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Making use of the fact that the optical geometry near a static nondegenerate Killing horizon is

asymptotically hyperbolic, we investigate some universal features of black-hole horizons. Applying the

Gauss-Bonnet theorem allows us to establish some general properties of gravitational lensing, valid for all

black holes. Hyperbolic geometry allows us to find rates for the loss of scalar, vector, and fermionic

‘‘hair’’ as objects fall quasistatically towards the horizon, extending previous results for Schwarzschild to

all static Killing horizons. In the process we find the Liénard-Wiechert potential for hyperbolic space and

calculate the force between electrons mediated by neutrinos, extending the flat space result of Feinberg

and Sucher. We further demonstrate how these techniques allow us to derive the exact Copson-Linet

potential due to a point charge in a Schwarzschild background in a simple fashion.
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I. INTRODUCTION

There has been over the past few years a very large
amount of theoretical work on black holes addressing
problems in quantum gravity, supergravity, string theory
and M-theory. Typically one seeks solutions of the super-
gravity equations in four or higher dimensions, and while
many are broadly similar to the well-known Kerr–
Newman–de Sitter family in four spacetime dimensions,
there are many differences of detail and in higher dimen-
sions qualitatively different features can arise. It is desir-
able, therefore, to fix upon universal properties, true for a
broad class of black holes. For this reason the near-horizon
geometry of extreme black holes has received a great deal
of attention, since it universally behaves like AdS2 �
Mn�2, where Mn�2 is typically an n� 2 dimensional
Einstein space and the symmetry is enhanced from R to
SOð2; 1Þ. By contrast the universal near-horizon optical
geometry of nonextreme horizons with its enhanced con-
formal symmetry has largely been ignored (notable excep-
tions are [1,2]). In other words, little has been done to
exploit the fact that near a nonextreme horizon of a static
black hole with metric

ds2 ¼ �V2dt2 þ �ijdx
idxj; (1.1)

i ¼ 1; 2; . . . ; n� 1 the optical metric

aijdx
idxj ¼ V�2�ijdx

idxj; (1.2)

becomes asymptotically hyperbolic, with a conformal
boundary whose geometry is that of the event horizon. In
the spherically symmetric case, the limiting optical geome-
try is precisely that of hyperbolic space Hn�1 ¼ SOðn�
1; 1Þ=SOðn� 1Þ with radius of curvature equal to ��1,
where � is the surface gravity.

This is especially ironic because asymptotically hyper-
bolic geometry has been studied for some time because of
the light it throws on the no-hair properties of asymptoti-
cally de Sitter metrics and the freezing of perturbations
which have crossed the horizon of an inflationary universe
(see [3] for a recent discussion and references to earlier
work). A much better known case arises in the AdS/CFT
correspondence where the asymptotically hyperbolic ge-
ometry of AdSn or, in its ‘‘Euclidean’’ formulation, Hn is
of interest.
The aim of the present paper is to fill this gap by

embarking on an exploration of what can be learned about
the universal qualitative properties of black holes from
studying their near-horizon optical geometry using the
tools of hyperbolic geometry. We shall principally be con-
cerned with two topics
(i) A qualitative study of null geodesics near a static

horizon using the Gauss-Bonnet theorem, rather in
the style of [4] in the case of cosmic strings.

(ii) A study of the shedding of ‘‘hair’’ near static event
horizons using propagators in hyperbolic space.

Of course, in the case of astrophysical black holes the
near-horizon geometry has long been studied under the
rubric of the ‘‘membrane paradigm’’ [5] and its Rindler
like features have been described. However, this work
mainly concentrates on the planar approximation to the
horizon geometry and does not make use of detailed con-
cepts and ideas of hyperbolic geometry. Closer to what we
are interested in is the work of Haba [2] which considers
scalar fields near a Killing horizon using an optical geome-
try approach and constructs approximate Green’s functions
in cases where the horizon is not necessarily spherical.
This approach is more in tune with our philosophy of
seeking universal properties. We will focus on spherical
horizons and show that the enhanced symmetry present in
this case makes approximate propagators much simpler to
construct. We remark that the universal nature of the black-
hole absorption cross section [6] has recently played an
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important rôle in the understanding of the ratio of shear
viscosity to entropy density of conformal fluid in the AdS/
CFT correspondence [7].

The paper will be organized as follows: we first define
the optical metric and explore some of its properties,
including a study of light rays near an event horizon using
the Gauss-Bonnet theorem. We will then present a general
argument based on the near-horizon limit of the optical
geometry to estimate the rate of loss of ‘‘hair’’ as bodies
fall towards the black hole. Then we will show how the
optical metric allows one to find the fields due to static
electric and scalar charges in the Schwarzschild and
Reissner-Nordström backgrounds with very little calcula-
tion. This is a rederivation of results in the literature in a
more coherent and direct way. We will include equipoten-
tial plots for a charged particle approaching a black hole,
graphically demonstrating the no-hair result.

II. OPTICAL METRICS

The optical metric may be thought of as the modern
incarnation of an idea dating back to Fermat in the 17th
century. Fermat expressed the laws governing reflection
and refraction of light as what we would now call an action
principle. His ‘‘principle of least time’’ states that the path
taken by a ray of light is that which minimizes the time
taken between the two points. This can be used to derive
the more familiar Snell’s law and other optical laws.

In the case of light rays moving in a static background,
with a given choice of time coordinate t, we may take this
at face value and define the action for light rays in the
metric

g ¼ �a2ðxÞdt2 þ hijðxÞdxidxj (2.1)

to be

S ¼
Z

dt ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�2hij
dxi

d�

dxj

d�

s
d�; (2.2)

where we use the fact that null rays have ds ¼ 0.
Extremizing this action gives the unparametrized geode-
sics of the 3 dimensional Riemannian metric:

hopt ¼ a�2ðxÞhijðxÞdxidxj: (2.3)

These unparametrized geodesics are the light rays and the
metric hopt is the optical metric. One may check that these

unparametrized geodesics indeed coincide with the projec-
tions of the null geodesics of (2.1) onto the spacelike
surfaces t ¼ const and so the light rays are the paths traced
by photons moving in this static space. The equivalence is
clear by considering the metric

gopt ¼ a�2g ¼ �dt2 þ hopt; (2.4)

since the unparametrized null geodesics are conformally
invariant objects, the result follows. We will sometimes
refer to the ultrastatic metric gopt as the optical metric also,

relying on context to distinguish it from hopt. The optical

metric is not necessarily unique as it depends upon a choice
of time coordinate t. For metrics which admit more than
one choice of t there can be more than one optical metric.
We shall see this in detail in the case of anti–de Sitter space
below.
It is not only statements about the null geodesics which

are accessible via the optical metric. Many of the field
equations of physics both classical and quantum behave
well under conformal transformations and so we can make
use of the universal nature of the near-horizon optical
geometry to study physics near a black-hole (or cosmo-
logical) horizon.

A. The optical metrics of de Sitter and anti–de Sitter

1. de Sitter

We start with 3þ 1 dimensional de Sitter as the timelike
hyperboloid in E4;1:

X2 þ Y2 þ Z2 þW2 � V2 ¼ 1;

ds2 ¼ dX2 þ dY2 þ dZ2 þ dW2 � dV2:
(2.5)

We could consider nþ 1 dimensions, but the generaliza-
tions are straightforward. A choice of static time coordi-
nate t corresponds to a choice of future-directed, timelike,
hypersurface orthogonal Killing vector @

@t . The Killing

vectors of dS are those in E4;1 which generate rotations
and boosts. A basis for the Killing vectors is given by the
hypersurface orthogonal vectors:

M�� ¼ X�

@

@X� � X�

@

@X� : (2.6)

Here�, � are E4;1 indices. There is no Killing vector which
is everywhere timelike, however the Killing vector:

K ¼ W
@

@V
þ V

@

@W
(2.7)

is timelike and future-directed in the region fW2 � V2 >
0g [ fW > 0g. Furthermore, any other choice of timelike
Killing vector is equivalent to K under a Lorentz trans-
formation. We can find a parametrization of the hyperbo-
loid in this patch, such that K ¼ @

@t is a static Killing vector

as follows:

X ¼ r sin� sin�; Y ¼ r sin� cos�; Z ¼ r cos�;

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
cosht; V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
sinht: (2.8)

On this patch, the metric takes the form

ds2 ¼ ð1� r2Þ
�
�dt2 þ dr2

ð1� r2Þ2 þ
r2

1� r2

� ðd�2 þ sin2�d�2Þ
�
; (2.9)

so that the optical metric may be seen to be the Beltrami
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metric on hyperbolic space. In fact these coordinates cover
all of the Beltrami ball, f0 � r < 1g, and so the optical
geometry of the static slicing of de Sitter is precisely H3.
The conformal infinity of the hyperbolic ball corresponds
to the Killing horizon on the hyperboloid at W2 � V2 ¼ 0
where K becomes null. It is a general characteristic of
Killing horizons that the optical geometry approaches a
constant negative curvature geometry near the horizon.

2. Anti–de Sitter

The situation for AdS is somewhat more interesting than
that for dS because there exist three equivalence classes of
timelike, future-directed, hypersurface orthogonal Killing
vectors under the action of SOð3; 2Þ. To see this we take
AdS to be a hyperboloid in E3;2:

�W2 � V2 þ X2 þ Y2 þ Z2 ¼ �1;

ds2 ¼ �dW2 � dV2 þ dX2 þ dY2 þ dZ2:
(2.10)

In a similar way to the case of dS, a basis for the Killing
vectors is given by:

M�� ¼ X�

@

@X� � X�

@

@X� ; (2.11)

where �, � are E3;2 indices. Under a SOð3; 2Þ transforma-
tion, any Killing vector which is timelike somewhere on
the hyperboloid may be brought into one of three forms,
listed below with the region in which they are timelike:

K1 ¼ V
@

@W
�W

@

@V
; all ofAdS;

K2 ¼ ðZþWÞ @

@V
þV

�
@

@Z
� @

@W

�
; fWþZ> 0g;

K3 ¼ Z
@

@V
þV

@

@Z
; fZ2 �V2 > 0g [ fZ> 0g: (2.12)

We now find the optical metric in each case:
Case 1 We pick the following parametrization of the

hyperboloid

X ¼ r sin� sin�; Y ¼ r sin� cos�; Z ¼ r cos�;

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
cost; V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
sint; (2.13)

so that the metric is given by:

ds2 ¼ ð1þ r2Þ
�
�dt2 þ dr2

ð1þ r2Þ2 þ
r2

1þ r2

� ðd�2 þ sin2�d�2Þ
�
; (2.14)

and we recognize that the optical metric is the Beltrami
metric for S3. This covers one half of the sphere, with the 2-
sphere at r ¼ 1 corresponding to an equatorial 2-sphere.

Case 2 We pick a different parametrization for the
hyperboloid:

X ¼ x=z;

Y ¼ y=z;

Z ¼ ð1þ t2 � x2 � y2 � z2Þ=ð2zÞ;
W ¼ ð1� t2 þ x2 þ y2 þ z2Þ=ð2zÞ;
V ¼ t=z;

(2.15)

so that the metric is the Poincaré upper half-space metric:

ds2 ¼ 1

z2
ð�dt2 þ dx2 þ dy2 þ dz2Þ; z > 0 (2.16)

and the optical geometry is the half-space fz > 0g in E3.
Case 3 Finally we consider the case where @

@t ¼ K3. A

suitable parametrization of the static patch is provided by:

X ¼ tan� cos�;

Y ¼ tan� sin�;

Z ¼ coshtcosech� sec�;

W ¼ cotanh� sec�;

V ¼ sinhtcosech� sec�:

(2.17)

The spatial coordinates have ranges 0 � �< 2	, 0 � � <
	=2, 0< �. The metric is given by:

ds2 ¼ cosech2�sec2�ð�dt2 þ d�2

þ sinh2�ðd�2 þ sin2�d�2ÞÞ: (2.18)

We see that the optical metric is that of hyperbolic space in
geodesic polar coordinates. Since � does not range over
½0; 	Þ the coordinates only cover half of H3 and there is a
boundary which is given by the plane � ¼ 	=2 in these
coordinates.
We note that all three of the AdS optical metrics have a

finite boundary. This boundary corresponds to the confor-
mal infinity of the AdS space and is a manifestation of the
fact that AdS is not globally hyperbolic. In the case of dS,
the optical metric is complete and has an asymptotically
hyperbolic end which corresponds to the Killing horizon of
the static patch. As we will see below, this behavior is
typical of a Killing horizon, such as the event horizons of
Schwarzschild and Reissner-Nordström.

B. The optical metrics of Schwarzschild and
Reissner-Nordström

Owing to the similarities between the cosmological
horizon of de Sitter and the event horizons of black holes,
we might expect the optical geometries to be similar near
the horizon. We shall see that this is indeed the case, and
that near the horizon, the geometry of a static black hole
has an asymptotically hyperbolic optical metric.
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We start with the Schwarzschild metric

ds2 ¼ �
�
1� 2M

r

�
dt2 þ dr2

1� 2M
r

þ r2ðd�2 þ sin2�d�2Þ
(2.19)

and make the coordinate transformation

r ¼ M

�
1þ 





�
(2.20)

this takes the asymptotically flat end to 
 ¼ 0 and the
horizon to 
 ¼ 1 and puts the metric into the form:

ds2 ¼
�
1� 


1þ 


��
�dt2 þ 16M2

�
1þ 


2


�
4

�
�

d
2

ð1� 
2Þ2 þ

2

1� 
2
ðd�2 þ sin2�d�2Þ

��
(2.21)

The term inside the braces may be seen to be the metric on
H3 in Beltrami coordinates. In the limit 
 ! 1, we thus see
that the optical metric tends to a metric of constant nega-
tive curvature as we approach the horizon.

The case of Reissner-Nordström is rather similar,
although the resulting metric is not so elegant. In the
familiar coordinates, the Reissner-Nordström metric is
given by

ds2 ¼ �
�
1� 2M

r
þQ2

r2

�
dt2 þ dr2

1� 2M
r þ Q2

r2

þ r2ðd�2 þ sin2�d�2Þ (2.22)

In these coordinates, the horizon is at r ¼ Mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p ¼ Mþ�, where we define a new parameter
� which we will assume to be strictly positive. The case
� ¼ 0 corresponds to an extremal black hole which we
will not consider here. The coordinate transformation

r ¼ Mþ�



(2.23)

puts the metric into the form

ds2 ¼ �2ð1� 
2Þ
ð�þm
Þ2

�
�dt2 þ ð�þmÞ4

�2

�
�þm


ð�þmÞ

�
4

�
�

d
2

ð1� 
2Þ2 þ

2

1� 
2
ðd�2 þ sin2�d�2Þ

��

(2.24)

We see once again that the optical metric approaches the
Beltrami metric on hyperbolic space as we get close to the
horizon. In both cases, the radius of the hyperbolic space is
�H, the inverse Hawking temperature of the black hole. In
fact, this is a general property of a static metric with a
nondegenerate Killing horizon as shown in [1]. In that
paper Sachs and Solodukhin show that near a nonextreme
horizon of a static black hole with metric

ds2 ¼ �V2dt2 þ �ijdx
idxj; (2.25)

i ¼ 1; 2; . . . ; n� 1 the optical metric

aijdx
idxj ¼ V�2�ijdx

idxj; (2.26)

becomes asymptotically hyperbolic, with a conformal
boundary whose geometry is that of the event horizon.
Essentially this is due to the fact that at a nondegenerate
Killing horizon V2 must have a simple zero. We will
consider the spherically symmetric case from here on,
however we will try and identify results which we expect
to remain the same in the case of more interesting (com-
pact) horizon topology.
It will prove crucial in our exact calculations later that

the optical metrics of both Schwarzschild and Reissner-
Nordström take the form:

gopt ¼ �dt2 þH4h; (2.27)

where h is the metric on the unit pseudosphere, H3, and H
is a harmonic function on H3 which approaches 1 near the
conformal boundary ofH3. This observation is responsible
for the fact that the fields due to static electric and scalar
charges in these backgrounds may be found explicitly [8–
10]. We show below how these fields may be constructed.
This special form of the metric occurs only in the 4-
dimensional space-times, so does not, unfortunately, lead
to a generalization of these results in an obvious way to
higher dimensions.
For another viewpoint on the optical geometry of

Schwarzschild see [11] where the geometry is constructed
as an embedding in a higher dimensional hyperbolic space.

III. LENSING AND THE GAUSS-BONNET
THEOREM

In order to discuss null geodesics we could follow the
well trodden path of solving the differential equations.
Instead we will follow the approach of [4,12] and extract
information about geodesics using the Gauss-Bonnet theo-
rem which directly involves the negative curvature of the
optical metric. Although here we consider only the
Schwarzschild black hole, it is clear that many qualitative
properties may be deduced using only the assumption of
negative curvature near the horizon of the optical metric,
provided a totally geodesic 2-surface exists.
Let us now consider geodesics lying in an oriented two-

surface �. We may apply the Gauss-Bonnet theorem to
obtain useful information [4], in particular, about angle
sums of geodesic triangles. Let D � � be domain with
Euler number�ðDÞ and a not necessarily connected bound-
ary @D, possibly with corners at which the tangent vector
of the boundary is discontinuous. If K is the Gauss curva-
ture of D, such that Rijkl ¼ Kðfikfjl � filfjkÞ and k the

curvature of @D, �i the angle through which the tangent
turns inwards at the ith corner then
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Z
D
KdAþ

I
@D

kdlþX
i

�i ¼ 2	�ðDÞ: (3.1)

In the case of the Schwarzschild metric, if one considers
geodesics in an equatorial plane the optical metric is

ds2 ¼ dr2

ð1� 2M
r Þ2

þ r2

ð1� 2M
r Þ

d�2: (3.2)

We return here to the standard Schwarzschild coordinates
of (2.19). Note that the radial optical distance is

dr

ð1� 2M
r Þ

¼ dr?; (3.3)

where r? ¼ r� 2Mþ 2M lnð r
2M � 1Þ is the Regge-

Wheeler tortoise coordinate.
There is a circular geodesic at r ¼ 3M and the horizon

r ¼ 2M is at an infinite optical distance inside this at r? ¼
�1. The Gauss curvature

K ¼ � 2M

r3

�
1� 3M

2r

�
(3.4)

is everywhere negative. It falls to zero like � 2M
r3

at infinity

but near the horizon the Gauss curvature approaches the
negative constant� 1

ð4MÞ2 . This is precisely as we expect to
find given the results of the previous section.

The fact that the Gauss curvature is negative looks on the
face of it rather paradoxical, since one usually thinks of
gravitational fields as focusing a bundle of light rays.
However, as Lodge perhaps dimly realized [13] a spherical
vacuum gravitational field does not quite act in that way.
The equation of geodesic deviation governing the separa-
tion � of two neighboring light rays in the equatorial plane
is

d2�

dt2
þ K� ¼ 0: (3.5)

Thus neighboring light rays actually diverge. The focusing
effect of a gravitational lens is not, as we shall see shortly, a
local but rather a global, indeed even topological, effect.
One might wonder whether the full 3-dimensional cur-

vature 3Rijkl of the optical metric has all of its sectional

curvatures negative, but this cannot be. The sectional cur-
vature of a surface is related to the full curvature tensor by

3Rijkl ¼ Kðfikfjl � filfjkÞ � KikKjl þ KilKjk; (3.6)

where Kij is the second fundamental form or extrinsic

curvature of the surface. For a totally geodesic surface
Kij ¼ 0, and the two sectional curvatures agree. One

such totally geodesic surface is the equatorial plane for
which, as we have seen, K is negative. Another totally
geodesic submanifold is the sphere at r ¼ 3M for which K
is obviously positive.
The negativity of the Gauss curvature of the optical

metric in the equatorial plane is a fairly universal property
of black-hole metrics. To see this we note that if

ds2 ¼ d
2 þ l2ð
Þd�2; (3.7)

then

K ¼ � 1

l

d2l

d
2
: (3.8)

Any metric with the same qualitative features as the
Schwarzschild metric, as long as it has a positive mass,
will have K negative. Indeed this fact might be made the
basis of excluding negative mass objects observationally.
A simple calculation shows the integral over the region

outside the circular geodesic at r ¼ 3M is

FIG. 1. The geodesic polygons described in (i)–(vi).
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Z
r�3M

KdA ¼ �2	: (3.9)

Let us now apply the Gauss-Bonnet theorem to various
cases (see Figs. 1 and 2).

(1) Geodesic triangle� not containing the region inside
r ¼ 3M. In this case �ð�Þ ¼ 1. If 
, �, � are the
necessarily positive internal angles, we find that the
angle sum is less that 	,


þ �þ � ¼ 	þ
Z
�
KdA < 	: (3.10)

(2) Geodesic di-gon S not containing the region inside
r ¼ 3M. In this case �ðSÞ ¼ 1. If 
 and � are the
internal angles,


þ � ¼
Z
S
KdA < 0: (3.11)

In other words two such geodesics cannot intersect
twice if the hole is not inside the di-gon. Neither, in
these circumstances, can a geodesic intersect itself
because

(3) Geodesic loop T not containing the region inside
r ¼ 3M. In this case �ðTÞ ¼ 1 and one finds that if

 is the internal angle, then


 ¼ �	þ
Z
T
KdA <�	; (3.12)

which is plainly impossible.
This might seem counterintuitive in the light of
one’s usual intuition about light bending, but this
feeling is dispelled by considering cases in which
the domain D has two boundary components, the
second, inner, one being the circular geodesic at r ¼
3M. The domain with the circle removed has the
topology of an annulus and thus its Euler number
vanishes.

(4) Geodesic triangle with hole �o enclosing the geo-
desic circle at r ¼ 3M and with the region inside
r ¼ 3M removed.
If 
, �, � are the internal angles, we find that the
angle sum is greater than 	,


þ �þ � ¼ 3	þ
Z
�0

KdA � 	: (3.13)

Similarly
(5) Geodesic di-gon S0 with the region inside r ¼ 3M

removed. In this case �ðS0Þ ¼ 0 and one finds that if

 and � are the internal angles, then


þ � ¼ 2	þ
Z
S0

KdA > 0: (3.14)

In other words two such geodesics may intersect
twice if the hole is inside the di-gon. Moreover, in

these circumstances, a geodesic can intersect itself
because:

(6) Geodesic loop T0 containing the region inside r ¼
3M. In this case �ðT0Þ ¼ 1 and if 
 is the internal
angle, we find that


 ¼ 	þ
Z
T0

KdA; (3.15)

which is plainly possible.
Similar results may be obtained by considering geo-
desics inside r ¼ 3M, but now the domain must not
contain the horizon, otherwise

R
D KdAwill diverge.

Near the horizon the geometry is that of
Lobachevsky space with constant curvature � 1

4M .

(7) Deflection. We consider a geodesic line with no self-
intersection which, at large distances, is radial. The
angle between the asymptotes is �, with the con-
vention that it is positive if the light ray is bent
towards the hole. The geodesic decomposes the
region inside two circles, one of very large radius
and the other at r ¼ 3M into two domains D�
whose common boundary component consists of
the geodesic, which intersects the circle at infinity
at right angles. We chose Dþ to enclose the hole so
it has an inner boundary component at r ¼ 3M and a
portion of the circle at infinity through which the
angle � has range 	� �. Clearly Dþ is topologi-
cally an annulus and so it has vanishing Euler num-
ber, �ðDþÞ ¼ 0. The other domain has Euler
number �ðD�Þ ¼ 1, and � ranges through 	þ �.
The Gauss-Bonnet formula applied toD� acquires a
contribution from the two corners and the circle at
infinity. The result is

� ¼ �
Z
D�

KdA > 0: (3.16)

For a geodesic whose distance of closest approach is very
large, we may estimate this integral by approximating the
geodesic as the straight line r ¼ b

sin� . The impact parame-

ter to this lowest nontrivial order coincides with the dis-
tance of nearest approach and equals b. To the necessary

FIG. 2. Light bending by a Schwarzschild black hole.
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accuracy

KdA � � 2M

r3
rdrd�: (3.17)

The domain of integration D� is, with sufficient accu-
racy over r � b

sin� , 0 � � � 2	. A simple calculation

gives the classic result

� ¼ 4M

b
: (3.18)

Note the same method works for any static metric, not
just Schwarzschild (for an application to gravitational
lensing see [12]) and shows that the Gauss-Bonnet method
does not just give qualitative results, but it can be made into
a quantitative tool.

IV. NO-HAIR PROPERTIES FROM THE OPTICAL
METRIC

We now shift our attention to a different aspect of black-
hole physics, the so-called ‘‘no-hair’’ property. A station-
ary black hole has only three measurable quantities asso-
ciated with it: mass, angular momentum and electric
charge. Thus no matter how complicated a system we start
with, once it has undergone gravitational collapse to form a
black hole, we are left with only these three pieces of
information. This presents only a minor problem if we
are prepared to accept that the information contained in
the initial system is somehow trapped irretrievably behind
the horizon. Once one includes Hawking’s observation that
black holes may radiate and indeed evaporate over time,
the question of where the information goes becomes more
subtle, giving rise to the so called ‘‘information loss
paradox.’’

We shall be interested in discovering how, at the classi-
cal level, information is lost as a body falls into a black
hole. We will work with an approximation where the in-
falling body is supposed to have a negligible effect on the
background and so we may consider physics in a fixed
black-hole geometry. This amounts to a linearization of the
problem, but allows analytic progress to be made.

At the linearized level, the no-hair property may be
translated mathematically into the notion that the black-
hole exterior cannot support any external fields which are
regular both at the horizon and spacelike infinity. An
interesting question is what happens to the fields around
some compact body as it falls into the black hole. This
corresponds to asking what happens to a propagator as its
pole approaches the horizon. This gives information both
about the classical scenario, but also about the outcome of
scattering experiments performed as the body falls towards
the hole [14].

We are interested in finding a fairly general approach to
study how ‘‘hair’’ is lost as bodies carrying charges fall into
a black hole. We will argue that this is a property of the
geometry close to the black-hole horizon, and so we can

consider the problem in this region where the geometry
simplifies. We translate the question of finding propagators
to a problem in the optical metric and then show how we
can estimate the rate of information loss in this geometry.
As we noted above, near the horizon this geometry ap-
proaches that of hyperbolic space irrespective of the details
of the black hole under consideration.

A. Physics in Rt �H3

There have been investigations of physics in spaces of
constant negative curvature for some time and with varying
motivations. Callan and Wilczek initiated a study of quan-
tum mechanics on H4 in [15] in order to geometrically
regulate the infrared divergences of Euclidean field theory.
In [16] Atiyah and Sutcliffe considered Skyrmions inH3 as
a means of finding approximate Skyrmions in E3 for the
case where the pion mass is nonzero. Field theories on H3

are also thermodynamically interesting as one might ex-
pect, anticipating the Hawking radiation of horizons. A
study of some thermodynamic properties, especially Bose-
Einstein condensation may be found in [17]. There have
also been studies of electrostatics and magnetostatics in
hyperbolic space, with particular reference to the Gauss
linking formula [18].
Although the references above provide a reasonably

comprehensive discussion of physics in Rt �H3, in the
interests of a self-contained exposition we will discuss
some aspects here. Using the near-horizon limit of the
optical metric, this corresponds after a conformal trans-
formation to physics in the neighborhood of a nonextremal
black-hole horizon. The fact that analytic progress is pos-
sible may be traced to the fact that the metric is confor-
mally equivalent to the inside of the future light cone of the
origin in Minkowski space as follows.
Throughout this section we represent a point in H3 as a

point on the unit pseudosphere H3 ¼ fX � X ¼ �1; X0 >
0g in E3;1. This makes the equations manifestly SOð3; 1Þ
invariant and easy to translate between different coordinate
systems. The point ðt; XÞ in Rt �H3 is mapped to a point
on the interior of the future light cone of the origin in E3;1

according to:

�: Rt �H3 ! fx 2 E3;1; x � x ¼ �1; x0 > 0g
ðt; XÞ � x ¼ Xet: (4.1)

If g is the metric on Rt �H3 and � is the standard metric
on E3;1, then one finds that:

�	� ¼ e2tg; (4.2)

so we have exhibited the conformal equivalence of these
two spaces. This means that given any conformally invari-
ant equation whose propagator may be found in
Minkowski space, one may find the propagator for Rt �
H3.

UNIVERSAL PROPERTIES OF THE NEAR-HORIZON . . . PHYSICAL REVIEW D 79, 064031 (2009)

064031-7



1. Massless wave equation

Although the massless wave equation is conformally
invariant, and so the propagator may be constructed from
the known flat space propagator, it is more convenient to
directly solve in this case. We seek to solve the equation:

ðhg � 1
6RgÞGðt; X; �; YÞ ¼ ð�@2t þ �h þ 1ÞG

¼ �ð4Þ
g ððt; XÞ; ð�; YÞÞ: (4.3)

One might think that the appearance of the curvature term
above gives rise to an effective mass, however it is impor-
tant to include this term in the massless wave equation to
ensure, for example, that disturbances propagate along the
light-cone as one would expect. Following standard treat-
ments, one Fourier transforms in time and takes � ¼ 0
without loss of generality. We then need to solve the
Helmholtz equation

ð�h þ 1þ k2Þ ~G ¼ �hðX; YÞ: (4.4)

This has the general solution, found by using geodesic
polar coordinates on H3:

~GðX; YÞ ¼ Aeik� þ Be�ik�

4	 sinh�
(4.5)

where � ¼ DðX; YÞ and Aþ B ¼ 1. The fact that this (and
other Green’s functions on H3) depends only on DðX; YÞ is
due to the 2-point homogeneity of the space. Undoing the
Fourier transform one finds:

Gðt; X; �; YÞ ¼ A
�ðt� ��DðX; YÞÞ

sinhDðX; YÞ
þ B

�ðt� �þDðX; YÞÞ
sinhDðX; YÞ : (4.6)

The choices for A and B determine what combination of
the advanced and retarded propagator we have. Note that
this propagator is periodic with period 2	i in the time
coordinate.

2. Liénard-Wiechert potential

The Liénard-Wiechert potential describes the electro-
magnetic field due to a charge q moving in Minkowski
space along some path rðsÞ 2 E3;1 where s is any parame-
ter. The potential at a point x is constructed as follows: first
find a solution sr to the equation:

ðx� rðsÞÞ � ðx� rðsÞÞ ¼ 0 (4.7)

which should correspond to the intersection of the path of
the charge with the past light cone for a retarded propa-
gator. The Maxwell field is then determined by the one-
form

A ¼ q

4	�0

_r � dx
ðx� rÞ � _r

��������s¼sr

: (4.8)

Note that this is invariant under reparametrizations of the

path of the particle rðsÞ. In calculating F ¼ dA one should
be wary since A depends on x both explicitly and also
implicitly through sr. Differentiating (4.7) one finds that:

dsr ¼ �ðx� rÞ � dx
ðx� rÞ � _r

: (4.9)

The standard calculations may now be performed and the
Maxwell field calculated.
In order to find the field due to a point charge q moving

along the curve ðs; RðsÞÞ 2 Rt �H3 we will use the con-
formal invariance of the Maxwell equations. Using the
conformal map � we may pull back the Liénard-
Wiechert potential from Minkowski space. One finds that
the light-cone condition may be rewritten:

t� sr ¼ DðX; RðsrÞÞ (4.10)

and the potential is given by:

A¼ q

4	�0

1

_R �X� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðR �XÞ2 � 1
p

�½ðR �Xþ _R �XÞdtþR �dXþ _R �dX
js¼sr : (4.11)

Once again the dependence on ðX; tÞ is subtle, but one may
calculate the Maxwell field by using:

dsr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðX � RÞ2 � 1

p
dtþ R � dXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðX � RÞ2 � 1

p � _R � X
; (4.12)

which follows from differentiating (4.10).
Calculating the field strength in the limit where the

source charge is at a large distance from the observer but
_R � _R and €R � €R remain bounded, we find that the field
decays like e�� with � the separation of charge and
observer.
We may interpret this in terms of the black-hole optical

geometry which approaches H3 � Rt near the horizon. In
this case, as we shall see later one must add a static
spherically symmetric field to enforce the condition that
the black hole is uncharged. We have shown that even
including the corrections to the electromagnetic field due
to the motion of the charge, the field due to a particle
falling into a black-hole tends to a monopole charge as
the particle approaches the horizon.

3. Spinors on hyperbolic space

Having dealt with spin 0 and spin 1 fields on Rt �H3,
the logical next step is to discuss spinors and the Dirac
operator on this space. Following Dirac [19], we will write
the Dirac equation in terms of objects in the embedding
space, E3;1 as this will allow us to maintain SOð3; 1Þ
covariance.
We will make use of the following observation: the

Dirac algebra for E3;1 may be represented in the form:

�0 ¼ i�3 � I2; �i ¼ �2 � �i; (4.13)
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where �i are the Pauli matrices which form a 2-component
representation of the Dirac algebra for E3. We could, if we
so chose, construct this 2-component representation by
consideringWeyl spinors, �
 on an auxiliary E3;1 restricted
to a constant time hyperplane, �. These 2-spinors would
then transform under Poincaré transformations of this aux-
iliary E3;1 fixing the hyperplane and would have a natural
L2 inner product respecting these transformations given by

ð�1; �2Þ ¼
Z
�
�� ��1 �� � T�2 ¼

Z
�
�� ��1�2: (4.14)

We use the notation �� ¼ ðI2; �iÞ, ��� ¼ ð�I2; �iÞ. A
Dirac spinor on the original E3;1 space is then the product
of two 2-component spinors, the first transforming under
SOð1; 1Þ which generates the boosts of the Lorentz group
and the second under the rotational SOð3Þ. In fact the
second spinors transform under the whole Eð3Þ symmetry
of E3 but the translations act by the identity. The reason we
take this somewhat circuitous approach to constructing the
Dirac spinors is that it will allow us to construct spinors for
Rt �H3 respecting the SOð3; 1Þ invariance of H3.

We will now make use of the fact that the metric in the
forward light cone of the origin of Minkowski space may
be written in the form

ds2 ¼ �dt2 þ t2h; (4.15)

with h the metric on H3. This is sometimes referred to as
the Milne universe. This Minkowski space will play the
role of the auxiliary space above. Using the standard
approach to construct the Dirac operator from the spin
connection, one finds that acting on Weyl spinors,

D6 ¼ ��0

�
@

@t
þ 3

2t

�
þ 1

t
D6 ðhÞ: (4.16)

Now any vector in the forward light cone of the origin may
be written

W ¼ tX; with X � X ¼ �1; t > 0 X0 > 0

(4.17)

we may rewrite the Dirac operator as

D6 ¼ �� � @

@W

¼ �� � X
�
X � @

@W
þ 3

2

1

jWj
�

þ 1

jWj
�
jWj �� � @

@W
� jWj �� � XX � @

@W
� 3

2
�� � X

�
;

(4.18)

comparing this with (4.16) we conclude that

D6 ðhÞ ¼ �� � r � �� � XX � r � 3
2 �� � X;

¼ � �� � Xð12�� ���ðX�r� � X�r�Þ � 3
2Þ: (4.19)

It may be checked that �� � X anticommutes with the RHS

of this expression, so it is in fact convenient to take

D6 ðhÞ ¼ 1
2�

� ���ðX�r� � X�r�Þ � 3
2 ¼ M� 3

2; (4.20)

the operator M is that introduced by Dirac in [19]. The
relation to the standard construction for Dirac operators in
a curved space is developed in [20]. Following the discus-
sion above, there is a natural L2 inner product on the space
of Weyl spinors on H3 given by

ð�1; �2ÞH3 ¼
Z
H3

�½X
 ��1 �� � X�2 (4.21)

Here �½X
 is the Riemannian volume form of H3. This
inner product is positive definite, because X � X ¼ �1 and
X0 > 0. Importantly, it is also SOð3; 1Þ invariant by con-
struction and so respects all of the symmetries of hyper-
bolic space.
We can exhibit a set of plane wave eigenfunctions of the

Dirac operator by considering the analogous plane wave
eigenfunctions for the Laplace operator onH3 exhibited by
Moschella and Schaeffer [21]. Let � be a constant 2-spinor
(in the sense that r�� ¼ 0), then the spinor

�!�ðXÞ ¼ !

ð2	Þ3=2 ð �� �� �X�Þ�ð3=2Þ�i!� (4.22)

satisfies

D6 ðhÞ�!�ðXÞ ¼ i!�!�ðXÞ: (4.23)

Furthermore these functions tend pointwise to the standard
plane wave basis for eigenfunctions on E3 as the radius of
curvature of H3 tends to infinity. Obviously � and ��
define the same function, up to scale, for any � 2 C	 so
that the space of eigenfunctions is Rþ � CP1. Using the
results of Moschella and Schaeffer it should be possible to
establish the following normalization and completeness
results

ð�!�; �!0�0 ÞH3 ¼ �ð!�!0Þ�ð�
��
�0�Þ (4.24)

and

Z
CP1

�½�

Z 1

0
d!�!�ðXÞ ��!�ðX0Þ �� � X0 ¼ �H3ðX; X0ÞI2

(4.25)

however this has so far proved difficult. We shall proceed
therefore on the assumption that this is the case. For a
discussion of integration over CP1 and the measure �½�
,
see the appendix. One may at least show that the second
result is true as the hyperbolic radius tends to infinity.
We can now construct Dirac spinors on Rt �H3 by

taking the tensor product of a Weyl spinor on H3 with an
SOð1; 1Þ spinor. The Dirac operator is given by:

D6 ¼ i�3 � I2
@

@t
þ �2 �

�
M� 3

2

�
: (4.26)

The Dirac conjugate is given by
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c � � ¼ �c i�3 � �� �� �X (4.27)

we note that �0 ¼ i�3 � I2 so the Dirac conjugate does not
take its standard form. This is related to the fact that we
chose to make the Dirac operator on H3 more symmetric
by multiplying by � � X. We note finally that we may
identify

�5 ¼ �1 � I2 (4.28)

as the chirality matrix which satisfies

f�5; D6 g ¼ 0 and ð�5Þ2 ¼ �I4: (4.29)

We may finally construct a complete set of plane wave
solutions to the Dirac equation

D6 � ¼ 0 (4.30)

as follows:

�0
s!z�ðX; tÞ ¼

!

ð2	Þ3=2 e
�si!tc �

� ð ��z �� � X�zÞ�ð3=2Þþs�i!�z (4.31)

where

c � ¼ 1ffiffiffi
2

p 1
�

� �
; and �z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jzj2p 1
z

� �
: (4.32)

We have introduced the quantum numbers s ¼ � which
distinguishes the positive and negative energy solutions,
z 2 C which parametrizes CP1 under the usual stereo-
graphic projection and � ¼ �, the chirality. With this
choice of parametrization of CP1 the appropriate measure
in the completeness relation (4.25) is

�½�
 ¼ 2idzd�z

ð1þ jzj2Þ2 (4.33)

which we recognize as the measure on S2 under stereo-
graphic projection.

We will now use these results to calculate the force
between electrons (or indeed other leptons) mediated by
neutrino exchange.

4. Neutrino mediated forces

In flat space there is a long range lepton-lepton force
mediated by the exchange of a pair of neutrinos. The
potential, as shown by Feinberg and Sucher [22], is

VðrÞ ¼ G2
W

4	3r5
; (4.34)

where GW is the weak-interaction coupling constant. Their
calculation was based on calculating the one-loop scatter-
ing of one electron by another mediated by a � �� pair. A
simpler means of finding this potential, as described by
Hartle [23], is to treat the neutrino field as quantum me-
chanical and the electrons as classical both in their role as a
source for the neutrino field and as particles acted on by

that field. Hartle shows that in this limit, the neutrino field
obeys the modified Dirac equation

�
iD6 �GWffiffiffi

2
p � � Nð1þ �5Þ

�
�ðxÞ ¼ 0 (4.35)

where N� is the classical electron number current. The

equation of motion of an electron in the classical limit is

m
Du�

d�
¼ GWffiffiffi

2
p u�ð@�B� � @�B

�Þ (4.36)

where u� is the electron’s four-velocity and the potential
B� is given in terms of the neutrino field by:

B�ðxÞ ¼ h ��ðxÞ��ð1þ �5Þ�ðxÞi
� h ��0ðxÞ��ð1þ �5Þ�0ðxÞi: (4.37)

�ðxÞ is the neutrino field with the weak interactions turned
on and �0ðxÞ is the same field with the interactions turned
off. Both expectation values are taken in vacuum with no
free neutrinos. The normalization of the neutrino field is
fixed by the canonical anticommutation relations which
relate the anticommutators of fields on a spacelike hyper-
surface �. The only nonvanishing bracket is

f�ðxÞ; ��ðx0Þ� � Tg ¼ ��ðx; x0Þ (4.38)

where T is the future-directed unit normal to �. Note that
the standard relation would be between � and �y, how-
ever as noted above, we have chosen to make the Dirac
operator simpler at the expense of taking a nonstandard
Dirac conjugate. For flat space sliced along constant t
hyperplanes, (4.38) reduces to the standard relation.
Let us suppose that there is a complete set of solutions to

the modified Dirac equation (4.35) with the same quantum
numbers as for the source free Dirac equation, so that we
may write

�s!z�ðt; XÞ ¼ e�si!tc � � �s!z�ðXÞ (4.39)

and we will assume the completeness relation

X
s

Z
C

2idzd�z

ð1þ jzj2Þ2
Z 1

0
d!�s!z�ðXÞ ��s!z�ðX0Þ �� � X0

¼ �H3ðX; X0ÞI2 (4.40)

(note that we do not sum over � here). We may therefore
expand the neutrino field in the form

�ðt; XÞ ¼ X
�

Z
C

2idzd�z

ð1þ jzj2Þ2
Z 1

0
d!fe�i!tc �

� �þ!z�b!z� þ ei!tc � � ��!z�d
y
!z�g: (4.41)

The canonical anticommutation relations for the neutrino
field imply the following nonvanishing relations for the
creation operators b and d
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fb!z�; b
y
!0z0�0 g ¼ fd!z�; d

y
!0z0�0 g

¼ ð1þ jzj2Þ2
2i

�ðz� z0Þ�ð!�!0Þ���0

(4.42)

while all other brackets vanish. We suppose the existence
of a vacuum state j0i such that b!z�j0i ¼ d!z�j0i ¼ 0.
Using the anticommutation relations we find that the elec-
tric part of the neutrino mediated vector potential, V ¼ B0

takes the form

B0ðXÞ ¼ �2
Z
C

2idzd�z

ð1þ jzj2Þ2
Z 1

0
d!f ���!zþðXÞ ��

� X��!zþðXÞ � ��0�!zþðXÞ �� � X�0�!zþðXÞg:
(4.43)

The fact that the coupling has a 1þ �5 factor ensures that
only positive chirality modes contribute.

As we are only interested in effects at the lowest order in
GW , we may consider an expansion of the spinors � in
terms of GW . Expanding to first order

�s!z� ¼ �0
s!z� þGW�

1
s!z� (4.44)

we find that provided we assume that Nt ¼ �H3ðX; X0Þ is
the only nonzero component of the electron current, the
modified Dirac equation (4.35) implies that

ðM� 3
2 þ is�!Þ�0

s!z� ¼ 0

ðM� 3
2 þ is�!Þ�1

s!z� ¼ i
ffiffiffi
2

p
�H3ðX; X0Þ�0

s!z�:
(4.45)

We know from the previous section that the normalized
zeroth order spinors take the form

�0
s!z� ¼ !

ð2	Þ3=2 ð ��z �� � X�zÞ�ð3=2Þþis�!�z: (4.46)

In order to solve the second equation we note that

M2 � 2M ¼ r2
H3 ; (4.47)

where the Laplacian here is the scalar Laplacian acting
componentwise to the right. This may be verified by fol-
lowing the argument of Dirac [19] with the appropriate
signature and dimension. We see that�

M� 3

2
þ is�!

��
M� 1

2
� is�!

�

¼
�
r2

H3 þ 1þ
�
!þ is�

2

�
2
�
I2 (4.48)

we recognize the right-hand side of the equation as the
conformal wave equation with a complex wave number,
for which we have already found the Green’s function.
Thus we may solve the second of Eqs. (4.45) by

�1
s!z�ðXÞ ¼ ½ðM� 1

2 � is�!Þ�ðX;X0Þ
�0
s!z�ðX0Þ; (4.49)

where

�ðX; X0Þ ¼ i
ffiffiffi
2

p
4	

eis!� e
���=2

sinh�
; with cosh� ¼ �X � X0:

(4.50)

There is a choice of sign here corresponding to picking the
retarded propagator. We note that after Fourier transform-
ing back to the time domain the propagator will be anti-
periodic in time with period 2	i. We also note that there
appears to be a breaking of the symmetry one might expect
under � ! ��. This chiral symmetry breaking is a subtle
consequence of the negative curvature and is discussed in
[15,24].
Putting this all together, we find

B0ðXÞ
GW

¼ �4Re
Z
C

2idzd�z

ð1þ jzj2Þ2
Z 1

0
d! ��0�!zþðXÞ ��

� X
�
M� 1

2
þ i!

�
�ð�Þ�0�!zþðX0Þ: (4.51)

Inserting (4.46) for �0, the integrand reduces to the form

!2

ð2	Þ3
�
ð ��z �� � X�zÞ�ð3=2Þþi!ð ��z �� � X0�zÞ�ð1=2Þ�i! �0ð�Þ

sinh�

þ ð ��z �� � X�zÞ�ð1=2Þþi!ð ��z �� � X0�zÞ�ð3=2Þ�i!

�
��
i!� 1

2

�
�ð�Þ � coth��0ð�Þ

��
: (4.52)

We will first perform the integrals over CP1 which are of
the form:

Ia ¼
Z
C

2idzd�z

ð1þ jzj2Þ2 ð ��z �� � X�zÞ�að ��z �� � X0�zÞa�2:

(4.53)

One may verify that

ð ��z ��
��zÞ ¼ ð1;�nzÞ; (4.54)

where nz is the pull back of z to the unit sphere in R
3 under

the standard stereographic projection map. Ia is Lorentz
invariant (see Appendix), so we may assume without loss
of generality that

X ¼ ðcosh�; 0; 0;� sinh�Þ; X0 ¼ ð1; 0; 0; 0Þ; (4.55)

and we may integrate over S2 using standard spherical
polar coordinates so that

Ia ¼
Z sin�d�d�

ðcosh�þ cos� sinh�Þa ¼
4	 sinhð1� aÞ�
ð1� aÞ sinh� :

(4.56)

Note that this is symmetric under a ! 2� a as it must be
since we could have chosen X and X0 the other way around.
Integrating (4.52) over CP1 then, we have after some
simplification
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i
ffiffiffi
2

p
!2

8	3

�
1

sinh2�
þ 2

ð1þ 4!2Þsinh4�
�

þ
ffiffiffi
2

p
!2

8	3ð1þ 4!2Þ
e�2i�!

sinh4�
ð2! sinh�� i cosh�Þ; (4.57)

so that

B0ð�Þ
GW

¼ � 4
ffiffiffi
2

p
4	3

Re
Z 1

0
d!

�
!2

1þ 4!2

e�2i�!

sinh4�

� ð2! sinh�� i cosh�Þ
�
: (4.58)

This integral is manifestly divergent for large !, however
the potential we are interested in is a low energy effect, so
we may introduce a large momentum cutoff by sending
� ! �� i� which will make the integral converge for
large ! and taking the � ! 0 limit after calculating the
integral. Doing this, we find that the integral may be
performed exactly and we find that the neutrino field gives
rise to an effective potential:

Vð�Þ ¼ GWffiffiffi
2

p Btð�Þ

¼ G2
W

8	3�2sinh4�
ð� cosh�þ sinh�� �2Shi�Þ;

(4.59)

where Shi is the sinh integral:

Shi� ¼
Z �

0

sinht

t
dt: (4.60)

This equation is valid for any � large with respect to the
length scale defined by GW . We may take the limit where
the hyperbolic radius of the space tends to infinity and we
find that

Vð�Þ � G2
W

4	3�5
(4.61)

which is the result of Feinberg and Sucher for flat space.
One might be concerned by the fact that there appears to

be an asymmetry between the right- and left-handed neu-
trinos implicit in (4.50) however it is possible to perform
the same calculation under the assumption that left-handed
neutrinos couple to electrons and the answer found is
precisely the same.

We noted above that the scalar propagator was periodic
and the fermion propagator antiperiodic in imaginary time.
Reinserting dimensions, the period is given by 2	iRwhere
R is the radius of the hyperbolic space. One expects that
thermal propagators for a field at temperature T should
have an imaginary period equal to 1=T, the inverse of the
temperature. As we remarked above, for the near-horizon
optical geometry of a horizon with surface gravity �, R ¼
��1 so we find that fields in the neighborhood of a horizon
are thermalized at a temperature

TH ¼ �

2	
; (4.62)

precisely the Hawking temperature of the horizon. Notice
that we nowhere had to ‘‘Euclideanize’’ the time direction
of the manifold in order to derive this result.

B. Approximate calculations near the horizon

Let us consider trying to construct the propagator for
some physical field in a black-hole background in the limit
where the pole of the propagator approaches the horizon.
We assume that since we are considering a small perturba-
tion to the background that the equations are linear and
moreover that they may be converted by a conformal trans-
formation to equations with respect to the optical metric.
Further, since the black-hole background is assumed to be
static, we may Fourier transform with respect to t so that
the equations may be expressed in terms of the optical
geometry of t ¼ const slices. We divide these slices into
two regions:
(i) Region I is a region surrounding the horizon, such

that in this region the optical metric has constant
negative curvature to order �.

(ii) Region II is the complement of region I and contains
the asymptotically flat end.

Region I may be thought of as the exterior of a ball inH3 in
the case where the horizon has spherical topology. One
would expect that if the topology differs for that of the
sphere, then this will not have an effect on the propagator
in the limit where the pole approaches the horizon, so we
assume that Region I is indeed of this form. The conformal
infinity of the hyperbolic space corresponds to the horizon
of the black hole. We wish to solve the problem:

L�ðxÞ ¼ Lhopt�ðxÞ þL0�ðxÞ ¼ �ðx; x0Þ; (4.63)

where x0 is close to the horizon and we have split the linear
operatorL into a geometric operator constructed from hopt
and another part L0 which is assumed to be small in
Region I. This may require shrinking Region I. We do
not assume here that � is a scalar—the same considera-
tions will apply for fields of any spin.
In region I, the problem simplifies to finding a propa-

gator in hyperbolic space. This is a simplification because
H3 is maximally symmetric so one may make use of
isometries to move the pole of the propagator around. We
defineGIðx; x0Þ to satisfy the equation on hyperbolic space:

L hGIðx; x0Þ ¼ �ðx; x0Þ (4.64)

subject to suitable boundary conditions as x approaches
conformal infinity (i.e. the horizon).
In region II, we are solving the homogeneous problem

L hoptGIIðx; x0Þ þL0GIIðx; x0Þ ¼ 0 (4.65)

such that GIIðx; x0Þ agrees with GIðx; x0Þ at the boundary
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between regions I and II and decays suitably as x ap-
proaches the asymptotically flat infinity. The approximate
propagator we construct is then given by:

Gðx; x0Þ ¼
�
GIðx; x0Þ þ KðxÞ if x in Region I

GIIðx; X0Þ þ KðxÞ if x in Region II
;

(4.66)

K here is any solution of the homogeneous problem on the
whole of the exterior of the black hole which satisfies
appropriate boundary conditions both at spacelike infinity
and at the horizon. It is these solutions which carry any
‘‘hair’’ which the black hole may have. The charges carried
by the black hole as a result of K do not follow from
regularity at infinity or the horizon but must be determined
by, for example, integral conservation laws.

We are now ready to describe the limit as the pole of the
propagator approaches the horizon. In Region I we see this
as the pole of a propagator in H3 moving towards confor-
mal infinity. As the boundary of Region I is a fixed compact
surface in H3, the fields on the boundary decay. Typically
this decay is exponentially quickly in the hyperbolic dis-
tance of the pole from some fixed point. Thus GII will also
decay at this rate, by linearity. Thus only K can remain in
the limit as the pole approaches the horizon, with all other
terms decaying. If the black hole cannot support a regular
external field K, then the fields must all approach zero as
the pole of the propagator approaches the horizon. In the
case of spherical symmetry it is useful to take the boundary
of Region I to be a sphere as it its then possible to decom-
pose all the functions into spherical harmonics and the
decay rates for each multipole moment can be calculated
separately.

We thus have a method to calculate the rates of decay of
propagators as their poles approach the horizon in terms of
the distance in the optical metric. We may relate the optical
distance along a radial geodesic starting from some fixed
point, �, to the proper distance to the horizon along that
geodesic in the physical metric, �, by:

�� Ce�� (4.67)

in the region near the horizon. This allows us to reexpress
the decay rates in terms of proper distance to the horizon in
the physical metric. We will give constructions below for
some simple propagators in hyperbolic space which are
useful when constructing the approximate propagators in
region I.

1. Massive scalar field

In the case of a massive scalar field satisfying the Klein-
Gordon equation, we wish to find a propagator which
satisfies:

hgc �m2c ¼ �ðx; x0Þ: (4.68)

Using conformal transformations defined in Sec. IVC2,
solving this is equivalent to solving the equation

1

H5
ð�h�þ�Þ þ 1

H
ðk2 �m2�2Þ� ¼ 1

H6
�hðx; x0Þ;

(4.69)

where h refers, as always, to the metric on H3 and H ! 1,
� ! 0 as we approach the horizon. This is of the form
supposed above and the exterior supports no solutions to
the homogeneous Klein-Gordon equation except the zero
solution. The propagator in region I is given by:

eik�

sinh�
; where � ¼ Dðx; x0Þ; (4.70)

with Dðp; qÞ the distance in the optical metric between p
and q. Thus as x0 goes to conformal infinity, the propagator
falls off like e��. In terms of the proper distance of the pole
of the propagator from the horizon �, we find that the
propagator vanishes like �1. This is in agreement with
Teitelboim [14]. We will verify this analysis below by
showing that for the k ¼ 0modewe may solve the problem
exactly throughout the exterior.

2. Proca equation

The generalization of Maxwell’s equations for electro-
magnetism to the case where the photon is not taken to be
massless is given by the Proca equations. In terms of a one-
form A the vacuum equations may be written:

? d ? dAþm2A ¼ 0: (4.71)

In this case, we may quickly estimate the rate at which the
information is lost as a charged particle falls quasistatically
into a (Schwarzschild or Reissner-Nordström) black hole if
the electromagnetic field is mediated by a massive vector
boson. We make the ansatz:

A ¼ c ðxÞ
HðxÞ dt; (4.72)

and find that for a point charge at x0 the function c should
satisfy:

1

H5
�hc �m2 �

2

H
c ¼ 1

H6
�hðx; x0Þ; (4.73)

where h, H, and � are as in the last section. This is once
again of the form conjectured above and for m � 0 there
are no solutions to the vacuum equations regular through-
out the exterior of the black hole. The m ¼ 0 case corre-
sponds to a Maxwell field and is treated below, however we
expect a significant difference as for this case the equations
are gauge invariant.
The propagator in region I is given by:

1

e2� � 1
; where � ¼ Dðx; x0Þ; (4.74)

where Dðp; qÞ is as above. As the pole recedes to infinity
the propagator decays like e�2� corresponding to a fall off
as the square of the proper distance to the horizon, �2. This
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decay at twice the rate of the massive scalar boson case is
also in agreement with Teitelboim.

3. Forces from neutrino pair exchange

As noted above there is a force in flat space between
leptons mediated by neutrinos which might in principle be
used to measure the lepton number of a black hole. As a
black hole should not have a measurable lepton number
associated with it, we will now consider the problem of
neutrino mediated forces in the vicinity of an event hori-
zon. We expect such forces to vanish as a lepton ap-
proaches the horizon. We will require the following short
Lemma which may be proven by considering the behavior
of the spin connection under conformal transformations.

Lemma 4.1. Suppose ~g ¼ �2g are two conformally

related n-dimensional metrics and ~c ¼ ��ðn�1Þ=2c is a
Dirac spinor, then

~D6 ~c ¼ ��ðnþ1Þ=2D6 c : (4.75)

Thus solutions of Dirac’s equation for gmay be rescaled
to solutions for ~g. Also

Z
�
d~� �~� ~c ¼

Z
�
ðd��n�1Þð�ð1�nÞ=2Þ2 ��c ¼

Z
�
d� ��c ;

(4.76)

so that orthonormality is preserved. It is not true however
that if we start with a complete set then after rescaling we
have a complete set. We will now restrict to the case where
d ¼ 4 and the conformal transformation depends only on
the spatial coordinates X so that the metric remains static.

By considering how the Eq. (4.35) transforms under
such a conformal transformation then assuming the re-
scaled solutions to Dirac’s equation are complete we
may calculate the interaction potential for the neutrino
mediated force. Suppose that VðX; X0Þ represents the po-
tential at X, due to an electron at X0, with the metric g.
Then the potential ~VðX; X0Þ for the metric ~g is given by:

~VðX; X0Þ ¼ ��3ðXÞ��2ðX0ÞVðX; X0Þ: (4.77)

There is clearly an asymmetry between the source and the
test particle, however this is due to the redshift effect which
means that an energy measured at different spatial points
will vary.

As an example, we may consider conformally rescaling
Rt �H3 to a metric on a static patch of the de Sitter space.
In this case we pick an arbitrary point X0 and we may write
the de Sitter metric as

~g ¼ 1

ð�X � X0Þ2 g; (4.78)

where g is the metric on Rt �H3. Suppose we take a patch
with the observer at the origin, then the potential measured
by this observer due to an electron at X0 is given by:

Vð�Þ ¼ G2
Wcosh

2�

8	3�2sinh4�
ð� cosh�þ sinh�� �2Shi�Þ;

(4.79)

with cosh� ¼ �X � X0. As the electron approaches the
horizon, � ! 1 and the potential is extinguished like
e��=�3, thus demonstrating the no-hair property of the
de Sitter cosmological horizon for neutrino mediated
forces.
Unfortunately this method does not work completely for

the Schwarzschild event horizon because the conformally
rescaled solutions of the Dirac equation do not form a
complete basis, essentially because neutrinos may start
either at spatial infinity or at the horizon. This point is
made by Teitelboim and Hartle [14,23]. Accordingly, we
do not reproduce precisely the extinction rate of Hartle,
who finds the potential vanishes like e��=�, but we do find
the correct exponential rate.

C. Exact calculations for Schwarzschild and
Reissner-Nordström

1. Electric charge

We would like to find the field due to a static electric
charge in the Schwarzschild or Reissner-Nordström back-
ground. In order to do this, we make use of the fact that
Maxwell’s equations in vacuo:

r½�F��
 ¼ @½�F��
 ¼ 0; r�F
�� ¼ 0; (4.80)

are conformally invariant in 4 space-time dimensions.
Thus if we can find the field due to a point particle with
respect to the optical metric gopt then we know the field

with respect to the physical metric. The reason for this is
that in 4 spacetime dimensions, under a conformal trans-
formation g0 ¼ �2g we have:

F0
�� ¼ F�� F0�� ¼ ��4F��

ffiffiffiffiffi
g0

q
¼ �4 ffiffiffi

g
p

(4.81)

Thus the Maxwell action

S ¼
Z

F��F��

ffiffiffi
g

p
d4x (4.82)

does not change under a conformal transformation. It is
also helpful to note at this stage that the charge contained
inside a 2-surface �:

Q� ¼
Z
�
F��dS

�� (4.83)

is conformally invariant, where dS�� ¼ n
½�
1 n�
2 dS and ni

are the orthogonal unit normals of � and dS is the induced
measure on �. Conformal invariance follows from the
transformations

n0�i ¼ ��1n�i ; dS0 ¼ �2dS: (4.84)
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In order to solve the first Maxwell equation, we as usual
introduce a one-form potential A and make a static ansatz:

F ¼ r½�A�
; A� ¼ ð�ðxÞ; 0Þ: (4.85)

The reason for this static ansatz is primarily the fact that
the resulting equations are analytically tractable. It will
give a good approximation to the field of a freely falling
particle, provided the particle is not moving very quickly.
Alternatively, one may imagine a thought experiment
where a charge is lowered from infinity towards the
black-hole horizon and measurements of the fields are
made as the charge approaches the black hole.

The second Maxwell equation becomes the familiar
Laplace equation for � with respect to the optical metric:

�hopt� ¼ 0: (4.86)

We will make use of the fact noted above that

hopt ¼ H4h; (4.87)

where h is the hyperbolic metric ofH3 with radius 1 andH
is harmonic on H3. We are therefore able to relate the
Laplacian of hopt to the Laplacian of h. We will require

the following lemma:
Lemma 4.2. Suppose h1 and h2 are two three dimen-

sional metrics with related Laplace operators 1� and 2�.
Further suppose that they are conformally related:

h1 ¼ H4h2: (4.88)

Then if � ¼ H�1� the following relation holds:

1�� ¼ 1

H5
2��� �

H6
2�H: (4.89)

Proof. Use the standard formula � ¼ 1ffiffi
g

p @
@xi

ffiffiffi
g

p
gij @

@xj
and

make the substitutions above, then collect terms to find
(4.89). h

We wish to find the Green’s function for the Laplacian

on ~h ¼ hopt. This satisfies the following equation:

~� ~Gðx; x0Þ ¼ �ð~hÞðx; x0Þ; (4.90)

Where ~� is taken to act on the x coordinates. The Dirac
delta function is defined by the requirement:

Z
U
�ðgÞðx; x0Þdvolg ¼

�
1 if x0 2 U
0 if x0 =2 U

(4.91)

for an open subset U � M. Applying the above lemma
and making use of the fact that �hH ¼ 0 we have that

~�� ¼ 1

H5
�h�; (4.92)

with � and � related as above. Inserting this into the

definition of the Green’s function we have ~Gðx; x0Þ ¼
HðxÞ�1Gðx; x0Þ, where G obeys:

�hGðx; x0Þ ¼ HðxÞ5�ð~hÞðx; x0Þ ¼ Hðx0Þ�1�ðhÞðx; x0Þ;
(4.93)

where in this last step we use properties of the Dirac delta
function. It would appear that we have simply replaced one
Green’s function problem with another, however the great
advantage is that we now seek Green’s functions on H3

which is maximally symmetric so if we can find the
Green’s function for x0 ¼ 0 we can generate all Green’s
functions by SOð3; 1Þ transformations.
Suppose VOðxÞ satisfies

�hVOðxÞ ¼ �ðhÞðx;OÞ; VO ! 1

4	
as Dðx;OÞ ! 1;

(4.94)

whereO is a fixed point inH3 andDðx;OÞ is the hyperbolic
distance from x to O. In Beltrami coordinates VOðxÞ ¼
ð4	jxjÞ�1. By SOð3; 1Þ invariance, for any other point x0
we can find a isometry T:H3 ! H3 which satisfies

T	
x0h ¼ h; Tx0ðx0Þ ¼ O: (4.95)

We then define

Vx0 ¼ T	
x0VO; i:e: Vx0ðxÞ ¼ VOðTx0ðxÞÞ: (4.96)

The map T is not uniquely defined, but since VO is spheri-
cally symmetric any two maps T satisfying (4.95) give the
same function Vx0 . This new function satisfies

�hVx0ðxÞ ¼ �ðhÞðx; x0Þ: (4.97)

Putting together (4.93) and (4.97) we find that the Green’s
function for the Laplacian of hopt has the form

~Gðx; x0Þ ¼ 1

HðxÞHðx0Þ ðVOðTx0ðxÞÞ þ AÞ þ B: (4.98)

We have now to specify boundary conditions. The constant
B is unphysical, and if we choose B ¼ 0, the potential will
vanish at the asymptotically flat end. The constant A arises
because if Vx0 satisfies (4.97) then so does Vx0 þ A. This

constant gives rise to a nontrivial field which corresponds
to the black hole carrying a (linearized) charge.
Transforming to Eddington-Finkelstein coordinates shows

that the function ~G is regular at the horizon for all values of
A, so we must look elsewhere for our final boundary
condition. This comes from the fact that Gauss’ law should
be satisfied. If one considers a surface � which encloses
the black hole, but not the point x0 then Q� should vanish.
Enforcing this condition fixes A. In the case where the
harmonic function H takes the Reissner-Nordström form:ffiffiffiffi

�
p

HðxÞ ¼ 4	�VOðxÞ þm: (4.99)

Gauss’ law requires A ¼ m
4	� and we finally have:

~Gðx; x0Þ ¼ 1

HðxÞHðx0Þ
�
VOðTx0ðxÞÞ þ

m

4	�

�
: (4.100)
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This construction is valid for both Schwarzschild and
Reissner-Nordström and gives the linear perturbation to
the electromagnetic field due to a static point charge lo-
cated in the spacetime. The potential has been found in
terms of geometric objects of hyperbolic space, and so is
valid for any coordinate system on H3.

We can see from this equation how the information
associated with the precise location of the charged particle
is lost as it is lowered towards the black hole. The only term

which is not spherically symmetric about O in (4.100) is
the VO term. As the point x0 recedes from O towards the
black-hole horizon which is at the conformal infinity ofH3,
this term approaches a constant exponentially quickly in
Dðx0; OÞ. The potential tends to the spherically symmetric
field associated with the black-hole carrying a charge and
deviations from this field fall exponentially with Dðx0; OÞ.
We plot in Fig. 3 the isopotentials for a point charge in

Schwarzschild, taking isotropic coordinates so that the

FIG. 3 (color online). Plots showing the equipotentials as a point charge is lowered into a Schwarzschild black hole in isotropic
coordinates. The horizon is located at the boundary of the black disc and the point charge is red. The blue contour is the equipotential
of the horizon.
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spatial sections are conformally flat and the lines of force
are normal to the isopotentials. Isotropic coordinates for
Schwarzschild correspond to Poincaré coordinates on the
hyperbolic space from which the optical metric is con-
structed. The black region in the plots corresponds to the
interior of the black-hole event horizon and we have re-
turned the asymptotically flat end to infinity.

2. Scalar charge

We will now show how to treat exactly a static massless
scalar field in the Schwarzschild or Reissner-Nordström
backgrounds. We will once again make use of the optical
metric and the relationship between this metric and the
hyperbolic metric. The main result we shall require is
summarized as

Lemma 4.3. If g is a scalar flat static metric of the form:

g ¼ �2gopt ¼ �2ð�dt2 þH4hÞ; (4.101)

with h the metric on H3 with radius 1 and H harmonic on
H3 then � must satisfy

�hð�HÞ þ�H ¼ 0: (4.102)

Further, if c ¼ ��1H�1�, then

hgc ¼ ��3

�
� 1

H

@2�

@t2
þ 1

H5
ð�h�þ�Þ

�
: (4.103)

Proof. This follows from standard identities for conformal
transformations. h

Wewould like to calculate the fieldGðx; x0Þ at x due to a
unit static scalar charge at x0. For a general moving point
charge, G satisfies:

hgGðx; x0ð�ÞÞ ¼
Z 1

�1
�ðgÞðx; x0ð�ÞÞd�; (4.104)

where � is the proper time along the world line x0ð�Þ of
the charged particle. Assuming that this particle is static,
we find using the Lemma above that Gðx; x0Þ ¼
��1ðxÞH�1ðxÞ�ðx; x0Þ where � satisfies

�h�ðx; x0Þ þ�ðx; x0Þ ¼ H�1ðx0Þ�ðhÞðx; x0Þ: (4.105)

It is convenient once again to make use of the SOð3; 1Þ
invariance of hyperbolic space in order to solve this equa-
tion. We first seek solutions to the simpler equation

�h�OðxÞ þ�OðxÞ ¼ �ðhÞðx;OÞ (4.106)

subject to the condition that � and d� are bounded in the
metric induced by h as Dðx; OÞ ! 1. One finds that the
solution is related to the metric functions for Reissner-
Nordström according to:

�OðxÞ ¼ 1

4	
ffiffiffiffi
�

p �ðxÞHðxÞ: (4.107)

Unlike in the electrically charged case, there is no arbitrary
constant. Using the identities above, we find that the field

due to a static unit scalar charge at a point x0 is given by:

Gðx; x0Þ ¼
�OðTx0ðxÞÞ

HðxÞHðx0Þ�ðxÞ ; (4.108)

where T0 is defined as in the previous section.
We may once again consider the behavior of Gðx; x0Þ as

the scalar charge approaches the horizon. We find that G

and its derivatives fall off like e�Dðx0;OÞ as Dðx0; OÞ ! 1.
Unlike the case of an electric charge, there is no residual
monopole term, so the black hole does not become
charged. Thus, we see precisely how massless scalar hair
is shed as a point scalar charge is lowered into a black hole
and it is as predicted by our approximate argument given
above.

V. CONCLUSION

We have seen how it is possible to make use of the
universal asymptotics of the optical metric near a Killing
horizon to study physical problems in this region. We have
presented a method of studying null geodesics based on the
Gauss-Bonnet theorem which directly links the negative
curvature of the optical geometry to physical lensing sce-
narios. We have rederived classic results about the loss of
‘‘hair’’ as objects fall into a black hole in a simplified
manner and by making use of the universality of the
near-horizon optical metric, extended these results to apply
beyond the Schwarzschild case where they were first
investigated.

APPENDIX: INTEGRATION ON CP1

In Sec. IVA we found that the space of solutions to
Dirac’s equation on Rt �H3 could be identified with
Rþ � CP1 where the CP1 arose by identifying Weyl
spinors which were complex multiples of one another. In
subsequent calculations it was necessary to integrate over
this space of solutions in a Lorentz invariant fashion. The
aim of this appendix is to explain how this is possible.
There are two key observations to be made. First, it

should be noted that the space of Weyl spinors caries a
natural 2-form defined by:

�½�
 ¼ 2i�
��

d�� ^ � _
 _� �� _
d ��

_�: (A1)

This is Lorentz invariant by construction.
Secondly we may represent CP1 as a smooth

2-dimensional surface in C2, � where we assume that for
almost every ½�
 2 CP1 there is exactly one point ~� 2 �
such that ½�
 ¼ ½~�
. Since we are interested in integrating
over CP1 it does not matter if this fails to be true for some
set of measure zero. Suppose now that we chose a different
surface �0. In order that this fulfils the requirements to
represent CP1 there must exist some smooth function �:
C2 ! C such that for almost every point � 2 �, �ð�Þ� 2
�0. In other words we may, by extending the domain of� if
necessary define a local diffeomorphism
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�: U � C2 ! U0 � C2 � � �ð�Þ� (A2)

such that �ð�Þ ¼ �0 up to a set of measure zero. One may
verify that

�	� ¼ j�j4�: (A3)

Thus if we have a function f: C2 ! C which is a scalar
under Lorentz transformations and which satisfies
fð��Þ ¼ j�j�4fð�Þ then the integral

Z
�
f� (A4)

is independent of which surface in C2 we use to represent
CP1. Suppose now that f ¼ fð�;XiÞ where Xi are some
vectors in E3;1 and such that

fð
s
��; 


v
�X

iÞ ¼ fð�; XiÞ; (A5)

where 
s, 
v are the spinor and vector representations of
the Lorentz transformation �, respectively. If we pick a
surface �which represents CP1, we may define a function

IðXiÞ ¼
Z
�
fð�; XiÞ� ¼

Z
�
fð
s

��; 

v
�X

iÞ�: (A6)

If �� is the function on C2 defined by left multiplication

by 
s
� then we may use the Lorentz invariance of the

measure � to write

IðXiÞ ¼
Z
�
�	

�ðfð�; 
v
�X

iÞ�Þ ¼
Z
��ð�Þ

fð�;
v
�X

iÞ�

¼
Z
�
fð�; 
v

�X
iÞ� ¼ Ið
v

�X
iÞ; (A7)

where we have made use of the Lorentz invariance of f and
�, together with the independence of the integral on the
choice of representative of CP1. Thus the integral is a
Lorentz scalar a fact which we make use of in
Sec. IVA4 to calculate the integral (4.53)

As an example, we may take � ¼ fð1; zÞt=ð1þ
jzj2Þ1=2:z 2 Cg which covers all of CP1 except one point.
We find then that

�j� ¼ 2i

ð1þ jzj2Þ2 dz ^ d�z; (A8)

the standard measure on the sphere under stereographic
projection. We use this fact in calculating the neutrino-
mediated force between electrons.
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