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Via the semiclassical approximation method, we study the 1=2-spin fermion tunneling from a higher-

dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we

simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-

time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of

higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black

hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also

applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and

we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.
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I. INTRODUCTION

Based on Hawking’s research on quantum radiation
from black holes in 1975 [1,2], allowing for quantum
effects, some researchers believe that black holes can
produce a kind of thermal radiation. The study of
Hawking radiation has become a focus in theoretical phys-
ics. Recently, Kraus, Parikh, and Wilczek et al. have
developed a quantum tunneling theory for researching
Hawking radiation of black holes [3–5]. In this theory,
the mechanism of Hawking radiation is regarded as the
process of tunneling. Then, through the WKB approxima-
tion the tunneling rate from the inside of a black hole’s
horizon to the outside can be determined, � /
expð�2 ImSÞ. (Here S is the classical action of the trajec-
tory.) Via this theory, researchers have studied several
black holes [6–11]. In 2008, Kerner and Mann brought
forward a method to study the Hawking radiation of
1=2-spin fermions [12,13]. In their research, the wave
function of the Dirac equation is decompounded as spin-
up and spin-down cases, and then the Dirac equation is
simplified by the semiclassical approximation to finally
obtain the Hawking temperature and tunneling rate. In
this way, the issue of fermion tunneling was successfully
solved. Later, Chen et al. studied the tunneling radiation
from charged dilatonic black holes and de Sitter space-time
[14,15]; Li et al. researched the tunneling behavior near the
horizons of lower-dimensional Bañados-Teitelboim-
Zanelli black holes and Kerr black holes [16,17]; fermion
tunneling from several nonstatic black holes was re-
searched by us [18–21]; and Jiang et al. investigated fer-
mion tunneling from the horizons of five-dimensional
black holes [22–24]. However, no one has studied fermion
tunneling at the event horizon of higher-dimensional black
holes, because the Dirac equations are very complicated in
higher-dimensional cases. More so, the incredible diffi-

culty is that the number of the Dirac equation is arbitrary
in arbitrary-dimensional space-time.
In this paper, we research fermion tunneling at the event

horizons of higher-dimensional black holes. Using the
semiclassical approximation method, we first simplify the
Dirac equations via separating the variable for the action,
and then focus on solving an equation which comes from
the condition that there is a nontrivial solution in the Dirac
equations. The 1=2-spin fermion tunneling of higher-
dimensional black holes could then finally be researched
by this method. It should be noted that in our method, the
Hamilton-Jacobi equation is obtained, so the research is
simplified greatly. In the following section, we research
fermion tunneling behavior of higher-dimensional
Schwarzschild black holes, and then we study fermion
tunneling of higher-dimensional spherically symmetric
quintessence black holes. In fact, our method also holds
true for fermion tunneling of four-dimensional and lower-
dimensional black holes. So, in Sec. IV, we use a rainbow-
Finsler black hole as an example to illustrate this point.
Finally, we end with some discussions and conclusions.

II. FERMION TUNNELING OF
HIGHER-DIMENSIONAL SCHWARZSCHILD

BLACK HOLES

We first study fermion tunneling from higher-
dimensional Schwarzschild black holes. The metric of a
Schwarzschild black hole with extra n dimensions is
[25,26]

ds2 ¼ �fðrÞdt2 þ f�1ðrÞdr2 þ r2d�2
2þn; (1)

where

fðrÞ ¼ 1�
�
r0
r

�
nþ1

: (2)

Obviously, the position of the event horizon is r0, which
should satisfy the equation fðr0Þ ¼ 0. In this space-time,
we can take the higher-dimensional Dirac equation into
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account, namely,

��D�� þm

@
� ¼ 0;

� ¼ t; r; �; ’; � � � x� � � � xnþ4; (3)

where � and ’ are angular coordinates, and x� � � � xnþ4 are
extra-dimensional coordinates,

D� ¼ @� þ i

2
��

�
����; (4)

��� ¼ i

4
½��;���; (5)

and the gamma matrices satisfy the condition that

f��;��g ¼ 2g��I: (6)

In d-dimensional space-time (d ¼ nþ 4 in Schwarzschild
space-time with extra n dimensions), we choose gamma
matrices such as

� t
m�m ¼ 1ffiffiffi

f
p iIðm=2Þ�ðm=2Þ 0

0 �iIðm=2Þ�ðm=2Þ

� �
; (7)

� r
m�m ¼ ffiffiffi

f
p

�̂3
m�m ¼ ffiffiffi

f
p 0 �̂3

ðm=2Þ�ðm=2Þ
�̂3
ðm=2Þ�ðm=2Þ 0

 !
;

(8)

� �
m�m ¼

ffiffiffiffiffiffiffi
g��

q
�̂1
m�m

¼
ffiffiffiffiffiffiffi
g��

q 0 �̂1
ðm=2Þ�ðm=2Þ

�̂1
ðm=2Þ�ðm=2Þ 0

 !
; (9)

� ’
m�m ¼ ffiffiffiffiffiffiffiffiffi

g’’
p

�̂2
m�m

¼ ffiffiffiffiffiffiffiffiffi
g’’

p 0 �̂2
ðm=2Þ�ðm=2Þ

�̂2
ðm=2Þ�ðm=2Þ 0

 !
; (10)

� � � � � �

�
�
m�m ¼ ffiffiffiffiffiffiffiffi

g��
p

�̂l
m�m

¼ ffiffiffiffiffiffiffiffi
g��

p 0 �̂l
ðm=2Þ�ðm=2Þ

�̂l
ðm=2Þ�ðm=2Þ 0

 !
; (11)

� � � � � �

� xnþ4

m�m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gx

nþ4xnþ4

q
0 �iIðm=2Þ�ðm=2Þ

iIðm=2Þ�ðm=2Þ 0

� �
;

(12)

wherem ¼ 2d=2 (m ¼ 2ðd�1Þ=2) is the order of the matrix in
even- (odd-) dimensional space-time; Eq. (12) is necessary
in odd-dimensional space-time, but it is unnecessary in
even-dimensional space-time; Iðm=2Þ�ðm=2Þ is a unit matrix

with m
2 � m

2 orders; 0 is the zero matrix with m
2 � m

2 orders;

��
ðm=2Þ�ðm=2Þ and �̂�

ðm=2Þ�ðm=2Þ are the �th gamma matrix

with m
2 � m

2 orders in curved and flat space-time, respec-

tively. The gamma matrices in flat space-time satisfy
f�̂�

ðm=2Þ�ðm=2Þ; �̂
�
ðm=2Þ�ðm=2Þg ¼ 2���Iðm=2Þ�ðm=2Þ, where

��� ¼
�
1 � ¼ �
0 � � �:

In particular, the 2� 2-order matrices are

�̂ 3
2�2 ¼ �3 ¼ 1 0

0 �1

� �
; (13)

�̂ 1
2�2 ¼ �1 ¼ 0 1

1 0

� �
; (14)

�̂ 2
2�2 ¼ �2 ¼ 0 �i

i 0

� �
: (15)

The spinor wave function � in Eq. (3) can be written as

� ¼ Aðm=2Þ�1ðt; r; �; ’; � � � x� � � � xnþ4Þ
Bðm=2Þ�1ðt; r; �; ’; � � � x� � � � xnþ4Þ

" #

� eði=@ÞSðt;r;�;’;���x����xnþ4Þ; (16)

where Aðm=2Þ�1ðt; r; �; ’; � � � x� � � � xnþ4Þ and

Bðm=2Þ�1ðt; r; �; ’; � � � x� � � � xnþ4Þ are m
2 � 1 function col-

umn matrices. Then we substitute Eq. (16) into Eq. (3) near
the horizon. After dividing by the exponential terms and
multiplying by @, the resulting equations to leading order in
@ are

C D
E F

� �
Aðm=2Þ�1

Bðm=2Þ�1

� �
¼ 0; (17)

where

C ¼ iffiffiffi
f

p @S

@t
Iðm=2Þ�ðm=2Þ � imIðm=2Þ�ðm=2Þ; (18)

D ¼ ffiffiffi
f

p @S

@r
�̂3
ðm=2Þ�ðm=2Þ þ

ffiffiffiffiffiffiffi
g��

q @S

@�
�̂1
ðm=2Þ�ðm=2Þ

þ ffiffiffiffiffiffiffiffiffi
g’’

p @S

@’
�̂2
ðm=2Þ�ðm=2Þ � � �

þ ffiffiffiffiffiffiffiffi
g��

p @S

@x�
�̂l
ðm=2Þ�ðm=2Þ þ � � �

� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gx

nþ4xnþ4

q
@S

@xnþ4
Iðm=2Þ�ðm=2Þ; (19)
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E ¼ ffiffiffi
f

p @S

@r
�̂3
ðm=2Þ�ðm=2Þ þ

ffiffiffiffiffiffiffi
g��

q @S

@�
�̂1
ðm=2Þ�ðm=2Þ

þ ffiffiffiffiffiffiffiffiffi
g’’

p @S

@’
�̂2
ðm=2Þ�ðm=2Þ � � �

þ ffiffiffiffiffiffiffiffi
g��

p @S

@x�
�̂l
ðm=2Þ�ðm=2Þ þ � � �

þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gx

nþ4xnþ4

q
@S

@xnþ4
Iðm=2Þ�ðm=2Þ; (20)

F ¼ � iffiffiffi
f

p @S

@t
Iðm=2Þ�ðm=2Þ � imIðm=2Þ�ðm=2Þ: (21)

If we assume that Eq. (17) has a nontrivial solution, it is
expected to comply with��������C D

E F

��������¼ 0: (22)

Taking into account the anticommutation relation of
gamma matrices in flat space-time, we can get the follow-
ing equation:

� 1

f

�
@S

@t

�
2 þ f

�
@S

@r

�
2 þ g��

�
@S

@�

�
2 þ g’’

�
@S

@’

�
2 þ � � �

þ g��
�
@S

@x�

�
2 þ � � � þ gx

nþ4xnþ4

�
@S

@xnþ4

�
2 þm2 ¼ 0: (23)

Obviously, it is a fermion semiclassical dynamic equation
with mass m in the higher-dimensional curved space-time
defined by Eq. (1). Up to now, research has been greatly
simplified. Next we resolve Eq. (23). In Eq. (23), we can
separate the variable for the action as

S ¼ �!tþ RðrÞ þ Yð�; ’; � � � ; x�; � � �Þ; (24)

and then Eq. (23) can be broken up as

� 1

f
!2 þ f

�
@R

@r

�
2 þm2 ¼ �

r2
; (25)

X
i¼�;’;���x����

Gii

�
@Y

@xi

�
2 þ � ¼ 0; (26)

where � is a constant, and

Giið�;’; � � � ; x� � � �Þ ¼ r2gii: (27)

Equation (25) is the radial equation, and Eq. (26) is the
nonradial equation (where gii are the inverter metric com-
ponents of angular and extra-dimensional coordinates.
Allowing for the formula of this metric, Gii is not depen-
dent on either time or radial coordinates). However, we are
not concerned with Eq. (26) [of course, Eq. (26) must be
true], because fermion tunneling at the event horizon of
black holes is radial. From Eq. (25), we can get

dRðrÞ
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2r2 þ fð�m2r2 þ �Þp

fr
: (28)

Near the event horizon, we expand f as

fðrÞ ¼ f0ðr0Þðr� r0Þ þ f00ðr0Þðr� r0Þ2=2þ � � � : (29)

Choosing the leading term of f, Eq. (28) can be rewritten
as

R�ðrÞ ¼ �
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 þ f0ðr0Þðr� r0Þð�m2 þ �=r2Þp
f0ðr0Þðr� r0Þ dr

¼ � i	!

f0ðr0Þ ; (30)

where Rþ is the radial outgoing solution, and R� is the
radial incoming solution. The total imaginary part of the
action is

ImS ¼ ImR ¼ ImRþðrÞ � ImR�ðrÞ: (31)

Therefore, the tunneling rate is

� ¼ expð�2 ImSÞ ¼ exp

��4	!

f0ðr0Þ
�
; (32)

where ImS is the imaginary part of the action, so the
Hawking temperature is

T0 ¼ f0ðr0Þ
4	

¼ nþ 1

4	r0
: (33)

In fact, Eq. (23) is none other than the Hamilton-Jacobi
equation in higher-dimensional Schwarzschild space-time.
That is to say, we can also get the Hamilton-Jacobi equa-
tions of higher-dimensional space-time using the semiclas-
sical approximate fermion tunneling theory. This shows
that the Hamilton-Jacobi equation is an elementary equa-
tion which can describe a quantum particle’s behavior in
semiclassical curved space-times. Namely, in the semiclas-
sical approximation theory, the Hamilton-Jacobi equation
can describe the property of fermions, as well as scalar
particles.

III. FERMION TUNNELING OF
HIGHER-DIMENSIONAL SPHERICALLY

SYMMETRIC QUINTESSENCE BLACK HOLES

Quintessence is one of the candidates for dark energy. In
the study of quintessential black holes, researchers have
worked on higher-dimensional spherically symmetric
black holes surrounded by quintessence. The metric is
given by [27]

ds2 ¼ �
�
1� 2M

rn�3
� c

rðn�1Þ!qþn�3

�
dt2

þ
�
1� 2M

rn�3
� c

rðn�1Þ!qþn�3

��1
dr2 þ r2d�2

n�2;

(34)

where c is a normalized constant, the ratio of the pressure
and energy density of quintessence is
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!q ¼ pq=
q; (35)

and

fðrÞ ¼ 1� 2M

rn�3
� c

rðd�1Þ!qþn�3
: (36)

The event horizon of the black hole satisfies the equation
fðr0Þ ¼ 0. Similarly to what we have done in Sec. II, we
can get the Hamilton-Jacobi equation of higher-
dimensional quintessential black holes. After separating
the variables, we have

� 1

f
!2 þ f

�
@R

@r

�
2 þm2 ¼ �

r2
; (37)

X
i¼�;’;���x����

Gii

�
@Y

@xi

�
2 þ � ¼ 0; (38)

where

Giið�;’; � � � ; x� � � �Þ ¼ r2gii; (39)

in which Eq. (37) is the radial equation and Eq. (38) is the
nonradial equation. From Eq. (37), we can get

dRðrÞ
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2r2 þ fð�m2r2 þ �Þp

fr
: (40)

Near the event horizon, we choose the leading term when
we expand f, and Eq. (40) is

R�ðrÞ ¼ �
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 þ f0ðr0Þðr� r0Þð�m2 þ �=r2Þp
f0ðr0Þðr� r0Þ dr

¼ � i	!

f0ðr0Þ ; (41)

where Rþ is the radial outgoing solution, while R� is the
radial incoming solution. Now we can obtain the tunneling
rate

� ¼ expð�2 ImRþÞ
expð�2 ImR�Þ ¼ exp

��4	!

f0ðr0Þ
�
; (42)

and the Hawking temperature

T0 ¼ f0ðr0Þ
4	

: (43)

In this section, we proved the validity of our method again.
Similarly, using this method, we can research fermion
tunneling from other higher-dimensional black holes. We
should emphasize that the method can apply not only to
research in higher-dimensional space-times, but also to
research of fermion tunneling from four-dimensional or
lower-dimensional black holes. Next, we will take the
spherically symmetric rainbow black hole as an example
to illustrate this fact.

IV. FERMION TUNNELING OF STATIC
SPHERICALLY SYMMETRIC BLACK HOLES IN

THE GRAVITY RAINBOW THEORY

Recently, some researchers have used the gravity rain-
bow theory to study the quantum field theory [28,29].
Researchers think the energy-momentum relation in spe-
cial relativity should be modified as

l21E
2 � l22 ~p � ~p ¼ m2: (44)

In the above formula, we have defined the light velocity as
c ¼ 1. l1 and l2 are correction terms related to the energy
of probe particles. When the energy is far less than Planck
energy, l1 and l2 are equivalent to 1. Generalizing the
theory in general relativity, the Einstein field equation is
rewritten as

G��ðE; �0Þ ¼ 8	GðE; �0ÞT��ðE; �0Þ þ g���ðE; �0Þ;
(45)

where �0 is a parameter of order the Planck length, and the
metric of a rainbow Schwarzschild black hole can be ex-
pressed as

ds2 ¼ � fðrÞ
l21

dt2 þ 1

fðrÞl22
dr2 þ r2

l22
ðd�2 þ sin2�d’2Þ

(46)

and

fðrÞ ¼ 1� 2M

r
(47)

in which 2M ¼ r0 is the black hole’s event horizon. The
influence of the correction terms l1 and l2 can be found in
the research of high energy physics. Because four-
dimensional space-time is even dimensional, the gamma
matrices in the Dirac equation can be chosen as

� t ¼ l1ffiffiffi
f

p iI2�2 0
0 �iI2�2

� �
; (48)

� r ¼ ffiffiffi
f

p
l2

0 �3

�3 0

� �
; (49)

� � ¼ l2
r

0 �1

�1 0

� �
; (50)

� ’ ¼ l2
r sin�

0 �2

�2 0

� �
: (51)

Similar to what we have done before, we can get the
Hamilton-Jacobi equation in the space-time

� l21
f

�
@S

@t

�
2 þ fl22

�
@S

@r

�
2 þ l22

r2

�
@S

@�

�
2

þ l22
r2sin2�

�
@S

@’

�
2 þm2 ¼ 0: (52)
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Separating the variables for the action, we have

S ¼ �!tþ RðrÞ þ Yð�;’Þ; (53)

so we can decompose Eq. (52) into a radial equation and an
angular equation,

� l21
f
!2 þ fl22

�
@R

@r

�
2 þm2 ¼ �

r2
; (54)

l22

�
@Y

@�

�
2 þ l22

sin2�

�
@Y

@’

�
2 þ � ¼ 0: (55)

From Eq. (54), we obtain

dRðrÞ
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2r2l21 þ fð�m2r2 þ �Þ

q
frl2

: (56)

Near the event horizon, fðr0Þ ¼ 0, so Eq. (56) becomes

R�ðrÞ ¼ � l1
l2

i	!

f0ðr0Þ ; (57)

where Rþ is the outgoing solution and R� is the incoming
solution. Then we can get the tunneling rate

� ¼ expð�2 ImRþÞ
expð�2 ImR�Þ ¼ exp

�
l1
l2

�4	!

f0ðr0Þ
�
; (58)

and the Hawking temperature

T0 ¼ l2
l1

f0ðr0Þ
4	

¼ l2
l1

1

4	r0
: (59)

The conclusions arrived upon here are meaningful. We can
see that the tunneling rate and the Hawking temperature of
four-dimensional rainbow black holes depend on the cor-
rection terms, which means that the tunneling rate and the
Hawking temperature at the horizon in rainbow space-time

depend on the energy of probe particles. Namely, they
depend on the mathematic tangent vector. Therefore,
Girelli et al. thought the rainbow metric was exactly the
Finsler metric [30,31]. The conclusion about the rainbow-
Finsler theory needs to be proven through more experi-
ments and observations in the future. Similarly, we can also
study fermion tunneling from the horizons of other four-
dimensional and lower-dimensional black holes.

V. CONCLUSIONS

In this paper, we have researched fermion tunneling
from higher-dimensional Schwarzschild black holes,
higher-dimensional spherically symmetric quintessence
black holes, and rainbow-Finsler black holes. In the course
of our research, we made full use of Eq. (23) to simplify the
problem of solving a semiclassical approximate Dirac
equation in higher-dimensional space-time. By solving a
semiclassical differential equation, we can finally obtain
the Hamilton-Jacobi equation in the corresponding space-
times. It is shown that the Dirac equation is self-consistent
in semiclassical approximation theory, and the method we
used in this paper is correct. Although we achieved signifi-
cant conclusions in our work, the space-time background
of Hawking radiation studied in this paper is unchangeable.
Taking the unfixed background space-time into account,
the research could help resolve the information-loss para-
dox of black holes. Work on these fields is currently in
progress.
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