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We study the stability of supersymmetry breaking vacuum in the presence of cosmic strings arising in

the messenger sector. For certain ranges of the couplings, the desired supersymmetry breaking vacua

become unstable against decay into phenomenologically unacceptable vacua. This sets constraints on the

range of allowed values of the coupling constants appearing in the models and more generally on the

chosen dynamics of gauge symmetry breaking.
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I. INTRODUCTION

Supersymmetry (SUSY) is a powerful principle which
brings control in quantum field theory. In particular, its
nonrenormalization properties [1,2] and its potential for
solving the hierarchy problem [3–6] make it appealing as
an ingredient of phenomenology, enabling a description in
terms of weakly coupled degrees of freedom. In practice
however, the implementation of the principle requires
breaking supersymmetry in a hidden sector and communi-
cating the effects to observed phenomenology indirectly;
for reviews see [7,8]. The issue is further complicated by
the fact that breaking supersymmetry is not itself a generic
possibility. It was elucidated by [9] that the presence of
R parity and its breakdown can play a crucial diagnostic
role for understanding generic possibilities of breakdown.
A persistent problem of supersymmetry breakdown how-
ever is that such vacua may be only local minima and have
the danger of relaxing to a true minimum where supersym-
metry is restored. This unpleasant possibility is however
easy to avoid if the tunneling rate to the true vacuum can be
made much longer than the known age of the Universe.
New insights into consistency of supersymmetry break-
down in metastable vacua have been obtained recently in
[10,11] in the context of supersymmetric QCD. In such
models several possibilities exist, e.g., supersymmetry
breaking vacuum need not be unique but could be degen-
erate with several supersymmetry preserving vacua. The
issues involved in phenomenological implementation of
these ideas have also been elucidated in [10–19].
Applications to cosmology appear, for example, in [20,21]

The question of whether the metastable vacua are cos-
mologically stable against quantum tunneling for all ranges
of couplings received early attention in [22–24] in the
context of gauge mediated supersymmetry breaking (see
for instance the reviews [25,26]). In these models super-
symmetry is dynamically broken in a hidden sector at a
scale �s and communicated to the standard model through
a ‘‘messenger’’ sector at TeV scale. The messenger sector

has suitable interactions with both the hidden and the
visible sectors. The true vacuum in some of these models
is supersymmetric and color breaking. Supersymmetry is
broken and color is preserved only in metastable vacua.
In this paper we advance the point that it is not sufficient

to study the stability of supersymmetry breaking vacua in
their translationally invariant, i.e., spatially homogeneous
avatar. Generically topological defects such as cosmic
strings or monopoles may obtain in the course of imple-
mentation of any particular scheme. Such defects could
arise in the early universe [27]. It is then necessary to take
account of their presence when studying stability issues. A
class of topological defects can exist which can nucleate
the formation of the true vacuum in such a way that the
exponential suppression inherent in tunneling phenomenon
no longer obtains. Specifically, when a cosmic string is
present in a false vacuum, such a local minimum can be
rendered unstable against decay to a vacuum of lower
energy [28,29]. This process was studied by one of us
[30] in the context of phase transitions in grand unified
theory models. It was shown that generically, the presence
of the cosmic string entailed the consequence that false
vacuum would ‘‘roll over’’ smoothly to the true vacuum
without recourse to quantum tunneling. In this way, a
putative first-order phase transition becomes second order,
with important cosmological implications.
The same process is applicable here in the context of

gauge mediated supersymmetry breaking models. It is
possible to establish the required results numerically where
formal methods provide a suggestive answer. We study a
model of supersymmetry breaking which contains two
classes of vacua, color breaking and color preserving.
The color preserving metastable vacuum becomes para-
metrically unstable in the presence of cosmic strings. This
puts constraints on the model of the messenger sector being
used and may make some models unviable.
This paper is organized as follows. The next Sec. II

provides a brief review of the class of models we have
studied here. Section III discusses the vortex (strings)
ansatz possible in the relevant vacua and the equations of
motion to be solved. The results of the numerical solutions
are described in Sec. IV. A semianalytic approach explain-
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ing the numerical results is discussed in Sec. V, followed
by concluding remarks in Sec. VI.

II. A MODEL FOR MESSENGER SECTOR

In this section, we summarize the models of [31,32] as
discussed in [22]. Supersymmetry is broken dynamically in
the hidden sector. The messenger sector shares a symmetry
Gm with the hidden sector. It is sufficient for Gm to be
global, but we consider the possibility of Gm being local,
permitting cosmologically viable strings. The case of
global Gm is also commented upon. The messenger sector
is responsible for transmitting supersymmetry breaking
from the hidden sector to the visible sector. This messenger
sector consists of the following: a gauge singlet, S, a pair of
messenger quarks, q and �q, belonging to the 3 and �3
representation of the SUð3Þc color group, and a pair of
chiral superfields, N and P in vectorlike representations of
Gm. The possibility of anomalies in the hidden sector
forces the introduction of extra superfields Ei to cancel
the anomalies. However, in this paper, we consider only
‘‘minimal’’ models which do not include these extra fields.
The most general superpotential for the messenger sector is
given by [22]

Wmes ¼ �S �qqþ �

3
S3 þ �1PNSþW1ðP;N; EiÞ: (1)

The three coupling constants �, �, and �1 are all positive
by a suitable phase definition of the fields. In the case
where Gm is Uð1Þ, if e is the Uð1Þ gauge coupling and P,
N, and Ei have charges þ1, �1, and yi, the effective
potential for the charged scalars after integrating out the
hidden sector is given by [22]

VSB ¼ M2
1ðjPj2 � jNj2 þ yijEij2Þ þM2

2ðjPj2 þ jNj2
þ y2i jEij2Þ þ � � � (2)

in which the relation between the mass parametersMi, i ¼
1, 2 and the supersymmetry breaking scale �s is

M2
i ¼ ci�

2
s

�
e2

ð4�Þ2
�
i
: (3)

The factors ci (i ¼ 1, 2) are of order unity, with their signs
dependent on the content of the dynamical symmetry
breaking sector. There are higher-dimensional terms com-
ing from more loops and these are what the ellipsis in the
expression for VSB stands for. In addition, there are con-
tributions to the scalar potential coming from the Uð1Þ
D-term and various F-terms. In what follows, we will

consider the set of minimal models which satisfy @W1

@P ¼
@W1

@N ¼ 0. This set includes models in which there are no

E fields, models in whichW1 ¼ 0, and models in which the
E fields do not couple to P and N. After including theUð1Þ
D-terms and F-terms and setting W1 ¼ 0, we consider an
explicit model in which (M1 ¼ 0), and the scalar potential
of the messenger sector becomes [22]

Vmes ¼ e2

2
ðjPj2 � jNj2Þ2 þ ðM2

2 þ �2
1jSj2ÞðjPj2 þ jNj2Þ

þ �2jSj2ðjqj2 þ j �qj2Þ þ j� �qqþ �S2 þ �1PNj2:
(4)

We shall be interested in the case when M2
2 < 0 which

signals the breakdown of the Uð1Þ. This makes Vmes un-
bounded from below, but in the total potential, higher-order
terms in VSB result in a deep global minimum far away in
field space in which the visible sector is supersymmetric.
For a viable local minimum, one must set q ¼ �q ¼ 0 in the
expression for Vmes and in order to have S � 0 simulta-
neously, we must have

� > �1: (5)

The local minima lie at q ¼ �q ¼ 0 and

jPj2 ¼ jNj2 ¼ �M2
2

�

�3
1ð2� �1=�Þ

; (6)

jSj2 ¼ �M2
2

1� �1=�

�2
1ð2� �1=�Þ

; (7)

argðPNS�2Þ ¼ �: (8)

Along with the condition � > �1, stability of the local
minima requires the following relations between the cou-
plings [22]:

�3
1 � 2�e2; (9)

�1 � ��

�þ �
: (10)

Condition (10) is also mentioned in [33] wherein it is noted
that there is still a possibility of color breaking vacua when
(10) holds.
The scalar potential of the messenger sector given in

Eq. (4) contains two important types of vacua. One of
these, which will be denoted as jV1i later in the paper, is
the supersymmetry breaking local minimum described
above. This vacuum has hSi � 0 and hqi ¼ h �qi ¼ 0, which
means that SUSY is broken while the color gauge group is
unbroken. The other vacuum, which shall be denoted jV2i,
also has hSi � 0 but the fields q and �q get nonzero vacuum
expectation values (VEVs). This means that jV2i is a
phenomenologically undesirable minimum in which
SUSY is still broken but the color gauge group is also
broken. If cosmic strings are supported, these vacua are

modified to what will be denoted as jVðstringÞ
1 i and jVðstringÞ

2 i,
respectively. It will be shown in a later section that

jVðstringÞ
1 i becomes parametrically unstable toward decay

into jVðstringÞ
2 i. The next section describes the available

string solutions.
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III. THE STRING ANSATZ

With the scalar potential for the messenger sector as
given in (4), the full Lagrangian for all fields ðP;N; S; q; �qÞ
can be written down. The fact that string solutions are
cylindrically symmetric makes it convenient to use cylin-
drical coordinates. We ignore the z-dependence and look
for time-independent solutions. In a local minimum, jPj ¼
jNj from (6) and hSi is as given in (7). The ansatz functions
for the scalar fields are a simple generalization of the
Abrikosov-Nielsen-Olesen string [34,35] (see also [36])

P ¼ �fðrÞei�; (11)

N ¼ �fðrÞe�i�; (12)

S ¼ �gðrÞei�=2; (13)

q ¼ �q ¼ �hðrÞei�=2: (14)

The value of � is given by the right-hand side of Eq. (6)
Note that the winding number for the P and N fields has
been chosen equal and opposite. Single valuedness re-
quires that the phase completes a circuit of 2� at infinity.
This requires the phase to be an integer multiple of cylin-
drical angle �. Along with the choice of phase for S as in
(13), this winding ensures the condition (8). This is the
expected minimal energy configuration. The phases for q,
and �q satisfy the expectation that their product remains
negative. At the core of the vortex, the fields P and N must
vanish, and hence fð0Þ ¼ 0. At infinity, P and N approach
their vacuum expectation values which are denoted by �,
and hence fð1Þ ¼ 1. Similarly, gðrÞ approaches the value
given in (7) at infinity but can be nonzero in the core. The
value of hðrÞ can be nonzero in the core also, but its value
at infinity is of importance in determining whether the
resulting vacuum is phenomenologically viable or not.
This is because the vacuum with h and hence q and �q
nonzero is color breaking.

A vortex solution in P and N also includes a coupling of
the fields to a gauge field AðrÞ. The gauge field behavior is
described by a function aðrÞ defined through

A�ðrÞ ¼ 1

er
aðrÞ; (15)

A0 ¼ Ar ¼ Az ¼ 0; (16)

where for continuity of A�ðrÞ, we have að0Þ ¼ 0, and e is
the unit of the AbelianGm charge. At infinity, A�ðrÞ is pure
gauge and goes as 1=r and hence að1Þ ¼ 1. The
Lagrangian for the system can be written as

L ¼ 1
2ð@�SÞ2 þ 1

2ð@�qÞ2 þ 1
2ð@� �qÞ2 þ 1

2jð@� þ ieA�ÞPj2
þ 1

2jð@� þ ieA�ÞNj2 � 1
4F��F

�� � Vmes; (17)

where Vmes is as given in (4). After substituting Eqs. (11)–
(15) into the Lagrangian, the equations of motion can be

written in terms of fðrÞ, aðrÞ, gðrÞ, and hðrÞ. They are a set
of coupled second-order and nonlinear ordinary differen-
tial equations given by

d2f

dr2
þ 1

r

df

dr
� 1

r2
fða� 1Þ2

�
�
M2

2

�2
� �1ð�� �1Þg2 � �1�h

2

�
f� �2

1f
3 ¼ 0; (18)

d2a

dr2
� 1

r

da

dr
� 2e2f2ða� 1Þ ¼ 0; (19)

d2g

dr2
þ 1

r

dg

dr

� ½2�1ð�1 ��Þf2 þ 2�ð�þ�Þh2�g� 2�2g3 ¼ 0; (20)

d2h

dr2
þ 1

r

dh

dr
� ½�ð�þ �Þg2 � ��1f

2�h� k2h3 ¼ 0:

(21)

The fields P and N in which we have set up string
configurations have a Uð1Þ symmetry. As is well known,
existence of cosmic string solutions requires that the space
of equivalent vacua be necessarily multiply connected.
Generically in a larger gauge group such as SOðNÞ,
SpinðNÞ, or SUðNÞ, cosmic strings are in principle possible
for P and N in any representation other than the vector or
the fundamental. Thus, the conclusions of this paper have
relevance to more general cases.

IV. TESTING THE VACUA

A. Homogeneous vacuum

We begin with calculating the field values at infinity
which can be obtained easily from Eqs. (18)–(21). At r ¼
1, all the derivative terms vanish due to translational
invariance and so do the terms containing ð1=r2Þ. The
equations get reduced to the following simple set of simul-
taneous equations:

�
M2

2

�2
� �1ð�� �1Þg2 � �1�h

2

�
fþ �2

1f
3 ¼ 0; (22)

2e2f2ða� 1Þ ¼ 0; (23)

½2�1ð�1 � �Þf2 þ 2�ð�þ �Þh2�gþ 2�2g3 ¼ 0; (24)

½�ð�þ �Þg2 � ��1f
2�hþ k2h3 ¼ 0: (25)

One must note that values for three couplings ð�; �; �1Þ
must be given for each unique set of vacuum solutions. The
set of vacuum solutions consists of four solutions. One is
the trivial solution in which all fields vanish. Another is one
in which f and a are nonzero but SUSY breaking is not
being communicated since g and h are both zero.
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The other two translation invariant minima shall be
denoted jV1i and jV2i. Their field content is as follows:

jV1i: f ¼ a ¼ 1; g � 0; h ¼ 0; (26)

jV2i: f & 1; a ¼ 1; g � 0; h � 0: (27)

jV1i is the desired supersymmetry breaking and color
preserving local minimum described in Sec. II. The value
of g is exactly as required by Eq. (7), and it is a function of
the couplings. jV2i is an undesirable minimum in which h
and hence q and �q get VEVs. Furthermore, what is inter-
esting is that for all ranges of couplings, its energy is
always lower than that of jV1i.

hV2jVmesjV2i< hV1jVmesjV1i: (28)

The expression for Vmes in terms of ðf; g; hÞ can be written
as

Vmes ¼ �4

�
2f2

�
�2
1g

2 � jM2j2
�2

�
þ 2�2g2h2

þ ð�1f
2 � �g2 � �h2

�
2
�
: (29)

It is a simple exercise to check that for each set of solu-
tions, Vmes is always smaller for jV2i compared to jV1i.

B. Vacuum with gauge string

A numerical strategy exists for solving Eqs. (11)–(15).
This consists of using relaxation techniques, after discre-
tizing the equations of motion on a grid converting them to
a set of coupled polynomial equations. In conformity with
physical expectations the initial guess is one with f ¼ a ¼
0 in the core and with g and h arbitrary. At infinity, the trial
is chosen to be either settling into jV1i or jV2i. The exact
values of ðf; a; g; hÞ in jV1i and jV2i can be found by first

solving Eqs. (22)–(25). We denote by jVðstringÞ
1 i the static

state of the system in which the cosmic string configuration
approaches jV1i (up to a �-dependent phase) as j~rj ! 1.

Similarly, jVðstringÞ
2 i denotes a static string solution which

asymptotes to jV2i. An example of the solutions in a case

where both jVðstringÞ
1 i and jVðstringÞ

2 i are stable is shown in

Figs. 1–4.
It may happen that for some values of the couplings, a

solution with the expected field values at infinity cannot be
obtained. When this happens, that solution with its asymp-
totic vacuum values is not tenable. We have explored the

stability of jVðstringÞ
1 i and jVðstringÞ

2 i over a range of the

couplings. For the entire range of couplings studied, the

string solution jVðstringÞ
2 i is always obtained. However, no

stable static solution jVðstringÞ
1 i can be obtained for certain

ranges which are indicated in Table I. Note specifically that
for � ¼ 1 and � ¼ 1:1, values of �1 < 0:1, which are of
phenomenological interest, are immediately ruled out. It is
for these ranges of the couplings that the corresponding

metastable vacua are no longer local minima due to the
presence of cosmic strings.
In the context of the early universe, the parameters in the

effective action are as a rule temperature dependent. The
above results then imply that we may start with a phase

wherein a state of the type jVðstringÞ
1 i may be a local mini-

mum but with reduction of temperature, the string solution
may not exist in the sense argued above. How this comes
about in the present example is taken up at the end of
Sec. V. The subsequent dynamics can be simulated by
restoring time dependence in Eqs. (18)–(21). It was shown
in [30] that the string configuration rendered parametri-
cally unstable undergoes a real time evolution into a pos-
sible stable string configuration with a modified vacuum at
infinity. This can be referred to as a roll-over process, a
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FIG. 1 (color online). fðrÞ and aðrÞ for jVðstringÞ
1 i with boundary

conditions as in Eq. (26), and � ¼ 1:3, � ¼ 1:45, and �1 ¼ 0:65.
Here, f1 ¼ 1 and a1 ¼ 1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  20  40  60  80  100  120  140

F
ie

ld
 V

al
ue

 -
->

Radial Parameter -->

g(r) for V1
(string)

h(r) for V1
(string)

FIG. 2 (color online). gðrÞ and hðrÞ for jVðstringÞ
1 i with boundary

conditions as in Eq. (26), and � ¼ 1:3, � ¼ 1:45, and �1 ¼ 0:65.
Here, g1 ¼ 0:497 317 and h1 ¼ 0.
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prompt, semiclassical evolution rather than tunneling by
spontaneous formation of bubbles.

C. Global cosmic strings

Our demonstration though specific to the messenger
group of this example may have relevance to a more
general setting where some sector of the theory possesses
global symmetries which are broken in the desirable vac-
uum. In this case, the strings arising are global cosmic
strings. In our example this corresponds to setting aðrÞ
identically to zero. We have looked for solutions without
the aðrÞ field for some ranges of the couplings. The results
are shown in Table II. It is found that this condition rules

out jVðstringÞ
1 i for a larger range of couplings as compared to

the case in which aðrÞ is present. The results for jVðstringÞ
2 i

remain unchanged.

A global cosmic string network is not desirable for
stable cosmology [27]. This is because the energy per
unit length of a global string is divergent and can dominate
the energy density of the Universe. However the diver-
gence of the energy with distance from the string is loga-
rithmic and a transient network of such strings cannot be
ruled out. We expect such a network to eventually relax to a
homogeneous vacuum. Even a transient network, however,
may be capable of destabilizing a particular local minimum
according to the discussion of this section.

V. STABILITYANALYSIS OF jVðstringÞ
1 i

In the previous section, the stability of jVðstringÞ
1 i has been

studied numerically. As illustrated in Table I, there are
certain domains in the parameter space of �, �1, and � in

which jVðstringÞ
1 i is not admissible. The nonexistence of such

solutions was then understood as an unavailability of

jVðstringÞ
1 i for those parameter values. This numerical result

can be confirmed by a semianalytic treatment following an
approach discussed in [28].
A preliminary analysis can be made for the translation

invariant vacuum to study the effect of changing �.
Referring to Eq. (29), the effective squared mass m2

eff for

the h field is given by

m2
eff ¼ 2g2ð�2 þ ��Þ � 2��1f

2: (30)
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FIG. 4 (color online). gðrÞ and hðrÞ for jVðstringÞ
2 i with boundary

conditions as in Eq. (27), and � ¼ 1:3, � ¼ 1:45, and �1 ¼ 0:65.
Here, g1 ¼ 0:481 526 and h1 ¼ 0:094 434.

TABLE I. Testing the existence of local minima viable in the
presence of a cosmic string. Check marks indicate when solu-
tions are found and crosses indicate when solutions cannot be
obtained. Vacua of type 1, Eq. (26), become parametrically
disallowed due to the presence of a cosmic string.

� �1 � jVðstringÞ
1 i jVðstringÞ

2 i
2.4 1.2 � 2:41 � !
2 1 � 2:01 � !
2 � 0:75 2.5 � !
1.7 0.85 � 1:71 � !
1.3 0.65 � 1:42 � !
1.3 0.65 � 1:43 ! !
1.3 � 0:65 1.5 ! !
1 0.5 � 1:07 � !
1 0.5 � 1:1 ! !
1 � 0:3 1.1 ! !
1 � 0:15 1.1 � !
0.6 0.3 � 0:68 � !

TABLE II. Sample results for global strings, i.e., no aðrÞ field
present. These are to be compared to rows 5–9 of Table I.

� �1 � jVðstringÞ
1 i jVðstringÞ

2 i
1.3 0.65 � 1:3 � !
1 0.5 � 1:19 � !
1 0.5 � 1:20 ! !
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FIG. 3 (color online). fðrÞ and aðrÞ for jVðstringÞ
2 i with boundary

conditions as in Eq. (27), and � ¼ 1:3, � ¼ 1:45, and �1 ¼ 0:65.
Here, f1 ¼ 0:999 405 and a1 ¼ 1.
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Now if � and �1 are held fixed, when � is large enough, this
quantity is positive and h ¼ 0 is admissible as a local
minimum. As � reduces, there comes a point when m2

eff

becomes negative. This corresponds to the regions of in-
stability shown in Table I. For example, when � ¼ 1:3 and
�1 ¼ 0:65, reducing � below 1.43 drives its effective
squared mass negative making h ¼ 0 unstable.

We now proceed along the lines of [28] to analyze the

linear stability of jVðstringÞ
1 i by adding a small time-

dependent term to the time-independent numerical solu-
tion. If small oscillations around this solution have only
real frequencies, the configuration is considered stable. For

nonavailability of jVðstringÞ
1 i, at least one of the modes of

oscillation must possess an imaginary frequency. The

stability analysis for jVðstringÞ
1 i is greatly simplified by the

following observation. The fields f and g do not differ

significantly in states jVðstringÞ
1 i and jVðstringÞ

2 i as seen from

Figs. 1–4. Only h differs significantly and the possible time
dependence of the background fields f and g can be
ignored. The equation of motion for h with time depen-
dence restored is

�d2h

dt2
þd2h

dr2
þ1

r

dh

dr
�½�ð�þ�Þg2���1f

2�h�k2h3¼0;

(31)

and we now write

hðr; tÞ ¼ ~hðrÞ þ pðrÞei!t: (32)

Here, ~h is the time-independent solution obtained for the h

field and p � ~h. Similarly, the time-independent fields f

and g in Eq. (31) are written as ~f and ~g. Substituting Eq.
(32) in (31) and linearizing the equation for pðrÞ, we get

!2p ¼ �
�
d2

dr2
þ 1

r

d

dr

�
pþ ½3�2 ~h2 þ �ð�þ �Þ~g2

� ��1
~f2�p: (33)

Equation (33) has the form of a one-dimensional
Schrödinger equation with a potential uðrÞ given by

uðrÞ ¼ 3�2 ~hðrÞ2 þ �ð�þ �Þ~gðrÞ2 � ��1
~fðrÞ2: (34)

Looking for imaginary modes of the frequency ! now
reduces to finding negative-energy bound states for this
potential. Figure 5 depicts the behavior of the potential for
values of couplings which lie in both the stable and un-

stable regions for jVðstringÞ
1 i. Referring to Table I, when � ¼

1:3 and �1 ¼ 0:65, jVðstringÞ
1 i is stable for � ¼ 1:5. This is in

agreement with the fact that the minimum of the potential
for � ¼ 1:5 has positive energy. As � reduces toward � ¼
1:43, notice that the minimum of the energy starts reducing
until it starts becoming negative near � ¼ 1:43. This once
again confirms the numerical result that vacua of type

jVðstringÞ
1 i become unavailable for values of � < 1:43. We

have similarly computed the potential uðrÞ for critical

values of � and �, and found similar solutions confirming
the results stated in Table I.
Returning to our comment on the early universe setting

at the end of Sec. IVB, the field f (the VEVof P andN) has
negative effective mass squared, M2

2 < 0. High tempera-
ture corrections from the gauge sector add a term of the
form AT2 with A > 0 to this effective mass squared
[37,38], which would drive the temperature dependent
value fT to zero at high temperature, restoring the gauge
symmetry. Below the symmetry breaking critical tempera-
ture fT becomes nonzero. As long as this value remains
small, the effective mass squared for the h in Eq. (30)
remains positive. This makes jV1i a valid local minimum

and admits a vortex sector jVðstringÞ
1 i. At an even lower

temperature fT grows sufficiently large, and the roll-over
transition sets in.

VI. CONCLUSION

One of the main requirements in the minimal models of
gauge mediated supersymmetry breaking is that the mes-
senger squarks do not develop VEVs [22]. In this paper, we
have shown an example in which cosmic strings are present
in the metastable vacua. These configurations can roll over
classically into undesirable configurations which asymp-
tote into vacua in which hqi ¼ h �qi � 0. This happens for
certain ranges of the couplings �, �, and �1, including the
phenomenologically interesting region in which �1 < 0:1.
For a general messenger group Gm stable cosmic strings
would exist depending on the choice of representation of
the fields P and N. Furthermore, we have evidence that if
Gm is global the instability issue becomes more severe. In
all such models, it should be possible to obtain new con-
straints on the coupling constants from detailed simula-
tions of the cosmic strings. Such studies provide tighter
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FIG. 5 (color online). The equivalent Schrödinger potential of
Eq. (33) with � ¼ 1:3, �1 ¼ 0:65, and different values of �. A
positive energy minimum results in a stable solution. When a

negative-energy bound state is possible, vacua of type jVðstringÞ
1 i

become unavailable.

BRIJESH KUMAR AND URJIT A. YAJNIK PHYSICAL REVIEW D 79, 065001 (2009)

065001-6



constraints on the parameters as compared to those from
quantum tunneling effects.

In principle, these techniques are applicable to the
SUSY breaking sector itself provided the model supports
solitonic solutions. This aspect of the problem will be dealt
with in future work.
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