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In loop quantum cosmology, Friedmann-LeMaı̂tre-Robertson-Walker space-times arise as well-defined

approximations to specific quantum geometries. We initiate the development of a quantum theory of test

scalar fields on these quantum geometries. Emphasis is on the new conceptual ingredients required in the

transition from classical space-time backgrounds to quantum space-times. These include a ‘‘relational

time’’ à la Leibniz, the emergence of the Hamiltonian operator of the test field from the quantum

constraint equation, and ramifications of the quantum fluctuations of the background geometry on the

resulting dynamics. The familiar quantum field theory on classical Friedmann-LeMaı̂tre-Robertson-

Walker models arises as a well-defined reduction of this more fundamental theory.
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I. INTRODUCTION

Quantum field theory (QFT) on classical Friedmann-
LeMaı̂tre-Robertson-Walker (FLRW) space-times is well
developed and has had remarkable success in accounting
for structure formation in inflationary cosmologies (see,
e.g., [1]). In this analysis one assumes that the background
space-time is adequately described by classical general
relativity. During the inflationary era, this assumption is
reasonable because, e.g., in the standard scenarios the
matter density �, even at the onset of inflation, is less
than 10�10�Pl, where �Pl is the Planck density. However,
even in an eternal inflation, the underlying classical space-
time has a big-bang singularity [2]. The theory is thus
incomplete. In particular, the presence of this singularity
makes it awkward to introduce initial conditions, e.g., on
the quantum state of matter.

To know what really happened in the Planck regime near
the singularity, we need a quantum theory of gravity. While
a fully satisfactory quantum gravity theory is still not
available, over the past 2–3 years, loop quantum cosmol-
ogy (LQC) has provided a number of concrete results on
this Planck scale physics. (For recent reviews, see, e.g.,
[3,4].) LQC is a symmetry reduced version of loop quan-
tum gravity (LQG) [5–7]), a nonperturbative, background-
independent approach to the unification of general relativ-
ity and quantum physics. Here, space-time geometry is
treated quantum mechanically from the start. In the sym-
metry reduced cosmological models these quantum ge-
ometry effects create a new repulsive force when space-
time curvature enters the Planck regime. The force is so
strong that the big bang is replaced by a specific type of
quantum bounce [8–15]. The force rises very quickly once
� exceeds�0:01�Pl to cause the bounce, but also dies very
quickly after the bounce, once the density falls below this

value. Therefore, the quantum space-time of LQC is very
well approximated by the space-time continuum of general
relativity once the curvature falls below the Planck scale.
This scenario is robust in the sense that it is borne out for
k ¼ 0 models with or without a cosmological constant
[16,17], k ¼ 1 closed models, [18,19] k ¼ �1 open mod-
els1 [21], the Bianchi I model which incorporates anisot-
ropies [22], and the k ¼ 0 model with an inflationary
potential with phenomenologically viable parameters [23].
In this paper, we will use the detailed quantum geome-

tries that have been constructed in LQC for the k ¼ 0,� ¼
0 FLRW models with a massless scalar field as a source.
The full physical Hilbert space of LQC is infinite dimen-
sional. Every physical state undergoes a quantum bounce
in a precise sense [13]. However, for physical applications
of interest here, we will consider only those states which
are sharply peaked on a classical geometry at some late
time and follow their evolution. Surprisingly, LQC predicts
that dynamics of these states is well approximated by
certain ‘‘effective trajectories’’ [24,25] in the gravitational
phase space at all times, including the bounce point
[12,13]. As one would expect, this effective trajectory
departs sharply from the solution to Einstein’s equation
near the bounce. However, it does define a smooth space-
time metric, but its coefficients now involve @. These
quantum corrections are extremely large in the Planck
regime but, as indicated above, die off quickly, and the
effective space-time is indistinguishable from the classical
FLRW solution in the low curvature region.2
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1The current treatment of the k ¼ �1 models is not entirely
satisfactory because it regards the extrinsic curvature Ki

a as a
connection and relies on holonomies constructed from it.
However, a closer examination shows that this is not necessary
[20].

2The availability of a singularity-free effective space-time can
be extremely useful. For example, it has enabled one to show
that, although Bousso’s covariant entropy bound [26] is violated
very near the singularity in classical general relativity, it is
respected in the quantum space-time of LQC.
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Thus, LQC provides specific, well-defined quantum ge-
ometries from which FLRW space-times emerge away
from the Planck scale. At a fundamental level, one does
not have a single classical metric but rather a probability
amplitude for various metrics. So, the following question
naturally arises:How do quantum fields propagate on these
quantum geometries?

Availability of a satisfactory quantum theory of fields on
a quantum geometry would provide new perspectives in a
number of directions. First, it could provide a coherent
theory of structure formation from first principles. For
example, one may be able to specify the initial conditions
either in the infinite past where quantum space-time is well
approximated by a flat classical geometry, or at the bounce
point which now replaces the big bang. Second, the theory
is also of considerable importance from a more general
conceptual perspective. Therefore, it should provide a
bridge between quantum gravity and QFT in curved
space-times. What precisely are the implications of the
quantum fluctuations of geometry on the dynamics of other
quantum fields? What, in particular, are the consequences
of light cone fluctuations? Finally, this theory would lead
to a rich variety of new avenues in mathematical physics.
How is the relational time of quantum gravity related to the
more familiar choices of time one makes in QFT in curved
space-times? How do the standard anomalies of QFT on
classical background geometries ‘‘lift’’ up to QFT on
quantum geometries? What precisely are the approxima-
tions that enable one to pass from quantum QFT on quan-
tum geometries to those on classical geometries?

The purpose of this paper is to provide the first steps to
addressing these important issues. More precisely, we will
present the basics of a framework to describe test quantum
fields on the quantum FLRW geometries provided by LQC.

QFT in curved space-times has been developed in two
directions. The first is the more pragmatic approach that
cosmologists have developed to study structure formation,
particle creation by given gravitational fields, and their
backreaction on the geometry (see, e.g., [1]). Here, one
uses the background geometry to make a mode decompo-
sition and regards the quantum field as an assembly of
oscillators. Typically, one focuses on one mode (or a finite
number of modes) at a time and ignores the difficult func-
tional analytical issues associated with the fact that the
field in fact has an infinite number of degrees of freedom.
The second direction is the more mathematical, algebraic
approach that provides a conceptually complete home for
the subject (see, e.g., [27,28]). Here the focus is on the
structure of operator algebras, constructed ‘‘covariantly’’
using the background space-time geometry. States are
treated as suitably regular positive linear functionals on
the algebras. Not only is there no mode decomposition, but
one does not tie oneself to any one Hilbert space. Our long-
range goal is to generalize both sets of analyses to quantum
space-times.

In this paper we will begin by following the more
pragmatic approach: As in the literature on cosmology,
we will use mode decomposition. However, in this analysis
our emphasis will be on conceptual issues. First, in LQC
one is led to a relational dynamics because there is no
background space-time. More precisely, one ‘‘deparametr-
izes’’ the theory: The massless scalar field T—the matter
source in the background space-time—is treated as the
‘‘evolution parameter’’ with respect to which the physical
degrees of freedom—the density, volume, anisotropies,
and other matter fields, if any—evolve. Therefore, in
QFT on FLRW quantum geometries, it is natural to con-
tinue to use T as time. In QFT on classical FLRW space-
times, on the other hand, one generally uses the conformal
or proper time as the evolution parameter. We will resolve
this conceptual tension. Second, in the quantum gravity
perspective, dynamics is encoded in the quantum con-
straint equation. In QFT on a classical FLRW geometry,
on the other hand, dynamics of the test quantum field is
generated by a Hamiltonian. We will show how this
Hamiltonian naturally emerges from the quantum con-
straint in a suitable approximation. The analysis is quite
intricate because it involves different notions of time (or,
equivalently, lapse fields) at different stages. Finally, we
will be able to pinpoint the implications of the quantum
fluctuations of geometry on the dynamics of the test quan-
tum field. This discussion will, in turn, enable us to spell
out the approximations that are essential to pass from the
QFT on a quantum FLRW geometry to that on its classical
counterpart.
The paper is organized as follows. In Sec. II we sum-

marize key properties of quantum space-time geometries
that emerge from LQC and recall the relevant features of
QFT on a classical FLRW background. In Sec. III we
introduce the Hamiltonian setup to describe test fields on
classical and quantum background geometries, and in
Sec. IV we show how the two are related. Section V
contains a summary and presents the outlook.
Remark.—Much of the detailed, recent work in LQC

assumes that the matter source is a massless scalar field T
which, as we saw, plays the role of a global, relational time
variable. The overall strategy is flexible enough to allow
additional matter fields. The new issues that arise are
technical, such as whether the relevant operators continue
to be essentially self-adjoint. However, if, as in the simplest
inflationary scenario, there is only a massive scalar field—
and no massless ones—one faces new conceptual issues. In
this case the scalar field serves as a good time variable only
‘‘locally.’’ That is, one has to divide evolution into
‘‘epochs’’ or ‘‘patches,’’ in each of which the scalar field
is monotonic along dynamical trajectories. The discussion
of the quantum bounce is not much more complicated
because the bounce occurs in a single patch [23]. The
problem of joining together these patches, on the other
hand, is more complicated. Although it can be managed in
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principle (see, e.g., [29]), at present it seems difficult to
handle in practice.

II. BACKGROUND QUANTUM GEOMETRY

LQC provides us with a nonperturbative quantum theory
of FLRW cosmologies. Because it is based on a
Hamiltonian treatment, the relation to the classical
FLRW models was spelled out through dynamical trajec-
tories in the classical phase space [12]. In particular, the
emphasis has been on the relational Dirac observables,
such as the matter density, anisotropies, and curvature at
a given value of the scalar field. On the other hand, quan-
tum field theory on classical FLRW backgrounds is devel-
oped on given classical space-times, rather than on
dynamical trajectories in the phase space of general rela-
tivity. Therefore, as a first step we need to reformulate one
of these descriptions using the paradigm used in the other.
In this section, we will recast the LQC description, empha-
sizing space-times over phase space trajectories. Relation
to the cosmology literature will then become more
transparent.

Wewill focus on the k ¼ 0,� ¼ 0 FLRWmodels with a
massless scalar field as a source. To avoid a discussion of
boundary conditions on test fields in Sec. III, we will
assume that the spatial three-manifold is T3, a torus with
coordinates xi 2 ð0; ‘Þ. It will be clear from our discussion
that with appropriate changes the analysis can be extended
to include a cosmological constant, or anisotropies, or
closed k ¼ 1 universes.

A. Space-time geometries and phase space trajectories

In this subsection we will clarify the relation between
various notions of time that feature in LQC and set up a
dictionary between the phase space and space-time
descriptions.

Spatial homogeneity and isotropy imply that the space-
time metric has the form

gabdx
adxb ¼ �dt2 þ qijdx

idxj � �dt2 þ a2d~x2 (2.1)

where qij is the physical spatial metric and a is the scale

factor. Here the coordinate t is the proper time along the
world lines of observers moving orthogonal to the homo-
geneous slices.

As explained in Sec. I, in LQC one uses a relational time
defined by a massless scalar field which serves as a matter
source. Because of this and because we will also have a test
scalar field ’ in Sec. III, we will denote the massless scalar
source by T. Since T satisfies the wave equation with
respect to gab, in LQC it is most natural to consider the
harmonic time coordinate � satisfying h� ¼ 0. Then the
space-time metric assumes the form

gabdx
adxb ¼ �a6d�2 þ qijdx

idxj � �a6d�2 þ a2d~x2:

(2.2)

Let us now spell out the relation of this space-time
metric to the phase space trajectories. In LQC, the gravi-
tational part of the phase space is conveniently coordinat-
ized by a canonically conjugate pair ð�; bÞ, where � is
essentially the volume of the universe and b the Hubble
parameter _a=a (where, as usual, the ‘‘dot’’ refers to a
derivative with respect to proper time t) [13,14]. More
precisely, the volume is given by

V � ‘3a3 ¼ 2��‘2Plj�j (2.3)

and the Hubble parameter by _a=a ¼ b=�, where � is the
so-called Barbero-Immirzi parameter of LQG.3 (Its value,
� � 0:24, is fixed by black hole entropy calculations.)
Throughout this paper, we will pass freely between V, �,
and the scale factor a.
The canonically conjugate pair for the scalar field is

ðT; PðTÞÞ. Dynamics is generated by the Hamiltonian con-

straint, NC, where N is the lapse function and C the
constraint function:

C ¼ P2
ðTÞ
2V

� 3

8�G

b2

�2
V � 0 (2.4)

where, as usual, the weak equality holds on the constraint
hypersurface. If one uses the time coordinate t, then it
follows from (2.1) that the lapse is Nt ¼ 1, while if one
uses �, (2.2) implies that the lapse is N� ¼ a3. In the
second case, the Hamiltonian constraint is

C� :¼ N�C � P2
ðTÞ

2‘3
� 3

8�G

b2

�2

V2

‘3
; (2.5)

whence the time evolution of the scalar field is given by

T ¼ PðTÞ
‘3

�: (2.6)

(Here we have set the integration constant to zero for
simplicity). PðTÞ is a constant of motion which, for defi-

niteness, will be assumed to be positive. Then, as one
would expect, in any solution to the field equations the
scalar field T grows linearly in the harmonic time �. Thus,
although T does not have the physical dimensions of time,
it is a good evolution parameter. Therefore, following the
LQC literature, we will refer to it as the relational time
parameter. On any given solution, we can freely pass from
� to T and write the space-time metric as

3Following LQG, in LQC one uses orthonormal frames rather
than metrics. Since these frames can be regarded as ‘‘square
roots’’ of metrics, the configuration space is doubled. �, b 2 R2

are constructed from the orthonormal frame and its time deriva-
tive, and the sign of � depends on the orientation of the frame.
The canonical commutation relations are ½b̂; �̂� ¼ 2i.
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gabdx
adxb ¼ �a6‘6

P2
ðTÞ

dT2 þ qijdx
idxj

� a6‘6

P2
ðTÞ

dT2 þ a2d~x2: (2.7)

The only difference from (2.2) is that the lapse is modified:
NT ¼ ð‘3=PðTÞÞN�, whence, in any given space-time, two

lapse functions are related just by a constant. However, in
the phase space, PðTÞ varies from one dynamical trajectory

to another, whence the relation is much more subtle. If we
regard T as a parameter, � evolves nontrivially on the full
phase space, and vice versa. In quantum gravity, we do not
have a fixed space-time, but a probability amplitude for
various geometries. Therefore, the situation in the phase
space is a better reflection of what happens in the quantum
theory. Indeed, as we will see in Sec. III, the difference
between � and T plays a big role there.

Since the relation between the phase space and space-
time notions is important for our subsequent discussion, we
will conclude with a useful dictionary:

(i) A point in the phase space.— A homogeneous slice
in space-time (i.e., T3 � R) equipped with the initial
data for the gravitational and scalar fields;

(ii) A curve in the phase space along which T is mono-
tonic.—A metric gab and a scalar field T on space-
time;

(iii) A curve in the phase space along which T is mono-
tonic and PðTÞ is constant.—A metric gab and a

scalar field T satisfying hT ¼ 0 on space-time;
and, finally,

(iv) A dynamical trajectory in the phase space.—A so-
lution ðgab; TÞ to the Einstein-Klein-Gordon equa-
tion on space-time.

B. Quantum FLRW space-times

In LQC one first constructs the quantum kinematics for
the symmetry reduced models by faithfully mimicking the
unique kinematics of LQG, selected by the requirement of
background independence [30,31]. One then writes the
quantum counterpart of the Hamiltonian constraint (2.5)
as a self-adjoint operator on the kinematical Hilbert space:

Ĉ ��oð�; TÞ ¼ � @
2

2‘3
ð@2T þ�Þ�oð�; TÞ; (2.8)

where� turns out to be a difference operator in � given by

��oð�; TÞ ¼ 3�G

�2
�½ð�þ 2�Þ�oð�þ 4�Þ � 4��oð�Þ

þ ð�� 2�Þ�oð�� 4�Þ�: (2.9)

Here, �2 ¼ 4
ffiffiffi
3

p
��‘2Pl is the smallest nonzero eigenvalue

of the LQG area operator (on states relevant to homoge-
neity and isotropy) [3,22,32], and we use the subscript (or
superscript) o to emphasizes that structures developed in

this section refer to what will serve as the background
quantum geometry. Physical states must satisfy4

Ĉ ��oð�; TÞ ¼ 0: (2.10)

A standard ‘‘group averaging procedure,’’ which is appli-
cable to a wide class of constrained systems, then provides
the scalar product, enabling us to construct the physical
Hilbert space H o

phy. Since the form of the constraint (2.8)

resembles the Klein-Gordon equation on a (fictitious) static
space-time coordinatized by �, T, as one might expect,
H o

phy is built out of ‘‘positive-frequency solutions’’ to

(2.8). More precisely, H o
phy consists of solutions to

� i@@T�oð�; TÞ ¼ Ĥo�oð�; TÞ where Ĥo ¼ @

ffiffiffiffiffi
�

p
;

(2.11)

with a finite norm with respect to the scalar product

h�o;�oi ¼ �

�

X
�¼4n�

1

j�j
��oð�; T0Þ�0

oð�; T0Þ; (2.12)

where the right side can be evaluated at any internal time
T0. Note that in their � dependence, physical states have
support on the lattice � ¼ 4n�, where n ranges over all
integers (except zero). We will generally work in the
Schrödinger representation. Then, the states can be re-
garded as functions �oð�Þ of � which have a finite norm
(2.12) and which evolve via (2.11). The Hilbert space
spanned by �ð�Þ will be denoted by H geo. For later use

we note that the classical expression (2.3) of volume

implies that the volume operator V̂ acts on H geo simply

by multiplication:

V̂�oð�Þ ¼ 2��‘2Plj�j�oð�Þ: (2.13)

Every element �o of H o
phy represents a four-

dimensional quantum geometry. However, to make contact
with QFT on classical FLRW space-times, we are inter-
ested only in a subset of these states which can be de-
scribed as follows. Choose a classical, expanding FLRW
space-time in which PðTÞ � @ (in the classical units G ¼
c ¼ 1) and a homogeneous slice at a late time To, when the
matter density and curvature are negligibly small com-
pared to the Planck scale. This defines a point p in the
classical phase space. Then, one can introduce coherent
states �oð�; ToÞ in H geo which are sharply peaked at p

[11–13]. Let us ‘‘evolve’’ them in the internal time T using
(2.11). One can show [12,13] that these states remain
sharply peaked on the classical trajectory passing through
p for all T > To. In the backward time evolution, they do
so till the density reaches approximately 1% of the Planck

4Recall from footnote 2 that � ! �� just corresponds to
changes in the orientation of the orthonormal frame, which
does not change the metric. Since the theory does not involve
any spinor fields, physics is insensitive to this orientation.
Therefore, states must also satisfy �ð�; TÞ ¼ �ð��; TÞ.
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density. As explained in Sec. I, even in the deep Planck
regime the wave function remains sharply peaked but the
peak now follows an effective trajectory which undergoes a
quantum bounce. At the bounce point the matter density
attains a maximum, �max � 0:41�Pl.

5 After the bounce the
density and the space-time curvature start decreasing, and
once the density falls below about 1% of the Planck
density, the effective trajectory becomes essentially indis-
tinguishable from a classical FLRW trajectory. Although
the effective trajectory cannot be approximated by any
classical solution in a neighborhood of the bounce point,
PðTÞ is constant along the entire effective trajectory. The

dictionary given at the end of Sec. II A then implies that the
effective space-time has a contracting FLRW branch in the
past and an expanding FLRW branch in the future. The
scalar field T satisfies hT ¼ 0 everywhere, but Einstein’s
equations break down completely in an intermediate re-
gion. Thanks to the quantum evolution equation (2.10), the
two branches are joined in a deterministic fashion in this
region. By a quantum background geometry, we will mean
a physical state �oð�; TÞ with these properties. There is a
large class of such states, and our considerations will apply
to all of them.

Of particular interest to us are the volume operators V̂T0

on H o
phy representing the volume of the universe at any

fixed instant T0 of internal time:

½V̂T0
�o�ð�; TÞ ¼ eði=@ÞĤoðT�T0Þð2��‘2Plj�jÞ

� e�ði=@ÞĤoðT�T0Þ�oð�; TÞ: (2.14)

Thus, the action of V̂T0
on any physical state �oð�; TÞ is

obtained by evolving that state to T ¼ T0, acting on it by
the volume operator, and then evolving the resulting func-

tion of � using (2.11). Each V̂T0
is a positive-definite self-

adjoint operator. Hence one can define any (measurable)

function of V̂T0
—such as the scale factor âT0

—via its

spectral decomposition. Finally, the matter density opera-
tor �̂T0

at time T ¼ T0 is given by

�̂ T0
¼ 1

2
V̂�1
T0
P̂2
ðTÞV̂

�1
T0

� @
2

2
V̂�1
T0
�V̂�1

T0
: (2.15)

As explained above, in background quantum geometries
�oð�; TÞ considered in this paper, the expectation values of
�̂T attain their maximum value �max � 0:41�Pl at the
bounce point.

In the kinematical setting, �̂, T̂, P̂ðTÞ,� are independent

self-adjoint operators. However, in the passage to the
physical Hilbert space H o

phy, a ‘‘deparametrization’’ oc-

curs as in the quantum theory of a parametrized particle

(see, e.g., [34]). On the physical sector we no longer have

an operator T̂ but just a parameter T, and the operator P̂2
ðTÞ

gets identified with @
2�. Consequently, the space-time

metric (2.7) can be represented as a self-adjoint operator
on H o

phy as follows [33]:

ĝ abdx
adxb ¼ �:V̂2

TĤ
�2
o :dT2 þ q̂ijdx

idxj

� :V̂2
TĤ

�2
o :dT2 þ V̂2=3

T d~x2: (2.16)

Thus, the geometry is quantum because the metric coef-
ficients ĝTT and q̂ij are now quantum operators. In (2.16), a

suitable factor ordering—denoted by: :—has to be chosen

because the volume operator V̂T does not commute with

the Hamiltonian Ĥo of the background quantum theory.
The simplest choice would be to use an anticommutator,
but it would be more desirable if the ordering was deter-

mined by some general principles. (Note that Ĥ�2
o is well

defined because Ĥo is a positive self-adjoint operator.)

III. THE TEST QUANTUM FIELD

This section is divided into two parts. In the first we
summarize the essential features of QFT on classical
FLRW backgrounds in a language that is well suited for
our generalization to quantum backgrounds, and in the
second we carry out the generalization.

A. QFT on classical FLRW backgrounds

As in Sec. II, let us fix a four-manifold M ¼ T3 � R,
equipped with coordinates xj 2 ð0; ‘Þ and x0 2 R.
Consider on it a FLRW four-metric gab given by

gabdx
adxb ¼ �N2

x0ðx0Þdx20 þ a2ðx0Þd~x2; (3.1)

where, as usual, the lapse function Nx0 depends on the

choice of time coordinate x0. Consider a real, massive,
test Klein-Gordon field ’ satisfying (h�m2) ’ ¼ 0 on
this classical space-time ðM;gabÞ. Note that ’ is not re-
quired to be homogeneous. Quantum theory of this field
can be described with various degrees of rigor and general-
ity. As explained in Sec. I, in this paper, we will consider
the simplest version in terms of mode decomposition.
The canonically conjugate pair for the test scalar field

consists of fields ð’;�ð’ÞÞ on a x0 ¼ const slice. Let us

perform Fourier transforms:

’ðxj; x0Þ ¼ 1

ð2�Þ3=2
X
~k2L

’~kðx0Þeikjx
j

and

�ð’Þðxj; x0Þ ¼ 1

ð2�Þ3=2
X
~k2L

�~kðx0Þeikjx
j
;

(3.2)

where L is the three-dimensional lattice spanned by
ðk1; k2; k3Þ 2 ðð2�=‘ÞZÞ3, Z being the set of integers.
The Fourier coefficients are canonically conjugate,
f’~k; � ~k0 g ¼ �~k;� ~k0 , and since ’ð ~x; x0Þ is real, they satisfy

5The existence of this maximum value does not follow simply
from the fact that j�j is bounded below by 4�. Its origin is more
subtle [13,33]: �̂ ¼ ð1=2ÞV̂�1P̂2

ðTÞV̂
�1 and the maximum value,

0:41�Pl, of h�̂i is the same no matter how large PðTÞ ¼ hP̂ðTÞi is.
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the conditions ’~k ¼ �’� ~k and �~k ¼ ��� ~k. The time-

dependent Hamiltonian (generating evolution in x0) is
given by

H’ðx0Þ ¼ 1

2

Z Nx0ðx0Þ
a3ðx0Þ

½�2
ð’Þ þ a4ðx0Þð@i’Þ2

þm2a6ðx0Þ’2�d3x

¼ Nx0ðx0Þ
2a3ðx0Þ

X
~k2L

��~k� ~k þ ð ~k2a4ðx0Þ

þ a6ðx0Þm2Þ �’~k’ ~k: (3.3)

In the literature, the test scalar field ’ is often regarded
as an assembly of harmonic oscillators, one for each mode.
To pass to this description, first note that, because of the
reality conditions, the Fourier modes are interrelated. One
can find an independent set by, e.g., considering the sub-
lattices L� of L as follows:

Lþ ¼ f ~k: k3 > 0g [ f ~k: k3 ¼ 0; k2 > 0g
[ f ~k: k3 ¼ 0; k2 ¼ 0; k1 > 0g and

L� ¼ f ~k: � ~k 2 Lþg: (3.4)

Then, for each ~k 2 Lþ, we can introduce real variables
q� ~k, p� ~k,

’~k ¼
1ffiffiffi
2

p ðq ~k þ iq� ~kÞ and �~k ¼
1ffiffiffi
2

p ðp~k þ ip� ~kÞ:
(3.5)

The pair ðq� ~k; p� ~kÞ is canonically conjugate for each ~k 2
Lþ. In terms of these variables, the Hamiltonian becomes

H’ðx0Þ ¼
Nx0ðx0Þ
2a3ðx0Þ

X
~k2L

p2
~k
þ ð ~k2a4ðx0Þ þm2a6ðx0ÞÞq2~k

(3.6)

where we have set q0 :¼ ’~k¼0 and �0 :¼ �~k¼0. Thus, the

Hamiltonian for the test field is the same as that for an

assembly of harmonic oscillators, one for each ~k 2 L.
To pass to the quantum theory, let us focus on just one

mode ~k. Then we have a single harmonic oscillator. So the
Hilbert space is given by H~k ¼ L2ðRÞ, the operator q̂ ~k acts

by multiplication, q̂ ~kc ðq ~kÞ ¼ q ~kc ðq ~kÞ, and p̂ ~k acts by

differentiation, p̂ ~kc ðq ~kÞ ¼ �i@dc =dq ~k. The time evolu-

tion is dictated by the time-dependent Hamiltonian opera-

tor Ĥ ~kðx0Þ:
i@@x0c ðq ~k; x0Þ ¼ Ĥ ~kðx0Þc ðq ~k; x0Þ

� Nx0ðx0Þ
2a3ðx0Þ

½p̂2
~k
þ ð ~k2a4ðx0Þ

þm2a6ðx0ÞÞq̂2~k�c ðq ~k; x0Þ: (3.7)

In this theory, there is considerable freedom in choosing
the time coordinate x0 (and hence the lapse function Nx0).

One generally chooses x0 to be either the conformal time �
or the proper time t. However, as we saw in Sec. II B, in
quantum geometry only the relational time T is a parame-
ter; �, t, and even the harmonic time � become operators
[33]. Therefore, in QFTon a quantum geometry, while it is
relatively straightforward to analyze evolution with respect
to T, conceptually and technically it is more subtle to
describe evolution with respect to conformal, proper, or
harmonic time (as it requires the introduction of condi-
tional probabilities). In the standard QFT on classical
FLRW space-times, on the other hand, T plays no role;
indeed, the source of the background geometry never
enters the discussion. This tension is conceptually signifi-
cant and needs to be resolved to relate QFTon classical and
quantum FLRW geometries.

B. QFT on quantum FLRW backgrounds

Recall first that in full general relativity dynamics is
generated by constraints. Our system of interest is general
relativity coupled to a massless scalar field T and a massive
scalar field ’, where T is spatially homogeneous and ’ is,
in general, inhomogeneous but regarded as a test field
propagating on the homogeneous, isotropic geometry cre-
ated by T. Therefore, we can start with the constraint
functions on the full phase space of the gravitational field,
T and ’, but impose isotropy and homogeneity on the
gravitational field and T and retain terms which are at
most quadratic in ’ and �ð’Þ. The fact that we are ignoring
the backreaction of ’ on the gravitational field implies
that, among the infinitely many constraints of this theory,
only the zero mode of the scalar constraint is relevant for
us. That is, we need to smear the scalar constraint onlywith
homogeneous lapse functions (and can ignore the Gauss
and the vector constraints). For concreteness, as in
Sec. II A, we will choose the harmonic time coordinate �
and the corresponding lapse functionN� ¼ a3. Then, in the
truncated theory now under consideration, the scalar con-
straint (Sec. II A) is replaced by

C� � N�C

¼ P2
ðTÞ

2‘3
� 3

8�G

b2

�2

V

‘3
þ 1

2

Z
½�2

ð’Þ þ a4ð@i’Þ2

þm2a6’2�d3x � 0: (3.8)

(Recall that the volume and the scale factor are related by

V ¼ ‘3a3.) If we focus just on the ~kth mode, the constraint
simplifies further:

C�; ~k ¼
P2
ðTÞ

2‘3
� 3

8�G

b2

�2

V

‘3
þH�; ~k; (3.9)

where
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H�; ~k ¼ 1
2½p2

~k
þ ð ~k2a4 þm2a6Þq2~k�: (3.10)

In quantum theory, then, physical states �ð�; q ~k; TÞ
must be annihilated by this constraint, i.e., must satisfy

� @
2@2T�ð�; q ~k; TÞ ¼ ½Ĥ2

o � 2‘3Ĥ�; ~k��ð�; q ~k; TÞ;
(3.11)

where, as in Sec. II B, Ĥ2
o ¼ @

2� is the difference operator
defined in (2.9). (Although â is an operator, it commutes
with q̂ ~k and p̂ ~k on the kinematical Hilbert space. So, there

are no factor ordering subtleties in the definition of Ĥ�; ~k.)

As in Sec. II B, the construction of the physical inner
product requires us to take the ‘‘positive-frequency’’
square root of this equation. More precisely, on the tensor
product H geo 	 L2ðRÞ of the quantum geometry Hilbert

space H geo and the ~k-mode Hilbert space L2ðRÞ, the

operator ½Ĥ2
o � 2‘3Ĥ�; ~k� on the right-hand side of (3.11)

is symmetric, and we assume that it can be made self-
adjoint on a suitable domain. On the physical Hilbert

space, this operator gets identified with P̂2
ðTÞ. Since classi-

cally P2
ðTÞ is a positive Dirac observable, we are led to

restrict ourselves to the positive part of the spectrum of

½Ĥ2
o � 2‘3Ĥ�; ~k� and then solve the evolution equation

�i@@T�ð�; q ~k; TÞ ¼ ½Ĥ2
o � 2‘3Ĥ�; ~k�1=2�ð�; q ~k; TÞ

¼: Ĥ�ðv; q ~k; TÞ: (3.12)

The solutions are in the physical Hilbert spaceH phy of the

truncated theory, provided they have a finite norm with
respect to the inner product:

h�1j�2i ¼ �

�

X
�¼4n�

1

j�j

�
Z 1

�1
dq ~k

��1ð�; q ~k; T0Þ�2ð�; q ~k; T0Þ
(3.13)

where the right side is evaluated at any fixed instant of
internal time T0. As one might expect, the physical ob-
servables of this theory are the Dirac observables of the
background geometry—such as the time-dependent den-

sity and volume operators �̂ðTÞ and V̂ðTÞ—and observ-
ables associated with the test field, such as the mode
operators q̂ ~k and p̂ ~k.

Formally, this completes the specification of the quan-

tum theory of the test field 	̂ on a quantum FLRW back-
ground geometry. We have presented this theory (as well as
the QFT on a classical background in Sec. III A) using the
Schrödinger picture because this is the description one is
naturally led to when, following Dirac, one imposes quan-
tum constraints to select physical states. However, at the
end of the process it is straightforward to reexpress the
theory in the Heisenberg picture.

Remark,—In this section we began with the constraint
(3.8) on the classical phase space spanned by
ð�; b;T; PðTÞ;’;�ð’ÞÞ. Solutions to this theory do include

a backreaction of the field ’ but just on the homogeneous
mode of the classical geometry. In the final quantum
theory, the Hamiltonian of the field ’ features on the right
side of (3.12) whence, in the Heisenberg picture, it affects
the evolution of geometric operators. As in the classical
theory, this evolution incorporates backreaction of the field
’̂ but just on the homogeneous mode of the quantum
geometry. Mathematically, we have a closed system in-
volving �̂, ’̂, T, whence this inclusion of the backreaction
is consistent. However, physically it is not as meaningful
because we have ignored the backreaction at the same
order that would add inhomogeneities to the quantum
geometry. So, from a physical viewpoint, all corrections
to quantum geometry which are quadratic in ’̂ should be
consistently ignored. We will explicitly impose this restric-
tion in Sec. IVC. However, the classical theory determined
by (3.8) and the quantum theory constructed in this section
can be directly useful in some applications where it is
meaningful to ignore inhomogeneous metric perturbations
and study the homogeneous mode, including the backreac-
tion corrections.

IV. COMPARISON

In this section we will compare QFT on a classical
background discussed in Sec. III A and QFT on quantum
FLRW geometries discussed in Sec. III B. The discussion
is divided into three subsections which provide the succes-
sively stronger simplifications of the dynamical equation
(3.12) that are needed to arrive at the dynamical equation
(3.7) on a classical FLRW space-time.

A. Simplification of the evolution equation

Let us begin by using the test field approximation. Since
the backreaction of the scalar field ’ is neglected, the
theory constructed in Sec. III B can be physically trusted

only on the sector on which Ĥ2
o dominates over 2‘3Ĥ�; ~k.

On this sector, one can expand out the square root on the
right side of (3.12) in a useful fashion. For this, we will use
an operator identity: Given self-adjoint operators A, B
(which need not commute) such that A is positive definite,
we have the following expansion:

ðAþ BÞ1=2 ¼ A1=4ð1þ A�ð1=2ÞBA�ð1=2ÞÞ1=2A1=4

¼ A1=4ð1þ 1
2A

�ð1=2ÞBA�ð1=2Þ þ . . .ÞA1=4:

(4.1)

If we set A ¼ Ĥ2
o, B ¼ �2‘3Ĥ�; ~k and ignore the higher

order . . . terms, the right side of (3.12) simplifies:
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�i@@T�ð�;q ~k; TÞ ¼ ðĤo � ð‘�3ĤoÞ�ð1=2Þ

� Ĥ�; ~kð‘�3ĤoÞ�ð1=2ÞÞ�ð�;q ~k;TÞ:
(4.2)

This evolution equation has several noteworthy features.
First, there was no factor ordering freedom; a specific
ordering naturally emerged from the general expansion
(4.1). Next, we will now show that the second term on
the right side of (4.2) has a direct interpretation. In the
classical theory, H�; ~k is the Hamiltonian generating evolu-

tion in harmonic time �. Since the corresponding lapse
function N� is related to the lapse function NT correspond-
ing to the relational time T via NT ¼ ðPT‘

3Þ�1N�, the
Hamiltonian generating evolution in T is given by HT; ~k ¼
ð‘�3PTÞ�1H�; ~k � ð‘�3HoÞ�1H�; ~k, where in the last step

we have again used the test field approximation. The
second term on the right side of (4.2) is precisely a specific
quantization of HT; ~k. This is just as one would physically

expect because the left side of (4.2) is the derivative of the
quantum state with respect to T. Thus, we can rewrite (4.2)
as

� i@@T�ð�; q ~k; TÞ ¼ ðĤo � ĤT; ~kÞ�ð�; q ~k; TÞ: (4.3)

The nontriviality lies in the fact that this evolution equation
arose from a systematic quantization of the ð�; ’; TÞ sys-
tem, where geometry is also quantum. As in LQCwe began
with the quantum constraint operator associated with the
harmonic time, and then used the group averaging proce-
dure to find the physical Hilbert space. This naturally led us
to take a square root of the quantum constraint. Then an
expansion, which is valid in the test field approximation,
automatically provided the extra factor to rescale the lapse
operator just in the right manner to pass from the harmonic
to the relational time. Thus, there is coherence between the
constrained dynamics, various notions of time involved,
deparametrization of the full theory, and the test field
approximation.

B. Interaction picture

The simplified evolution equation (4.3) is rather analo-
gous to the Schrödinger equation (3.7) in QFT on a classi-
cal FLRW background. However, there are two key
differences. First, in (4.3) the background geometry ap-

pears through operators V̂ and Ĥo, while in (3.7) it appears
through the classical scale factor aðx0Þ and (if we set x0 ¼
T) the constant ‘3=PðTÞ ¼ NT=a

3 determined by the mo-

mentum of the background scalar field. The fact that there
are operators on the Hilbert space H geo of quantum ge-

ometry in the first case and classical fields on space-timeM
in the second is not surprising. But there is also a more

subtle, second difference. The operators Ĥo and V̂ which

features on the right side of (4.3) do not depend on time6:

V̂�ð�;q ~k;TÞ¼2��‘2Plj�j�ð�;q ~k;TÞ and Ĥo�ð�; q ~k; TÞ ¼
@

ffiffiffiffiffi
�

p
�ð�; q ~k; TÞ. The scale factor aðx0Þ that appears in

(3.7), on the other hand, is explicitly time dependent.
This is because while (4.2) provides a quantum evolution

equation for the state �ð�; q ~k; TÞ that depends on (the ~kth

mode of) the test field ’ and the quantum geometry
(encoded in �), (3.7) evolves the state c ðq ~k; TÞ just of

the test scalar field on the given time-dependent back-
ground geometry [encoded in aðx0Þ].
To make the two evolutions comparable, therefore, we

need to recast (4.3) in such a way that the test field evolves
on a background, time-dependent quantum geometry. This
can be readily achieved by working in the ‘‘interaction

picture.’’ More precisely, it is natural to regard Ĥo in (4.3)
as the Hamiltonian of the heavy degree of freedom and

ĤT; ~k as a perturbation governing the light degree of free-

dom, and, as in the interaction picture, set

�intð�; q ~k; TÞ :¼ e�ði=@ÞĤoðT�T0Þ�ð�; q ~k; TÞ; (4.4)

where T0 is any fixed instant of relational time. Then, (4.3)
yields the following evolution equation for �int:

i@@T�intð�; q ~k; TÞ ¼ 1
2ð‘3ĤoÞ�ð1=2Þ½p2

~k
þ ð ~k2â4ðTÞ

þm2â6ðTÞÞq2~k�
� ð‘3ĤoÞ�ð1=2Þ�intð�; q ~k; TÞ

¼: Ĥint
T; ~k

�intð�; q ~k; TÞ: (4.5)

Here the operators âðTÞ (and their powers) are defined on
the Hilbert space H geo of quantum geometry (now tied to

the internal time To):

âðTÞ ¼ e�ði=@ÞĤoðT�ToÞâeði=@ÞĤoðT�ToÞ with

â ¼ 1

‘
jV̂j1=3:

(4.6)

Thus, in this interaction picture, quantum geometry is in
effect described in the Heisenberg picture—states of quan-
tum geometry are ‘‘frozen’’ at time T ¼ To but the scale
factor operators evolve—while the test field is described
using the Schrödinger picture. Therefore, the quantum
evolution equation (4.5) is now even more similar to the
Schrödinger equation (3.7) for the test field on a classical

background. However, the lapse N̂T and powers of the
scale factor â are still operators on H geo. In the next

6This also occurs in the classical theory. There, in place of the
Hamiltonian, we have the constraint function C ¼ P2

ðTÞ=2V �
ð3=8�GÞðb2V=�2Þ on the phase space. b, V which appear in the
expression are determined just by the point at which C is
evaluated; there is no time parameter on which they could
depend. This is actually the origin of the fact that the V̂ and
Ĥo in (4.3) do not depend on time.
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subsection we will specify the approximations necessary to
reduce (4.5) to (3.7).

C. Replacing geometric operators by their mean values

Let us now assume that the state�intð�; q ~k; TÞ factorizes
as �intð�; q ~k; TÞ ¼ �oð�; T0Þ 	 c ðq ~k; TÞ, where �oð�; T0Þ
is a quantum geometry state introduced in Sec. II B, peaked
at an effective LQC geometry of the ð�;’Þ system. This
assumption is justified because ’ is a test field; i.e., its
backreaction is ignored. Then, (4.5) further simplifies as
follows:

�oð�;T0Þ 	 ½i@@Tc ðq ~k;TÞ� ¼ 1
2½ð‘�3ĤoÞ�1�oð�;T0Þ�
	 ½p̂2

~k
c ðq ~k;TÞ�

þ 1
2½ð‘�3ĤoÞ�ð1=2Þð ~k2â4ðTÞ

þm2â6ðTÞÞð‘�3ĤoÞ�ð1=2Þ

��oð�;T0Þ� 	 ½q̂2~kc ðq ~k;TÞ�:
(4.7)

Let us now suppose that �oð�; ToÞ is normalized and
take the scalar product of (4.7) with �oð�; T0Þ. Then, we
obtain

i@@Tc ðq ~k; TÞ ¼ 1
2hð‘�3ĤoÞ�1ip̂2

~k
c ðq ~k; TÞ

þ 1
2½ ~k2hð‘�3ĤoÞ�ð1=2Þâ4ðTÞð‘�3ĤoÞ�ð1=2Þi

þm2hð‘�3ĤoÞ�ð1=2Þâ6ðTÞ
� ð‘�3ĤoÞ�ð1=2Þi�q̂2~kc ðq ~k; TÞ; (4.8)

where hÂi denotes the expectation value of the operator Â
in the quantum geometry state �0. Thus, in this equation
all geometrical quantities are c numbers. Nonetheless,
(4.8) is, in general, different from (3.7) because expectation
values of products of operators do not equal products of
expectation values of operators. We discuss the differences
and analogies below.

Equation (4.8) tells us how the quantum state of the
mode q ~k ‘‘evolves,’’ but the background geometry is nei-

ther classical nor quantum in the sense of Sec. II B. The
mode knows about the background geometry only through
the three expectation values that feature on the right side of
(4.8). Therefore, one is led to ask if there is an effective
classical FLRW space-time such that the Schrödinger
equation (3.7) on it is equivalent to (4.8).

To address this question, let us begin with the plausible
assumption that the quantum geometry state �0 is sharply

peaked at the expectation values �PðTÞ and �a of Ĥ and â,
respectively, and, furthermore, work in the approximation
in which quantum fluctuations of geometry can be ignored.
A priori this is a very strong simplification but, for cosmo-
logical applications, this approximation can be justified
because the quantum geometries �oð�; TÞ have incredibly
small dispersions along the entire effective trajectory [35].

Then, (4.8) reduces to

i@@Tc ðq ~k; TÞ ¼
�NT

2 �a3
½p̂2

~k
þ ð ~k2 �a4ðx0Þ

þm2 �a6ðx0ÞÞq̂2~k�c ðq ~k; x0Þ: (4.9)

This is exactly the Schrödinger equation (3.7) governing
the dynamics of the test quantum field on a classical space-
time with scale factor �a containing a massless scalar field T
with momentum �PðTÞ ¼ �a2‘3= �NT . This is the precise sense

in which the dynamics of a test quantum field on a classical
background emerges from a more complete QFT on quan-
tum FLRW backgrounds. Note however that, even with this
strong simplification, the classical space-time is not a
FLRW solution of the Einstein-Klein-Gordon equation.
Rather, it is the effective space-time ðM; �gabÞ à la LQC
on which the quantum geometry �oð�; TÞ is sharply
peaked. But as discussed in Secs. I and II A, away from
the Planck regime, ðM; �gabÞ is extremely well approxi-
mated by a classical FLRW space-time ðM;goabÞ. Thus,
starting from quantum geometry and making a series of
well-motivated approximations, we have arrived at a QFT
of a test field ’ which is a nontrivial extension of the QFT
on a standard ðM;goabÞ. It has the same structure as the

standard theory but is defined on a much larger space-time
in which the big bang is replaced by a quantum bounce and
there is an infinite pre-big branch. Therefore, although the
theory developed in this section describes a test quantum
field ’̂ on classical backgrounds and approximates the
standard QFT on classical FLRW geometries at late times,
it also contains a lot of new physics, particularly in the
Planck regime around the bounce.
Next, it is interesting to return to Eq. (4.8) and not make

additional simplifications. One can still ask if there is a
classical metric tensor

g0abdx
adxb ¼ �N02ðTÞdT2 þ a02ðTÞd~x2 (4.10)

such that (4.8) agrees with the Schrödinger equation (3.7)
on ðM;g0abÞ. For this agreement to hold, the scale factor

a0ðTÞ and the lapse function N0ðTÞ should satisfy the
following system of equations:

N0ðTÞ ¼ ‘3a03ðTÞhĤ�1
o i; (4.11)

N0ðTÞa0ðTÞ ¼ ‘3hĤ�ð1=2Þ
o â4ðTÞĤ�ð1=2Þ

o i; (4.12)

m2N0ðTÞa03ðTÞ ¼ m2‘3hĤ�ð1=2Þ
o â6ðTÞ‘�3Ĥ�ð1=2Þ

o i: (4.13)

In the case when the test field is massless, the third equa-
tion disappears and there is clearly a solution
ðN0ðTÞ; a0ðTÞÞ. But note that the interpretation of (4.8) as
the evolution equation for c ðq ~k; TÞ on the classical space-

time ðM;g0abÞ is not entirely satisfactory because, if the

quantum geometry state is sharply peaked at hâi ¼ �a and

hP̂ðTÞi ¼ �PðTÞ, then a0ðTÞ � �aðTÞ and N0ðTÞ � ‘3 �a3= �PðTÞ.
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Thus, deductions about the quantum geometry made from
the dynamics of the test scalar field would be different from
those made by observing the geometry directly, e.g., from
the measurement of the Hubble parameter or of the volume
at the bounce point. Finally, in the case when the test scalar
field ’ has mass, on the other hand, if the quantum ge-
ometry fluctuations are not negligible, dynamics of the test
field given by (4.8) cannot be interpreted as dynamics of
the test field on any classical FLRW background.

V. DISCUSSION

Consider QFT of a massive, test, scalar field ’̂ on a
classical FLRW space-time ðM;goabÞwith a massless scalar

field T as its matter source. Our main goal was to derive
this theory from that of the scalar field ’̂ on a quantum
geometry �oð�; TÞ that replaces ðM;goabÞ in LQC.

Conceptually, the two theories are quite distinct:
(i) They use very different notions of time. In particular,

the conformal time � and the proper time t used in
the first theory are nontrivial operators in the second
[33].

(ii) In the first theory, dynamics is generated by a
Hamiltonian, while in the second, it has to be teased
out of a constraint.

(iii) In the first theory, there is a fixed classical metric goab
in the background which is used repeatedly in the
construction of the QFT, while in the second, there is
only a probability distribution for various metrics
encoded in �oð�; TÞ.

(iv) While in the first theory the scale factor a is a given
function on M, in the second theory we are con-
fronted with quantum fluctuations of (different
powers of) the operator â.

Our first task was to set up an appropriate framework to
explore the relation between the two theories in detail.

To construct the second of these theories, in Sec. III we
began with the constrained quantum system for the gravi-
tational field coupled with the scalar fields T and ’ but
made simplifications to encode the idea that the space-time
geometry and T are homogeneous and ’ is (inhomoge-
neous but) a test field whose backreaction is ignored. This
theory was deparametrized by singling out T as the rela-
tional time variable with respect to which the gravitational
field and ’ evolve. The states of the coupled system are
then functions�ð�;’; TÞ of volume � (or, equivalently, the
scale factor) of the universe, the massive test field ’, and
the massless scalar field T. We found that their inner
product is given by (3.13) and their dynamics is governed
by the Schrödinger equation (3.12). Thus, a quantum the-
ory of the test field ’ on quantum geometries could be
constructed, although we do not have a fixed classical
metric or a fixed causal structure in the background.

In Sec. IV we made successive approximations to sim-
plify (3.12), all of which are well motivated by the setup of
the problem:

(i) We regarded variables ð�; TÞ, which provide the
background geometry, as the heavy degree of free-
dom and the test field ’ as the light degree to
simplify the Hamiltonian operator in (3.12).

(ii) We assumed that the state �ð�; ’; TÞ can be ex-
panded as �ð�;’; TÞ ¼ �oð�; TÞ 	 c ð’; TÞ, where
�oð�; TÞ is the quantum geometry that replaces the
classical FLRW space-time in LQC, and took the
scalar product of the evolution equation (3.12) with
respect to the quantum geometry state �oð�; TÞ to
obtain an evolution equation for c ð’Þ.

(iii) To simplify this equation on c ð’Þ, we ignored the
quantum fluctuations of geometry by replacing the
expectation values of products of geometrical opera-
tors by products of their expectation values. The
result was the standard Schrödinger equation (4.9)
for a test field ’ on a classical background.

However, Eq. (4.9) has two nonstandard features. First,
the classical background is not a FLRW space-time
ðM;goabÞ but rather an effective space-time ðM; �gabÞ on

which the LQC state �oð�; TÞ is sharply peaked. Second,
the Schrödinger equation naturally arises with T as the
time variable. This is unusual from the perspective of QFT
on classical backgrounds because T is the massless scalar
field that acts as the source of the gravitational field, while
QFTon classical backgrounds, as normally formulated, has
no knowledge of the source. Rather, the time variables that
are normally used—the conformal time � or the proper
time t—arise directly from the metric goab. However, from
the perspective of quantum geometry, these are unnatural
because while T is a parameter in that theory, as we noted
above, � and t are not; they get promoted to operators. Of
course, once we have arrived at the ‘‘lower’’ theory—i.e.,
QFTon the classical space-time ðM; �gabÞ—it is straightfor-
ward to reformulate dynamics in terms of either � or t. But
at a more fundamental level, it is the relational time T that
appears to be the natural time parameter. Finally, let us
return to the first difference. The effective space-time
ðM; �gabÞ is a nontrivial extension of the FLRW solution
ðM;goabÞ in which the big bang is replaced by a bounce and
there is an infinite pre-big-bang branch. However, FLRW
solutions ðM;goabÞ are excellent approximations to the

effective space-times ðM; �gabÞ in the expanding, post-big-
bang branch away from the Planck regime. Furthermore,
our QFT on effective space-times does reduce to the stan-
dard one on FLRW solutions when the space-time curva-
ture is smaller than the Planck scale. Moreover, it provides
a physically interesting extension near and to the past of
the big bounce. Because ðM; �gabÞ is nonsingular, this the-
ory opens a new window to the Planck scale physics which
was inaccessible to QFT on classical FLRW solutions.
Thus, in this paper we have laid down foundations for

further work with applications to cosmology as well as
mathematical physics. We will conclude by indicating
directions that are currently being pursued. First, we need
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to include the backreaction of ’ on geometry, treating it as
a perturbation. As far as the homogeneous mode of the
gravitational field is concerned, this is already achieved in
the evolution equation (3.12) (see the remark at the end of
Sec. III B). Inclusion of inhomogeneous gravitational per-
turbations remains an open issue. Second, we have to
analyze the quantum dynamics of the gauge invariant
combinations � of ’ and the scalar perturbations of the
metric. Here the important step is to construct the
Mukhanov variable � starting from the full quantum con-
straint. Existing literature on cosmological perturbations in
the LQG setting [36,37] is likely to be directly useful in
this task. The mathematical theory of propagation of � on
the quantum background geometry �oð�; TÞ would be
rather similar to that of ’ analyzed in this paper. Third,
we have to account for the origin of the massless scalar
field T which plays the role of time for us. It seems most
natural to have a single scalar field �, the homogeneous
mode of which would provide the relational time parame-
ter T, and the inhomogeneous modes of which would
provide the physical perturbations that lead to structure
formation. This seems feasible. However, it is likely that
the resulting relational time will not be global. Thus, as
remarked at the end of Sec. I, the analysis in quantum
geometry may have to be divided into ‘‘epochs,’’ in each of
which the homogeneous part of� will serve as a relational
time variable. If these three steps can be carried out to
completion, we will have a coherent framework to analyze
cosmological perturbations and structure formation which
is free from the limitations of a big-bang singularity. In
particular, one will then be able to evolve perturbations
across the big bounce and study phenomenological impli-
cations. Immediately after the big bounce, there is a short
epoch of superinflation in LQC (see [38] and especially
[39]). The possibility that ramifications of this sudden and
very rapid expansion may be observable has drawn con-
siderable attention of cosmologists recently. A more com-
plete QFT on quantum geometries will provide a
systematic avenue to analyze these issues.

The second direction for further work is motivated by
mathematical physics (although it too has some implica-
tions to cosmology). In this paper we focused on a single
mode of the scalar field ’. Inclusion of a finite number of
modes is completely straightforward. Inclusion of all
modes, on the other hand, involves functional analytic

subtleties. Recall, however, that in quantum geometry,
the volume operator has a nonzero minimum value,
2��‘2Plj�jmin ¼ 8���‘2Pl. Therefore, in a certain sense

there is a built-in ultraviolet cutoff. A careful examination
may well reveal that this cutoff descends to the test scalar
field’, in which case’would have only a finite number of
modes and the treatment presented here will suffice.
However, if this possibility is not realized, one would
have to resolve the functional analytical difficulties. Our
first task is to address these issues. Second, a number of
ideas related to the algebraic approach are being explored.
This approach can be applied directly to the effective
space-times ðM; �gabÞ that emerge from LQC. What can
one say about the (regularized) stress tensor of ’ and its
backreaction on the geometry? Is there a sense in which the
Schrödinger equation (3.12) already includes these effects?
More importantly, can one extend the algebraic approach
systematically to cosmological quantum geometries? At
first the extension seems very difficult, if not impossible,
because so many of the structures normally used in the
algebraic approach to QFTon classical space-times use the
fact that we have access to a fixed space-time metric.
However, in the cosmological context, additional struc-
tures—such as a preferred foliation—naturally become
available, and they enable one to construct the required ?
algebras of field operators in the canonical setting. Also,
the background quantum geometries �oð�; TÞ are rather
well controlled, and one may be able to use the fact that
they are extremely sharply peaked around effective space-
times [35]. Can one exploit this setting to introduce the
analogs of Hadamard states? We believe that such general-
izations are now within reach.
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