¼ 3=10 with the g3 ¼ �1 normalization.
Upon introducing further nonlinearities this zero would
move exactly to the gk point representing the SG theory.
From Fig. 1 g5 ¼ 1 seems to be a very comfortable choice
for numerical simulation. We find the precise value ofK for
g5 ¼ 1 to be

K ¼ �0:57915; Knum ¼ �0:5792; (55)

where Knum has been extracted from Eq. (39).
In the end wewill briefly discuss the class of asymmetric

potentials, to which the �4 potential belongs. In these
theories the presence of the�0 mode results in the follow-
ing asymptotics for large ks in the �0 mode:

að0Þk � ð2k� 2Þ!: (56)

This behavior dominates the asymptotics of all other
modes as well. Because we do not have an alternating
sign in this dominant behavior, the Borel-summed series
will have a singularity on the real axis, hence we do not get
an imaginary correction to the asymptotic series from this
calculation. Thus, we cannot determine the radiation this
way. The asymptotics which would determine the radiation

in the case of asymmetric theories is að2Þk � ð�1Þkð2k�
2Þ!=3k. This is not the leading behavior of�2’s coefficients
and is significantly suppressed. We have not yet succeeded
in determining the hidden alternating part of the coeffi-
cients, therefore we cannot determine the radiation ampli-
tude by this analytic method.

TABLE IV. The value of K in truncated SG theories from the
solution of the same number of mode equation as the order of
truncation. K denotes the value obtained by Borel summation,
while Knum is the result of the numerical solution of the mode
equations on the complex plane.

Order of truncation K Knum

4 1.486 1.48

6 �0:1472 �0:147
8 5:306 � 10�3 5:31 � 10�3

10 7:306 � 10�5 7:2 � 10�5

12 4:686 � 10�7 4:6 � 10�7

1 2 3 4
g5

0.6

0.4

0.2

0.2

0.4

0.6

K

FIG. 1. The value of K as a function of g5 for symmetric �6

theories.
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III. NUMERICAL SIMULATIONS

A. Aspects of the numerical simulations

The numerical simulation of oscillons and their decay
was performed with a slightly modified version of the
fourth order method of line code developed and used in
Refs. [26,36,37]. The spatial grid was chosen to be uniform
in the compactified radial coordinate R defined by

x ¼ 2R


ð1� R2Þ ; (57)

where 
 is a constant. By this choice the whole range 0 �
x <1 of the physical radial coordinate x is mapped to the
interval 0 � R< 1, avoiding the need for explicitly de-
scribing boundary conditions at some large but finite ra-
dius. In most of our simulations we worked with 
 ¼ 0:05,
which proved to be ideal for oscillons for which radiation
was numerically observable.

The frequency of oscillons is determined by measuring
the time elapsed between two subsequent maximums of the
field configurations in the origin. By integrating the energy
density in an R ¼ 0:873 (x ¼ 146:7) sphere at every time
slice we determine the energy E of the oscillon core and
trace the energy loss W ¼ dE=dt. Although this way of
calculating the energy contains an arbitrarity, for small-
amplitude oscillons the corresponding asymptotic field is
exponentially small and the energy density of the radiation
tail can be neglected compared to that of the core. We
measure the radiation in a relatively short time interval
from the slope of the energy as a function of time.

Starting from initial data obtained from the small-
amplitude expansion we simulate the time evolution and
radiation of oscillons. Although our analytic calculations
are only valid for infinitesimal ", we find that they ap-
proximate oscillons quite well after a one-parameter
tuning.

Studying the slow energy loss of oscillons we determine
a semiempirical radiation law. This means that we keep the
functional form (33) but fit the parameters appearing in it.
We find satisfactory agreement with the theoretical value
of the parameters obtained in the previous sections. We
also follow the evolution of a single oscillon through a very
long time interval. This process will be precisely described
by the radiation obtained by the fit law proving the as-
sumption made when making analytic considerations: the
system evolves through undistorted quasibreather states
adiabatically.

B. Initial data

We used the asymptotic series (3) truncated to order N,
at the moment of time-reflection symmetry as initial data
for the numerical evolution code,

�ð�¼0Þ ¼ XN
k¼1

"k�ð�¼0Þ
k : (58)

The aim of our numerical analysis is to obtain oscillon
states which are as periodic as possible, which means that
their basic oscillation frequency and amplitude changes
very slowly, uniformly, and monotonically. The time evo-
lution of these ‘‘clean’’ oscillons can be approximated by
adiabatic evolution through corresponding frequency qua-
sibreather states. However, since the expansion (3) is not
convergent, the initial data (58) differs from the intended
quasibreather configuration. In general, using it as initial
data, first a small portion of the energy is quickly emitted
by radiation, and then a very long-living localized oscillat-
ing configuration remains. However, generally, the fre-
quency and amplitude of this ‘‘unclean’’ oscillon state
also possesses a lower frequency modulation. We observed
that the amplitude of this modulation can be significantly
decreased by multiplying the initial data by an appropriate
constant. By making a one-parameter tuning code we were
able to obtain oscillon states clean enough for studying
their basic energy loss rate. Otherwise one could not dis-
tinguish between the energy emitted by the oscillon and the
energy released by the decay of the low-frequency
modulation.
Through the whole domain of simulation the sum (58)

withN ¼ 3 proved to yield the cleanest oscillon states. It is
worth mentioning, that even for quite large values of ",
after the tuning the asymptotic series yields appropriate
initial data, although the " value of the initial data and the

one calculated from the frequency by " ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
during

the time evolution may differ.
We illustrate the main steps by the example of the �4

theory. The first few terms of the asymptotic series are

�ð�¼0Þ
1 ¼

ffiffiffi
2

3

s
S �ð�¼0Þ

2 ¼ 1

3
S2

�ð�¼0Þ
3 ¼ 1

9

ffiffiffi
2

3

s �
� 25

2
S3 þ 49

2
S

�

�ð�¼0Þ
4 ¼ 1

9

�
� 125

6
S4 þ 103

3
S2
�
:

(59)

The most naive estimate for an ideal truncation of an
asymptotic series is that we should find the order where
the terms of the series are equally big and higher order
terms are starting to grow from this threshold. From (59)
for 0:3< "< 0:6 truncation of the series at third order
appears to be appropriate. This is also supported by the
results of the numerical simulations. In the �4 theory we
found that " ¼ 0:6 oscillons are the biggest ones which we
can clean from the noise and for which the adiabatic
hypothesis works. Figure 2 shows the obtained unclean
oscillon states from various order initial data. It is apparent
that the order N ¼ 3 gives the state with the smallest
amplitude modulation. As already noted, multiplying the
initial data with a constant close to 1 decreases the ampli-

FODOR, FORGÁCS, HORVÁTH, AND MEZEI PHYSICAL REVIEW D 79, 065002 (2009)

065002-10



tude of this modulation even more. Figure 3 shows how
effectively this method smooths the oscillon for " ¼ 0:5.

C. Reliability of the numerical results concerning os-
cillon radiation

The reliability of the subsequent results concerning
oscillon radiation can be estimated by checking how well
our code simulates the exactly periodic sine-Gordon
breather. We use the breather field configuration (8) as
initial data for the time evolution. We note that using the
series (9) truncated at third order and employing the tuning
method gives the same order of radiation. Table V. contains
for different resolutions the radiation power and W=EB

where EB is the total energy of the breather (EB ¼ 16").
The number of lattice sites is given by the formula Nlat ¼
RES� 128. It can be observed that the duplication of the
lattice points results in the decrease of radiation due to
lattice effects with a factor of 30. From now on we will
keep ourselves to the following rule: we only consider
oscillons at a certain resolution if the numerically calcu-
lated W=E is at least one magnitude bigger than the value
given in Table V. If this condition fails, that means one has
to use a higher number of lattice sites to measure the

radiation rate reliably, which, however, can make the
simulation time impracticably long. This is the reason
why the energy loss of oscillons for very small " cannot
be obtained by our method.

D. Oscillons in the �4 theory

1. Confirmation of the adiabatic hypothesis and the
radiation law

In Table VI we give the energy loss for the�4 theory for
the biggest possible interval where we are able to use our
numerical approach. The lower bound is limited by the
need of time to perform high-resolution simulations; we
can see only lattice effects below the lowest " values in the
table. Above the upper bound the oscillon decay is very
fast and we cannot determineW and " reliably. We will see
the radiation law fail for large ", in these cases the inter-
action with the radiation field may become essential, and
the system does not evolve through undistorted quasi-
breather states. The �2 values in Table VI are calculated
from the measured radiation power and " by using the
theoretical radiation law (33).
We intend to confirm the radiation law, Eq. (33), nu-

merically. We performed two fits with two free parameters
on the logarithm of the data shown in Fig. 4(a). In the first
fit we took into account all the data points, while in the
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FIG. 2. Evolution from initial data in various orders for " ¼
0:6 in the �4 theory; field value maximums at the center are
plotted.

TABLE V. Resolution dependence of radiation powerW in the
sine-Gordon theory. The third column gives the ratio compared
to the energy of the breather EB. The number of lattice sites are
Nlat ¼ RES� 128.

RES W j WEB
j

4 �1:18062 � 10�6 1:48 � 10�7

8 �3:66652 � 10�8 4:58 � 10�9

16 �1:14045 � 10�9 1:42 � 10�10

32 �3:5542 � 10�11 4:44 � 10�12

64 �1:10946 � 10�12 1:38 � 10�13

TABLE VI. Radiation power W and " in the �4 theory from
various initial data. For the oscillons " is measured from the
frequency during time evolution. The jW=Ej column determines
the resolution RES required for the simulation, while �2 is
calculated from Eq. (33).

" W jWE j �2

0.5858 �1:05 � 10�5 1:34 � 10�5 0.0905

0.58255 �9:58 � 10�6 1:23 � 10�5 0.0887

0.5778 �8:45 � 10�6 1:10 � 10�5 0.0866

0.57123 �7:12 � 10�6 9:35 � 10�6 0.0839

0.56261 �5:69 � 10�6 7:58 � 10�6 0.0807

0.55183 �4:27 � 10�6 5:80 � 10�6 0.0768

0.53894 �3:01 � 10�6 4:18 � 10�6 0.0725

0.52418 �1:98 � 10�6 2:84 � 10�6 0.0679

0.49217 �7:61 � 10�7 1:16 � 10�6 0.059

0.48278 �5:64 � 10�7 8:77 � 10�7 0.0565

0.47334 �4:14 � 10�7 6:57 � 10�7 0.0542

0.46387 �3:01 � 10�7 4:87 � 10�7 0.0520

0.45437 �2:17 � 10�7 3:58 � 10�7 0.0498

0.44485 �1:54 � 10�7 2:60 � 10�7 0.0478

0.43533 �1:09 � 10�7 1:87 � 10�7 0.0459

0.42581 �7:58 � 10�8 1:34 � 10�7 0.0441

0.41629 �5:23 � 10�8 9:43 � 10�8 0.0424

0.40679 �3:58 � 10�8 6:59 � 10�8 0.0408

0.3973 �2:42 � 10�8 4:57 � 10�8 0.0394

0.35954 �4:13 � 10�9 8:61 � 10�9 0.0334

0.32017 �4:45 � 10�10 1:04 � 10�9 0.0278

0.28404 �4:40 � 10�11 1:16 � 10�10 0.0258
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second we fitted for data points with " < 0:42 to get closer
to the theoretical pole term. We define the semiempirical
radiation law:

dE

dt
¼ W ¼ �8

ffiffiffi
3

p
�2
2 � exp

�
�

ffiffiffi
3

p
�b

"

�
; (60)

where �2 and b are parameters to be fitted. Equation (60) is
to be interpreted as follows. For finite values of " there are
various higher-order corrections to the radiation law which
are now encoded in two effective parameters, �2 and b.
These corrections originate in Eq. (22). We remark that the
value of btheory will increase accordingly. When fitting for

all the data points the difference between b and btheory ¼ 1

is bigger, than in the case of the fit for " < 0:42 points,
because for smaller " values the correction due to other
pole terms are smaller.
If we set b ¼ btheory in Eq. (60) we get back the theo-

retical radiation law, Eq. (33). On Fig. 4(b) we plotted the
�2 values from Table VI. We see that we are getting closer
to the theoretical �2 as " decreases. In Eqs. (63) and (64)
we give the results of the fits of �2 with b ¼ btheory on all

the data points and for data points with " < 0:42,
respectively.
The result of the first fit supports the functional depen-

dence gotten from the theoretical arguments, while the
second fit leads us closer to the theoretical values of the
parameters:
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FODOR, FORGÁCS, HORVÁTH, AND MEZEI PHYSICAL REVIEW D 79, 065002 (2009)

065002-12



�2;fit ¼ 0:29� 0:03 bfit ¼ 1:28� 0:2 for all data points; (61)

�2;fit ¼ 0:12� 0:02 bfit ¼ 1:17� 0:2 for data points with " < 0:42; (62)

�2;fit ¼ 0:054� 0:004 b ¼ 1 for all data points; (63)

�2;fit ¼ 0:034� 0:004 b ¼ 1 for data points with " < 0:42; (64)

�2;theory ¼ 0:00845 btheory ¼ 1: (65)

Unfortunately the theoretical �2 value of the�
4 theory is

exceptionally small. This might be the reason why our data
are consistent with the theoretical pole terms and why there
is a difference in the value of �2. It should be noted that we
are fitting over 7 orders of magnitude. An other indepen-
dent source of discrepancy could be the tuning method and
that the superfluous energy from the oscillon core goes out
in shells [38]. These shells are observed to be present even
for a large time, and their movement could increase the
radiation power measured by our method.

Let us turn our attention to the verification of the semi-
empirical radiation law determined from the short-time
evolution of various oscillon states. We shall confirm
from a long-time simulation, that the evolution from an
initial oscillon state is driven by our radiation law. We
claim two states to be identical if they posses the same "
value with the same energy for a relatively long time. This
should mean that the field configurations are very close to
each other, and the interaction with the radiation field is
negligible. By testing these properties in two different
simulations we can match these data and get a longer
process.

To compare the time dependence of the measured energy
with the predicted one, we need the function Eð"Þ. This
should not be a problem, as we can measure this function
from the short simulations. The results of simulations are
in very good agreement with the semiempirical radiation
law. We would like to emphasize that the radiation law is
not a simple fit, it has been determined independently; we
only use the initial " value and the function Eð"Þ from the
simulation to get the predicted curve.

In Fig. 5 we see an " ¼ 0:6 oscillon evolving. We used
two simultaneously performed simulations for this graph
(starting from " ¼ 0:6 and " ¼ 0:45), which perfectly fit
together; another fact backing the hypothesis of adiabatic
evolution. The solid lines follow the evolution observed in
numerical simulations, while the dashed lines are the pre-
dictions of the semiempirical radiation law (SERL). We
end both curves at the same " value.

2. Oscillons from kink-antikink initial data

After being able to create and examine clean oscillon
states we aim to identify, what the logarithmically decay-
ing object is in our terminology that Geicke found in

Refs. [35,39]. It turns out that the objects he found are
composite oscillon states and there is a continuum of them,
without any essential difference between these configura-
tions in contradiction with what he conjectured. These
objects do not obey the semiempirical radiation law set
for clean oscillon states in their early but very long period
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( 	 150000) of life, they radiate more rapidly, because the
energy stored in the modulation modes of frequency has
different radiation properties. However, their lifetime is in
the same magnitude of oscillons with approximately the
same frequency and energy. After their initial stage of
evolution they begin to obey the semiempirical radiation
law, their modulation, however, does not disappear. We
shall confirm the logarithmic fits of Ref. [35], and in this
stage of observation we can explain qualitatively what he
found and how his results are related to the analytic
considerations.

Following Ref. [35], we examine a kink-antikink pair
initially at rest:

�ðx; t ¼ 0Þ ¼ tanh

�
x� a

2

�
� tanh

�
xþ a

2

�
þ 1 (66)

@t�ðx; t ¼ 0Þ ¼ 0: (67)

For different values of a we examined the evolution of the
initial state. The resolution was selected low (RES ¼ 4)
because we were not interested in the exact decay rate, and
we aimed to draw qualitative consequences. The results are
collected in Fig. 6. For bigger values of a (a > 1:0) we find
that after an early period of formation approximately the
same state arises. For moderate values of awe see different
states arising in a relatively short period of time; these
states radiate very slowly. Below a certain value of a (a &
0:45) we do not observe any definite oscillon core. This
behavior is remarkable: we found the same pattern in the
collision of a sine-Gordon soliton-antisoliton pair initially
at rest; the same state arises for a > 1:4 and for the region
a & 0:8 we see no definite oscillon state.

To find out how these configurations radiate we ran a
simulation withRES ¼ 8, a ¼ 0:8; this is the initial data of
Geicke in Ref. [35]. In Fig. 7 it is depicted what the
semiempirical radiation law would predict and what really
happens. The lumps emerging from kink-antikink initial

data radiate faster then a clean oscillon due to its frequency
modulation. The following asymptotic logarithmic fit con-
sidered in Ref. [35] works well:

EðtÞ ¼ B

cþ lnðtþ ffiffiffi
2

p � 105Þ (68)

c ¼ 0:52� 0:12 B ¼ 8:60� 0:07: (69)

Reference [35] uses m ¼ ffiffiffi
2

p
; its result for the B parameter

in the units we use in this paper isBg ¼ 9:05; the reason for

the difference between B and Bg might be the use of the

Sommerfeld boundary condition in its simulation instead
of compactification. We fitted the function which we get by
extrapolating the theoretical result for infinitesimal,
Eq. (35), oscillons to our case as well:

EðtÞ 	 B

lnt
(70)

Btheory ¼ 4�ffiffiffi
3

p 	 7:255 (71)

Bfit ¼ 8:190� 0:007: (72)

We see that the numerical values from the fit and from
theory are satisfactory close to each other. We note that
such a logarithmical fit is not influenced by the value of �2

in the theoretical radiation law, Eq. (33). (Ref. [35] claims
that the results of its fit, B ¼ 14:395, agree with the theo-
retical result B ¼ 14:503 in its units; however, the correct

B value from the theory with m ¼ ffiffiffi
2

p
mass scale is B ¼

10:260.)
We conclude that the initial state observed by Ref. [35]

evolves as a complex oscillonlike object. After the ‘‘early’’
period of t 	 150000 it loses a large part of its energy and
an oscillon with modulated frequency is created. Through
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its evolution the " value changes from 0.45 to 0.38. From
the solutions of the semiempirical radiation (SERL) law it
can be clearly seen that the initial configuration decays
much faster than an oscillon; however, if we regard the t 	
150000 as initial data, it obeys the radiation law with high
precision despite the presence of modulation. (We did not
plot the prediction of the SERL with t0 ¼ 150000 in Fig. 7,
as the difference between the prediction and the numerical
simulation results does not differ visibly.) It seems to us
that the modulation degree of freedom is an adiabatically
decaying mode.

E. Verification of the theoretical radiation law

We will examine oscillons in the specific symmetric �6

theory in which oscillon radiation is the largest, i.e. when
K is maximal. We determined the g5 value for this theory
in Sec. II E. Thus, contrary to the �4 theory the value of K
is maximal and the next-to-leading-order corrections are
significantly smaller compared to the leading-order term,
than in the case of the�4 theory because the�6 potential is
symmetric. These corrections originate in (23). It should be
kept in mind that because of the smaller pole term we
cannot go as low in " as in the �4 case. We collect the
results of the simulations in Table VII in analogy to
Table VI:

We performed two fits: in the first we fitted both �3 and
b, in the second we used b ¼ btheory and fitted �3 as we

were interested in how accurately we could determine the
value of �3 from numerical simulations.

dE

dt
¼ �24

ffiffiffi
2

p
�2
3 exp

�
�

ffiffiffi
8

p
�b

"

�
(73)

�ð1Þ
3;fit ¼ 0:4� 1:2 bð1Þfit ¼ 0:89� 0:1 (74)

�ð2Þ
3;fit ¼ 1:35� 0:1 (75)

�3;theory ¼ 0:9098 btheory ¼ 1: (76)

One can notice an anomalous point among the data
points in Fig. 8. This anomalous configuration was further
examined by us, but no visible anomaly in the field con-

figuration was observed. The oscillon has a proper oscil-
lating tail and a smooth core. Its radiation power was
measured for different resolutions and also by using differ-
ent values for the conformal factor 
, but all these had no
substantial effects. As it is, we do not know whether this
anomaly is an awkward lattice effect or genuine one, i.e.,
present in the continuum limit as well.
We would like to investigate the problem of oscillon

radiation from the perspective of field configuration as
well. In Fig. 9 we show the field values as a function of
time at x ¼ 49:6 for the " ¼ 0:352178 oscillon. We plot
the theoretical prediction of this oscillating tail, so that the
frequency of the wave is set to 3!, the amplitude is
determined by theory and only the phase of the wave is
fitted. We find satisfactory agreement in the case of wave
amplitude and precise agreement in the case of frequency.

TABLE VII. Radiation power for oscillons with different "
values in the symmetric �6 theory.

" W jWE j �3

0.391886 �1:256 � 10�8 1:20 � 10�8 1.614

0.389854 �7:983 � 10�9 7:68 � 10�9 1.365

0.366842 �5:692 � 10�10 5:82 � 10�10 0.745

0.352178 �5:483 � 10�10 5:84 � 10�10 1.211

0.339333 �3:291 � 10�10 3:64 � 10�10 1.512

0.333239 �2:225 � 10�10 2:50 � 10�10 1.579

0.304623 �2:293 � 10�11 2:82 � 10�11 1.774
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If we compare the radiation power calculated from this
plane wave and the one in Table VII we find good agree-
ment. Hence we conclude that the oscillons on the lattice
lose energy via radiation and that out assumptions were
correct when deriving the radiation law for small-
amplitude oscillons.

There are various possible explanations for the discrep-
ancy between theoretical and numerical results. First, we
could argue that the " values used in numerical simulations

are too big and the theoretical calculation of the radiation
amplitude only works for infinitesimal " values. For finite
" values we can only expect an approximate agreement.
Second, we cannot be sure about the initial data. Although
the frequency of our objects is very stable, there is no way
to decide whether we work with undistorted oscillons. The
configuration with anomalous radiation emphasizes these
problems. Lattice effects are less likely to play a role, as we
see no major resolution and 
 dependence of the radiation
powers.

We conclude that we can accurately determine the b
parameter of the radiation law from the numerical simula-
tion of oscillon decay in the case of both the �4 and �6

case. The parameter �2 can be less accurately determined
in the case of the �4 theory. There the next-to-leading
corrections play a role because of the finite " oscillons
and the value of �2 is too small to be seen. In the case of the

�6 theory the next-to-leading-order corrections are smaller
and the value of �3 is bigger, hence we can get the value of
�3 from the simulations with satisfactory precision. The
investigation of the radiation field of the oscillons shows
equally good agreement with the theoretical formulae giv-
ing a firm basis for the theoretical calculations from an-
other perspective.

IV. CONCLUSIONS

In a general class of one-dimensional scalar field theo-
ries we have computed the magnitude of the radiative tail
of oscillons, determining their energy loss, in the small-
amplitude limit. The magnitude of the tail is nonperturba-
tively small in the amplitude. We have used the Segur-
Kruskal method of matched asymptotic expansion together
with Borel summation techniques to calculate it. These
results have also been verified numerically. We have also
performed numerical simulations to compute directly the
energy loss of oscillons, as well as the radiative tail. The
numerical results are in a satisfactory agreement with the
theoretical predictions.

ACKNOWLEDGMENTS

This research has been supported by OTKA Grant
Nos. K61636 and NI68228.

[1] R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D
11, 3424 (1975).

[2] A. E. Kudryavtsev, JETP Lett. 22, 82 (1975).
[3] I. L. Bogolyubskii and V.G. Makhan’kov, JETP Lett. 25,

107 (1977).
[4] V. G. Makhankov, Phys. Rep. 35, 1 (1978).
[5] J. Geicke, Phys. Scr. 29, 431 (1984).
[6] M. Gleiser, Phys. Rev. D 49, 2978 (1994).
[7] E. J. Copeland, M. Gleiser, and H.-R. Müller, Phys. Rev. D

52, 1920 (1995).
[8] E. P. Honda and M.W. Choptuik, Phys. Rev. D 65, 084037

(2002).
[9] M. Gleiser and J. Thorarinson, Phys. Rev. D 76, 041701

(R) (2007).
[10] M. Hindmarsh and P. Salmi, Phys. Rev. D 77, 105025

(2008).
[11] E.W. Kolb and I. I. Tkachev, Phys. Rev. D 49, 5040

(1994).
[12] M. Gleiser and J. Thorarinson, Phys. Rev. D 79, 025016

(2009).
[13] I. Dymnikova, L. Koziel, M. Khlopov, and S. Rubin,

Gravitation and Cosmology 6, 311 (2000).
[14] M. Broadhead and J. McDonald, Phys. Rev. D 72, 043519

(2005).
[15] M. Gleiser, B. Rogers, and J. Thorarinson, Phys. Rev. D

77, 023513 (2008).

[16] Sz. Borsanyi and M. Hindmarsh, Phys. Rev. D 77, 045022
(2008).

[17] E. Farhi, N. Graham, V. Khemani, R. Markov, and R.
Rosales, Phys. Rev. D 72, 101701(R) (2005).

[18] N. Graham, Phys. Rev. Lett. 98, 101801 (2007).
[19] N. Graham, Phys. Rev. D 76, 085017 (2007).
[20] Sz. Borsanyi and M. Hindmarsh, arXiv:0809.4711.
[21] M. Gleiser, Phys. Lett. B 600, 126 (2004).
[22] P.M. Saffin and A. Tranberg, J. High Energy Phys. 01

(2007) 030.
[23] B. Piette and W. J. Zakrzewski, Nonlinearity 11, 1103

(1998).
[24] M. Gleiser and A. Sornborger, Phys. Rev. E 62, 1368

(2000).
[25] M. Hindmarsh and P. Salmi, Phys. Rev. D 74, 105005

(2006).
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