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The analogy between electrodynamics and the translational gauge theory of gravity is employed in this

paper to develop an ansatz for a nonlocal generalization of Einstein’s theory of gravitation. Working in the

linear approximation, we show that the resulting nonlocal theory is equivalent to general relativity with

‘‘dark matter.’’ The nature of the predicted dark matter, which is the manifestation of the nonlocal

character of gravity in our model, is briefly discussed. It is demonstrated that this approach can provide a

basis for the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.
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I. INTRODUCTION

In special relativity theory, the principle of locality has
been the subject of a detailed critical analysis, and nonlocal
correction terms have been proposed that are induced by
sufficiently high accelerations [1]. This nonlocal special
relativity has been applied to electrodynamics and the
Dirac equation. For a discussion of possible experimental
tests of the theory, we refer to [1] and the references cited
therein.

The next subject to be addressed from this nonlocal
point of view is the theory of gravitation. Einstein’s theory
of general relativity (GR) is, by means of the equivalence
principle, heuristically deduced from special relativity.
Therefore, if special relativity is generalized to a nonlocal
theory, then general relativity theory cannot be exempt
from this generalization process. But how should such a
generalization be implemented in Einstein’s theory?
Should one, for example, require the connection to be a
nonlocal expression in terms of the metric? No obvious
method suggests itself for a direct nonlocal generalization
of Einstein’s theory. The underlying reason for this is that
the precise mathematical form of Einstein’s principle of
equivalence in GR is strictly local; therefore, it cannot be
employed together with nonlocal special relativity to arrive
at nonlocal gravitation. On the other hand, various heuristic
arguments have been advanced in favor of a nonlocal
classical theory of gravitation (see, for instance, [2]).

The idea behind this paper exploits the analogy between
gauge theories. On the one hand we know that electro-
dynamics, in the framework of a gauged Dirac system, can
be understood as a gauge theory of the Uð1Þ group; see
O’Raifeartaigh [3]. On the other hand it is known that a
gauge theory of the translation group, for spinless matter,

yields a teleparallelism theory of gravity that, for a suitably
chosen Lagrangian, is equivalent to Einstein’s theory; see,
for instance, Nitsch et al. [4,5]. Consequently, if we cannot
recognize a direct method of generalizing Einstein’s the-
ory, it may be helpful to start from this so-called tele-
parallel equivalent of general relativity (GRk) instead.

This will indeed provide a way to proceed to a nonlocal
extension.
The analogy between these groups is pointed out in the

rest of this section and the resulting ansatz for nonlocal
gravitation is explained in Sec. II. To simplify matters, we
work in the linear approximation and work out the line-
arized nonlocal gravitational field equations in Sec. III. In
Sec. IV, some subtleties are discussed in connection with
the use of variational principles in nonlocal field theories.
Section V is devoted to an interpretation of these nonlocal
equations in terms of the standard linearized general rela-
tivity theory but in the presence of ‘‘dark matter’’. The
properties of the resulting dark matter are briefly pointed
out. A discussion of our results is contained in Sec. VI.
Various mathematical details are relegated to the appen-
dixes. In this paper, spacetime indices run from 0 to 3 and
units are chosen such that c ¼ 1. The Minkowski metric
tensor is given by diagð1;�1;�1;�1Þ. As indices, Latin
letters indicate holonomic coordinate indices, while Greek
letters indicate anholonomic Lorentz-frame (tetrad)
indices.

A. Electrodynamics

The electromagnetic excitation H ij ¼ ðD;HÞ ¼
�H ji, a contravariant tensor density, and the field strength
Fij ¼ ðE; BÞ ¼ �Fji, a covariant tensor, fulfill the

Maxwell equations

@jH ij ¼ J i; @½iFjk� ¼ 0; (1)

with J i as electric current density. Here i; j; . . . ¼ 0; 1; 2; 3
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are (holonomic) coordinate indices. The homogeneous part
of equations (1) can be solved by the potential ansatz

Fij ¼ 2@½iAj�: (2)

The two Maxwell equations have to be supplemented by a
constitutive law that relates the excitation to the field
strength. In conventional vacuum electrodynamics, one
takes the local, linear, and isotropic ‘‘constitutive law’’

H ij ¼ h ffiffiffiffiffiffiffi�g
p

gk½igj�liFkl ¼ ffiffiffiffiffiffiffi�g
p

Fij: (3)

This law is equally valid for the flat Minkowski spacetime
of special relativity as well as for the curved Riemannian
spacetime of general relativity. In the former case, in
Cartesian coordinates, the metric gij is constant, in the

latter case it becomes a field governed by the Einstein
equations. If we substitute Eq. (3) into Eq. (1), then the
Maxwell equations are expressed in terms of the field
strength Fij alone.

In a nonlocal theory, on the other hand, Eq. (3) is
generalized such that the nonlocal constitutive law ex-
presses H ij as a nonlocal spacetime relation in terms of
Fkl. In fact, it is possible to give an effective interpretation
of Mashhoon’s nonlocal electrodynamics in this way [6].
That is, one refers the excitation H �� ¼ ei

�ej
�H ij, the

field strength F�� ¼ ei�e
j
�Fij, and the metric g�� ¼

ei�e
j
�gij to noninertial frames e� ¼ ei�@i that character-

ize the tetrads of accelerated observers. With respect to
such frames, the Maxwell equations read [6,7]

@�H �� � 1

2
C��

�H �� þ 1

2
C��

�H �� ¼ J �; (4)

@½�F��� � C½��
�F��� ¼ 0: (5)

Here C��
� :¼ 2ei�e

j
�@½iej�

� is the object of anholonom-

ity (‘‘structure constants’’) measuring the noninertial na-
ture of the frame. Thus in this approach to nonlocal
electrodynamics, the nonlocal expression that relates the
excitation to the field strength is given by [6]

H ��ðxÞ ¼ ffiffiffiffiffiffiffi�g
p

g��g��F��ðxÞ
þ

Z
�����ðx; x0ÞF��ðx0Þd4x0: (6)

Equation (6) represents a new axiom that, together with the
Maxwell equations (1), determines a nonlocal theory of
electrodynamics.

B. Translational gauge theory of gravity

Let us now turn to the gauge theory of the translation
group, which includes GRk. We take the field equations

from [8,9]; however, we change some conventions in order
to conform with [7,10]. For the tensor calculus background
one should compare Schouten [11]. In Appendix A, we
provide a brief sketch of translational gauge theory formu-

lated in terms of the calculus of exterior differential forms.
Recent works on teleparallelism can be found, amongst
others, in the articles of Aldrovandi et al. [12], Itin [13,14],
Maluf et al. [15,16], Mielke [17], Obukhov et al. [18–20],
So et al. [21], and Tung et al. [22]; moreover, the two
monographs of Blagojević [23] and Ortı́n [24] should be
consulted as well as the references cited therein. The
inhomogeneous and the homogeneous gravitational field
equations are, respectively, given by

@jH ij
� � E�

i ¼� T �
i; @½iCjk�

� ¼� 0: (7)

The star over the equal sign means that the corresponding
equation is only valid in a suitable frame; this will be
discussed in Sec. II. The nonlinear correction terms in
the inhomogeneous part of Eqs. (7) represent the energy-
momentum tensor density of the gravitational gauge field,

E �
i :¼ � 1

4
ei�ðCjk

�H jk
�Þ þ C�k

�H ik
�: (8)

As source, we have on the right-hand side of the inhomo-
geneous field equation the energy-momentum tensor den-
sity of matter. In analogy with Eq. (2), the field strength
Cij

� is defined in terms of the potential ei
� by

Cij
� ¼ 2@½iej�

�; (9)

so that the homogeneous gravitational field equations (7)
are thus identically satisfied.
Clearly, there is a similarity between the electrodynamic

and gravitational cases, as indicated in Table I. In electro-
dynamics we have one potential Ai as covector, corre-
sponding to the one-parameter Uð1Þ group; in the
gravitational case, because we have four linearly indepen-
dent translations in spacetime, we have four covectors as

potentials ei
�, the tetrad components with � ¼ 0̂, 1̂, 2̂, 3̂.

Correspondingly, whereas we have six components of the
electromagnetic field strength Fij ¼ �Fij, we have 4� 6

components of the gravitational field strength Cij
� ¼

�Cji
�. If one compares Eq. (1) with Eq. (7), one recog-

nizes the quasi-Maxwellian nature of the gravitational
case, only that we have 4 times more field equations in Eq.
(7) and that the gravitational energy-momentum tensor
density E�

i emerges because all physical fields including

TABLE I. Analogy between electrodynamics and gravitody-
namics. The approximation sign employed in the last column
indicates validity only in the linear regime.

Expression for Electro-

dynamics

Translational

gauge theory

Conservation law @iJ i ¼ 0 @iT �
i � 0

Inhomogeneous field equations @jH ij ¼ J i @jH ij
� �T �

i

Force density fi ¼ FijJ j fi � Cij
�T �

j

Homogeneous field equations @½iFjk� ¼ 0 @½iCjk�
� ¼ 0

Potentials Fij ¼ 2@½iAj� Cij
� ¼ 2@½iej�

�
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gravity are gravitationally ‘‘charged,’’ that is, all fields
carry energy-momentum.

The analog of Eq. (3), the local, linear, and isotropic
constitutive law in GRk is [5,8]

H ij
� ¼� e

�

�
1

2
Cij

� � C�
½ij� þ 2e½i�Cj��

�

�
; (10)

where e :¼ detðei�Þ. Here � ¼ 8�G, where G is Newton’s
constant of gravitation. If Eq. (10) is substituted into the
inhomogeneous field equations (7), the resulting equations
have been shown to be equivalent to the Einstein equations
[8]. Taking the electromagnetic case (6) as a prototype, we
tentatively expect that a suitable nonlocal generalization of
the constitutive relation (10) would lead to a nonlocal
generalization of Einstein’s theory of gravitation. It is
interesting to contemplate the nature of this analogy, which
is the basis of the present paper. The linear and possibly
nonlocal electrodynamic constitutive law is generally valid
for sufficiently weak electromagnetic fields, since the con-
stitutive tensor is assumed to be independent of the field
strength. Therefore, we expect that the same holds in the
linear approximation for the nonlocal theory of gravitation
that we develop below on the basis of this analogy.

Finally, we must mention that this approach to nonlocal
gravitation is essentially different from other nonlocal
modifications of general relativity; see, for example,
[25,26], and the references cited therein.

II. ANSATZ FOR A NONLOCAL THEORY OF
GRAVITY

The arena for teleparallelism is the Weitzenböck space-
time in which we have the orthonormal tetrad (coframe)
#� ¼ ei

�dxi. Then the local (anholonomic) metric is
��� ¼ diagð1;�1;�1;�1Þ and we can determine the

(holonomic) coordinate components of the metric by

gij ¼ ���ei
�ej

�: (11)

Simple algebra yields e :¼ detðei�Þ ¼ ffiffiffiffiffiffiffi�g
p

.

If a coframe is a coordinate frame, then the object of
anholonomity

C� :¼ d#� (12)

vanishes; in general, C� is a 2-form which decomposes
according to C� ¼ 1

2Cij
�dxi ^ dxj such that Eq. (12) in

components results in Eq. (9).
The connection 1-form ��� ¼ ���� ¼ �i

��dxi in a
Weitzenböck spacetime is teleparallel. That is, we can
introduce a suitable global Cartesian tetrad frame with
respect to which the connection vanishes

��� ¼� 0: (13)

Throughout the rest of our paper we will work in a global
frame that obeys Eq. (13). Then all covariant derivatives
reduce to partial derivatives and we can simplify our work

considerably. In particular, the torsion of the Weitzenböck
spacetime becomes

T� :¼ D#� ¼ d#� þ ��
� ^ #� ¼� d#� ¼ C�; (14)

or, equivalently,

Tij
� ¼ 2D½iej�

� ¼ 2@½iej�
� � 2�½ij�

kek
� ¼� 2@½iej�

�

¼ Cij
�: (15)

Accordingly, the gravitational field strength, in the special
‘‘gauge’’ (13), is represented by the object of anholonomity
C�. This concludes the geometrical setup of aWeitzenböck
spacetime and we will henceforth drop the star over the
equal sign.
We now turn to physics in GRk, which is determined via

the variation of the action �S ¼ 0, where

S ¼
Z
ðLg þLmÞd4x: (16)

Here Lg and Lm are, respectively, the gravitational and

matter Lagrangian densities. Out of the field strength C�,
we can construct a gravitational LagrangianLg that is—in

analogy with electrodynamics—quadratic in the field
strength. The explicit form of Lg can be left open for the

moment. However, we can introduce quite generally the
components of the excitationH ij

� that are related to those
of the field strength by

H ij
� :¼ �2

@Lg

@Cij
� : (17)

In terms of differential forms we have H� ¼ 1
2Hij�dx

i ^
dxj, with H ij

� ¼ 1
2 	

ijklHkl�, where 	ijkl is the totally

antisymmetric Levi-Civita symbol with 	0123 ¼ 1.
Because of the presumed quadratic nature of Lg and the

Euler theorem on homogeneous functions, we find

L g ¼ 1

2
Cij

�
@Lg

@Cij
� ¼ � 1

4
H ij

�Cij
�; (18)

which expresses the gravitational Lagrangian in terms of
the excitation H ij

� and the field strength Cij
� such that

H ij
� is linear in Cij

�.

The field equations of GRk given in Eq. (7) follow from

the variational principle of stationary action (16) with
T �

i :¼ �Lm=�ei
� as the source. We note that, in linear

approximation, the gravitational energy-momentum com-
plex (8) will vanish and only the first term of the left-hand
side of the inhomogeneous part of Eqs. (7) will survive.
Having thus established the geometry and the Lagrange-

Noether machinery for the teleparallel theory of gravita-
tion, we turn next to the explicit choice of the gravitational
Lagrangian. General relativity is recovered via Eq. (10),
which may be written as
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H ij
� ¼

�
e

�
gk½igj�l���

�
Ckl

�; (19)

with the modified field strength

C ij
� :¼ 1

2
Cij

� � C�
½ij� þ 2e½i

�Cj��
�: (20)

In particular, along the same line of thought as in [6], we
wish to consider a nonlocal constitutive law for gravitation.
To prepare the ground, let us introduce the invariant proper
infinitesimal distance ds between two neighboring events
in Weitzenböck spacetime

ds2 ¼ gijdx
i � dxj (21)

and define a geodesic between two fixed events P0 and P to
be the path that is an extremum of the spacetime distance
between P0 and P,

�
Z P

P0
ds ¼ 0: (22)

This path is given by the geodesic equations

d2xi

ds2
þ f i

jk
g dx

j

ds

dxk

ds
¼ 0; (23)

where

f i
jk

g ¼ 1

2
gilðglj;k þ glk;j � gjk;lÞ (24)

are the Christoffel symbols.
We assume that two causally separated events are con-

nected by a unique timelike or null geodesic; more gen-
erally, in the spacetime region under consideration, there
exists a unique geodesic joining every pair of events. It
then proves useful to employ the world function �, which
denotes half the square of the proper distance from P0:x0 ¼

ð�0Þ to P:x ¼ 
ð�1Þ along the geodesic path xi ¼ 
ið�Þ.
That is, we define [27]

�ðx; x0Þ ¼ 1

2
ð�1 � �0Þ

Z �1

�0

gij
d
i

d�

d
j

d�
d�: (25)

It turns out that� is independent of the affine parameter � ;
moreover, the integrand in Eq. (25) is constant by Eq. (23).
The main properties of �ðx; x0Þ are summarized in
Appendix B.

To distinguish coordinate indices that refer to x from
those that refer to x0, we henceforth use indices a; b; c; . . .
at x and i; j; k; . . . at x0. Thus we define

�aðx; x0Þ ¼ @�

@xa
; �iðx; x0Þ ¼ @�

@x0i
; (26)

and note that covariant derivatives at x and x0 commute for
any bitensor. It follows from the results of Appendix B that

2� ¼ gab�a�b ¼ gij�i�j: (27)

Differentiating this equation, we find that �aiðx; x0Þ ¼

�iaðx; x0Þ are smooth dimensionless two-point tensors
such that

lim
x0!x

�aiðx; x0Þ ¼ �gaiðxÞ: (28)

Thus a possible nonlocal generalization of Eq. (19) is given
by

H ab
cðxÞ ¼ � 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q Z
Uðx; x0Þ�ai�bj�ck�ðx; x0Þ

� Cij
kðx0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx0Þ

q
d4x0; (29)

where Uðx; x0Þ is unity except when x0 is in the future of x,
in which case U vanishes; in Minkowski spacetime, this
means that events with x00 > x0 are excluded from the
domain of integration in Eq. (29). Moreover, �ðx; x0Þ is a
scalar given, for instance, by

�ðx; x0Þ ¼ �ðx� x0Þ þ K̂ðx; x0Þ; (30)

where the Dirac delta function �ðx� x0Þ is defined via

Z
�ðx� x0Þ’ðx0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx0Þ

q
d4x0 ¼ ’ðxÞ (31)

for any smooth function ’ðxÞ. The scalar kernel K̂ðx; x0Þ in
Eq. (30) denotes the nonlocal deviation from a local con-
stitutive law. The main nonlocal constitutive relation (29)
can therefore be expressed as

H ab
cðxÞ ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q �
Cab

cðxÞ �
Z

Uðx; x0Þ�ai�bj�ck

� K̂ðx; x0ÞCij
kðx0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx0Þ

q
d4x0

�
; (32)

where the nonlocal deviation from general relativity is
made explicit. More complicated nonlocal constitutive
relations are certainly possible; however, Eq. (32) is the

simplest one involving an unknown scalar kernel K̂.
We emphasize that the domain of applicability of

Eq. (32) is not physically restricted; in particular, a non-
local gravity theory of this type is not directly related to
nonlocal special relativity [1]. That is, if the whole heu-
ristic machinery of Einstein’s principle of equivalence
could be employed in this case, one would have to con-
clude—on the basis of nonlocal special relativity—that
gravity should be nonlocal for sufficiently high gravita-
tional ‘‘accelerations.’’ However, Einstein’s principle of
equivalence cannot be used in this way, as its precise
formulation in GR is the very embodiment of locality.
Thus nonlocal gravity is in this sense decoupled from
nonlocal special relativity.
It is important to note that our ansatz (32) is nonlinear as

well as nonlocal, since, among other things, the metric
tensor (11) is quadratic in the gravitational potentials ei

�.

The scalar kernel K̂ðx; x0Þ could be given, for instance, by

K̂�1 ¼ �2 þ L4
0, where L0 is a constant characteristic

length. It could also involve the Weitzenböck invariants [8]
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CijkC
ijk; CkjiC

ijk; Cij
jCik

k (33)

at x and x0 as well as scalars formed from the covariant
derivatives of �ðx; x0Þ. To illustrate the latter, consider, for
example, �a and �i in Eq. (26). The vector �a is tangent
at x to the geodesic connecting x0 to x and the length of�a

is equal to that of this geodesic by Eq. (27); in Minkowski
spacetime,�a ¼ xa � x0a. Similarly, the vector�i has the
same length, is tangent to the geodesic at x0, and is directed
away from x; in Minkowski spacetime, �i ¼ x0i � xi.
Hence one can form coordinate scalars �aea

�ðxÞ and
�iei

�ðx0Þ, which turn out to be of particular significance
in Sec. V. This brief discussion indicates that many options

indeed exist for generating a scalar kernel K̂ðx; x0Þ in our
ansatz (32).

In the following section, the nonlocal theory of gravity is
treated in the linear approximation; therefore, Eq. (32) will
be employed in linearized form. In particular,

Uðx; x0ÞK̂ðx; x0Þ will be evaluated in Minkowski spacetime,
since Weitzenböck spacetime in the special gauge (13)
reduces to Minkowski spacetime when the gravitational
potentials ei

� reduce to ��
i . In this limit, we define

Kðx; x0Þ ¼ Uðx; x0ÞK̂ðx; x0Þ: (34)

III. GRAVITATIONAL FIELD EQUATIONS IN
LINEAR APPROXIMATION

The gravitational field equations are obtained from the
variation of the action,

R
Ld4x, whereL is the Lagrangian

density given by the sum of the corresponding quantities
for gravitationLg and matterLm, namely,L ¼ Lg þLm,

such that

�Lm

�ei
� ¼ ffiffiffiffiffiffiffi�g

p
T�

i: (35)

Here T�
i is the energy-momentum tensor of matter, so thatffiffiffiffiffiffiffi�g

p
T�

i ¼ T �
i given in Eq. (7). The gravitational partLg

is given by Eq. (18) in analogy with electrodynamics [7].
For the nonlocal theory under consideration, H ij

� is now
given by Eq. (32); however, to simplify matters, we will
work in the linear approximation. That is, we assume that

ei� ¼ �i
� � c i

�; (36)

where the nonzero components of c i
� are such that

jc i
�j � 1. In this approximation, the holonomic coordi-

nate indices and the anholonomic tetrad indices are indis-
tinguishable. It then follows from Eq. (32) and Appendix B
that

L g ¼ � 1

4�
Cij

kðxÞCij
kðxÞ � 1

4�
Cij

kðxÞ

�
Z

Kðx; yÞCij
kðyÞd4y; (37)

where K is the scalar kernel in the weak-field approxima-

tion. A discussion of action principles in nonlocal field
theories is contained in Edelen [28]. The expressions for
Cij

k and Cij
k in terms of c i

j can be easily determined. We

find from Eq. (36) that

ei
� ¼ ��

i þ c �
i; (38)

so that from (9),

Cij
k ¼ 2c k

½j;i�: (39)

Moreover,

gij ¼ �ij þ hij; hij ¼ 2c ðijÞ: (40)

It follows from (20) that

Cij
k ¼ � 1

2
ðh i j

k ; � h j i
k ; Þ þ c ½ij�

;k þ �i
kðc ;

j � c j l
l ; Þ

� �j
kðc ;

i � c i l
l ; Þ; (41)

where c ¼ �ijc
ij.

Let us first examine the local part of the Lagrangian (37).
It follows from

�LgðlocalÞ ¼ � 1

4�
Cij

kð�Cij
kÞ � 1

4�
ð�Cij

kÞCij
k (42)

that the first term in Eq. (42) is in effect given by

� 1

2�
Cij

k;jð�c k
iÞ (43)

via Eq. (39) and integration by parts, assuming that �c k
i

vanishes on the boundary, and hence neglecting such
boundary terms in Eq. (43). Applying this same procedure
to the second term in Eq. (42), we find after a detailed
calculation that the result is again given by

� 1

2�
Cij

k;jð�c k
iÞ; (44)

so that in the absence of the nonlocal term (K ¼ 0) the
variation of the action can be expressed in the linear
approximation as

Z �
� 1

�
Cij

k;j þ Tk
i

�
ð�c k

iÞd4x ¼ 0: (45)

Thus for K ¼ 0, the gravitational field equations are
@jC

ij
k ¼ �Tk

i; moreover, we prove in Appendix C that

these are precisely Einstein’s field equations according to
the standard general linear approximation scheme. A gen-
eral proof, valid in the nonlinear regime, is already con-
tained in [8]. We note that @iTk

i ¼ 0 is implied by the field

equations.
We now turn to the nonlocal part of the Lagrangian. In

this case, the corresponding two terms in the variation of
the gravitational action are
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�LgðnonlocalÞ ¼ � 1

4�
½�Cij

kðxÞ�
Z

Kðx; yÞCij
kðyÞd4y

� 1

4�
Cij

kðxÞ
Z

Kðx; yÞ½�Cij
kðyÞ�d4y:

(46)

As before, the first term in Eq. (46) is easily shown to lead
to

� 1

2�
½�c k

iðxÞ�
Z @Kðx; yÞ

@xj
Cij

kðyÞd4y: (47)

For the second term in Eq. (46), we can write its contribu-
tion to the variation of the total action as

� 1

4�

ZZ
Kðx; yÞCij

kðxÞ½�Cij
kðyÞ�d4yd4x: (48)

The domains of integration in the double integral are the
same; therefore, it is possible to switch x and y in Eq. (48)
to get

� 1

4�

ZZ
Kðy; xÞCij

kðyÞ½�Cij
kðxÞ�d4yd4x: (49)

Hence the second term in the nonlocal part of the
Lagrangian is equivalent to

� 1

4�
½�Cij

kðxÞ�
Z

Kðy; xÞCij
kðyÞd4y: (50)

Now applying to Eq. (50) the same procedure we used in
the derivation of Eq. (44), we find after a detailed calcu-
lation that the result is

� 1

2�
½�c k

iðxÞ�
Z @Kðy; xÞ

@xj
Cij

kðyÞd4y: (51)

Let us define the symmetric kernel �K by

�Kðx; yÞ ¼ 1

2
½Kðx; yÞ þ Kðy; xÞ�: (52)

Then, combining Eqs. (47) and (51), we find

�LgðnonlocalÞ ¼ � 1

�
½�c k

iðxÞ�
Z @ �Kðx; yÞ

@xj
Cij

kðyÞd4y:
(53)

This means that the field equations of the nonlocal theory
in the linear approximation are given by

@jC
ij
k þ

Z @ �Kðx; yÞ
@xj

Cij
kðyÞd4y ¼ �Tk

i: (54)

We note that @iTk
i ¼ 0 is still identically satisfied in the

nonlocal theory. For a general symmetric kernel �K, the
energy-momentum tensor Tij is not symmetric in general,

since the nonlocal part in Eq. (54) is not in general sym-
metric. This poses no basic difficulty as Tij, given in

general by Eq. (35), is not symmetric in general. On the
other hand, the requirement that Tij be symmetric (as in

GR, for instance) would impose restrictions on the kernel
�K.
A natural interpretation of the basic nonlocal gravita-

tional field equations (54) can be obtained by considering
the nonlocal term to be an effective source for dark matter
and hence moving it to the right-hand side of Eq. (54). In
this way, one can recover Einstein’s theory but with dark
matter. We explore this possibility in the rest of this paper.
Consider, for instance, the possibility that �K is an even

function of x� y; that is,

�Kðx; yÞ ¼ Fðx� yÞ; (55)

where FðzÞ ¼ Fð�zÞ. Then, @ �K=@xj ¼ �@ �K=@yj and Eq.
(54) can be written as

@jC
ij
kðxÞ þ

Z
�Kðx; yÞ@C

ij
kðyÞ

@yj
d4y ¼ �Tk

i; (56)

which implies, via Appendix C, that Tki ¼ Tik. Here we
have assumed that the derivatives of c k

i vanish on the
boundary of the spacetime region under consideration.

IV. NONLOCAL FIELD EQUATIONS

The treatment of the previous section has been based on
the assumption that nonlocal gravitational field equations
should be obtained from an action principle that incorpo-
rates the nonlocal constitutive relation (32). Alternatively,
this relation could be employed in the field equations of
teleparallelism. The purpose of this section is to address
certain subtleties involved in these possibilities.

A. The ‘‘general’’ field equations of teleparallelism

In electrodynamics the Maxwell equations in (1) can be
derived from electric charge and magnetic flux conserva-
tion; see [7]. No action principle is necessary. If one
considers, for example, local and linear magnetoelectric
matter, the constitutive law is H ij ¼ 1

2�
ijklFkl, with a

constitutive tensor density �ijkl ¼ ��jikl ¼ ��ijlk that
has 36 independent components. This model can be de-
rived from a Lagrangian, provided the constitutive tensor
obeys additionally the Onsager-type relation �ijkl ¼ �klij;
that is, if 15 of its 36 components vanish. Nevertheless,
even if this condition is not fulfilled, one can still find
reasonable applications in physics, though in this case
irreversible processes have to be taken into account.
The situation is similar for the energy-momentum tensor

density of the electromagnetic field. Starting from the
Lorentz force density, substitution of the inhomogeneous
Maxwell equations and partial integration result in the
(canonical) Minkowski energy-momentum tensor density

T i
j ¼ � 1

4
�j
iFklH kl þ FikH jk: (57)

Apparently no Lagrangian is necessary for the derivation
of this expression [7,29].
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The gravitational field equations of the translational
gauge theory, as formulated in Eq. (7), should also have
general validity within this framework, independently of
the existence of the Lagrangian. For the homogeneous
equations (7) this is apparent since they represent just the
first Bianchi identities in a Weitzenböck spacetime. For the
inhomogeneous equations (7) this can be seen as follows:
We start with the energy-momentum conservation law for
matter in the linear approximation @iT �

i � 0. We can

‘‘solve’’ it by T �
i ¼ @j

~H ij
� � ~E�

i and ~H ij
� ¼

� ~H ji
�, with some unknown correction term ~E�

i. These
are already the inhomogeneous field equations. We just

have to determine ~E�
i explicitly. Clearly it adds to T �

i,

namely, @j
~H ij

� ¼ T �
i þ ~E�

i; then, it is natural to inter-

pret ~E�
i as the energy-momentum tensor density of the

gravitational field. In analogy with Eq. (57) we expect it to

have the form of Eq. (8); we now drop the tildes from ~E�
i

and ~H ij
�. Therefore the inhomogeneous field equations

extracted from the energy-momentum conservation law of
matter in this heuristic manner have exactly the same form
as (7) with (8). Thus we may postulate (7) as the general
field equations valid independently of the existence of a
Lagrangian.

By contrast, if we have a Lagrangian, the field equations
turn out to be [8]

@jH ij
� � ðei�Lg þ C�k

�H ik
�Þ ¼ T �

i: (58)

If Lg ¼ � 1
4Cij

�H ij
� is substituted into (58), we recover

the inhomogeneous part of (7). Consequently, we have
shown that the general field equations (7) with (8) are
correct if a Lagrangian exists. Accordingly, they are cer-
tainly one consistent and reasonable generalization of the
Lagrangian-based equations (58).

B. Ambiguity in the field equations

We now wish to address a certain ambiguity that is
encountered in implementing a nonlocal constitutive law
as in our present work. A local constitutive law relating the
excitation H ij

k to the gravitational field strength Cij
k can

be used in the derivation of the field equations of the theory
in either of two equivalent ways: it could be employed in
the Lagrangian (18) that then results, via the variational
principle of stationary action, in the desired field equations
or, alternatively, it could be directly substituted in the field
equations (7). These two methods in general produce dif-
ferent results for a nonlocal constitutive law, however. It is
interesting to illustrate this point for the case at hand in the
linear approximation. In this regime, we have the linear
constitutive law

�H ij
�ðxÞ ¼ Cij

�ðxÞ þ
Z

Kðx; yÞCij
�ðyÞd4y; (59)

which, when inserted in Eq. (18) results, as described in
detail in Sec. III, in the nonlocal field equations (54).

Alternatively, however, we can equally well substitute the
constitutive relation (59) in Eq. (7), which reduces in the
linear regime to the new nonlocal field equations

@jC
ij
k þ

Z @Kðx; yÞ
@xj

Cij
kðyÞd4y ¼ �Tk

i: (60)

The two nonlocal field equations only differ in their ker-
nels: Eq. (54) involves �K, while Eq. (60) involves K. The
question of whether such nonlocal equations as (60) can be
derived from a variational principle is beyond the scope of
our investigation; for a related study in connection with
acceleration-induced nonlocality see [30].
In a similar way as in Sec. III, one can recover a direct

nonlocal generalization of Einstein’s theory with a sym-
metric energy-momentum tensor of matter by assuming
that Kðx; yÞ is a function of x� y. In this case, Eq. (60) can
be written as

@jC
ij
kðxÞ þ

Z
Kðx; yÞ@C

ij
kðyÞ

@yj
d4y ¼ �Tk

i; (61)

which should be compared and contrasted with Eq. (56).
These inequivalent nonlocal field equations both admit a
natural interpretation in terms of dark matter as described
in detail in the following section; however, Eq. (61) has an
advantage over Eq. (56) in that it involves a causal kernel
K, while in the symmetric kernel �K of Eq. (56) past and
future are treated in the same manner.

V. DARK MATTER

Let us now consider an important consequence of our
nonlocal equations for the gravitational field. To keep our
discussion general, we start with an equation that has the
same form as Eqs. (54) and (60), except for a kernel K,
which we take to be equal to �K or K, respectively, depend-
ing on whether one adopts the Lagrangian-based approach
of Sec. III or the more direct approach of Sec. IV. We
henceforth assume, for simplicity, that in the former case
�Kðx; yÞ is an even function of x� y and in the latter case
Kðx; yÞ is simply a function of x� y. Then, the arguments
of the previous sections imply that the nonlocal modifica-
tion of Einstein’s gravitational field equations for a sym-
metric energy-momentum tensor Tij may be expressed as

GijðxÞ þ
Z

Kðx; yÞGijðyÞd4y ¼ �TijðxÞ; (62)

where Gij is given by

Gi
j ¼ @kC

ik
j (63)

and represents Einstein’s tensor in the linear
approximation.
The nonlocal term in Eq. (62) can be interpreted in terms

of an effective energy-momentum tensor for dark matter by
writing Eq. (62) as
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GijðxÞ ¼ �½TijðxÞ þTijðxÞ�; (64)

where the dark-matter component is given by the symmet-
ric energy-momentum tensor

T ijðxÞ ¼ � 1

�

Z
Kðx; yÞGijðyÞd4y: (65)

Equation (65) may be written in a more transparent form
by making use of the methods of Appendix D. That is,
suppose that the integral equation (62) can be solved by the
method of successive substitutions (cf. Appendix D) and
that the resulting infinite series is uniformly convergent.
Then, as shown in Appendix D, it is possible to introduce a
reciprocal scalar kernel R such that

GijðxÞ ¼ �TijðxÞ þ �
Z

Rðx; yÞTijðyÞd4y: (66)

Thus the dark-matter component in Eq. (64) is given by

T ijðxÞ ¼
Z

Rðx; yÞTijðyÞd4y; (67)

which is the integral transform of matter Tij by the kernel

Rðx; yÞ. It is clear from Eq. (67) that in our model, dark
matter should be quite similar in its characteristics to actual
matter; for instance, for dust, the corresponding dark mat-
ter is pressure-free, while for radiation with Tk

k ¼ 0, the
‘‘dark’’ energy-momentum tensor Tij is traceless as well.

The reciprocal kernel R is given as an infinite series in
terms of iterated kernels constructed from Kðx; yÞ; that is,

�Rðx; yÞ ¼ X1
n¼1

Knðx; yÞ: (68)

To ensure causality, it is useful to assume further that

K ðx; yÞ ¼ �ðx0 � y0ÞPðx; yÞ; (69)

where P is a function of x� y. Then, all iterated kernels as
well as the reciprocal kernel are also of this general form;
indeed,

K nðx; yÞ ¼ �ðx0 � y0ÞPnðx; yÞ; (70)

where P1ðx; yÞ ¼ Pðx; yÞ and

Pnþ1ðx; yÞ ¼ �
Z

Pðx; zÞPnðz; yÞd3z: (71)

Therefore,

R ðx; yÞ ¼ �ðx0 � y0ÞQðx; yÞ; (72)

where Q is reciprocal to P,

�Qðx; yÞ ¼ X1
n¼1

Pnðx; yÞ: (73)

Moreover, Pn and Q are functions of x� y, since the
integration in Eq. (71) extends over the entire three-
dimensional Euclidean space. Thus dark matter is the

convolution of matter and the reciprocal kernel in this
case. The mathematical implications of this fact are treated
in Appendix E.
It is interesting to consider the confrontation of our

nonlocal theory in the linear approximation, represented
by Eqs. (62)–(67), with experimental data. Let us first
determine the Newtonian limit of our nonlocal gravity.
This follows directly from Eq. (64) in the standard manner
and we find the Poisson equation

r2� ¼ 4�Gð�þ �DÞ; (74)

where � is the Newtonian potential. Here � is the density
of matter and �D,

�Dðt;xÞ ¼
Z

Qðx; yÞ�ðt; yÞd3y; (75)

is the corresponding density of dark matter. We note that in
the general linear approximation of our theory the kernel
Kðx; yÞ and its reciprocal Rðx; yÞ are given functions in
Minkowski spacetime and are thus independent of any
particular physical system. The solar-system tests of gen-
eral relativity imply that our dark matter must be a rather
small fraction of the actual matter in the Solar System. This
can be simply arranged with a suitable choice of the
universal reciprocal kernel Q.
It is interesting to illustrate these considerations in the

case of the problem of dark matter in spiral galaxies [31–
37]. Imagine, for instance, the circular motion of stars in
the disk of a spiral galaxy. Beyond the galactic bulge, the
Newtonian acceleration of gravity for each star at radius
jxj is given by v2

0=jxj toward the center of the galaxy. Here
v0 is the constant ‘‘asymptotic’’ speed of stars in accor-
dance with the observed rotation curves of spiral galaxies.
It follows from Poisson’s equation that the effective density
of dark matter is essentially given by v2

0=ð4�Gjxj2Þ.
Comparing this result with Eq. (75) and setting

�ðt; yÞ ¼ M�ðyÞ; �Dðt;xÞ ¼ v2
0

4�Gjxj2 ; (76)

where M is the effective mass of the galaxy and the
dimensions of the galactic bulge have been ignored, we
find

Qðx; 0Þ ¼ v2
0

4�GMjxj2 : (77)

The reciprocal kernelQ is a function of x� y; therefore, it
follows from Eq. (77) that

Qðx; yÞ ¼ 1

4�

1

jx� yj2 (78)

with a universal length parameter  ¼ GM=v2
0. Thus tak-

ing due account of the observed rotation curves of spiral
galaxies, Eqs. (74) and (75) with kernel (78) imply
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r2� ¼ 4�G

�
�ðt;xÞ þ 1

4�

Z �ðt; yÞd3y
jx� yj2

�
: (79)

It is important to point out in passing a defect of the
specific form of Eq. (78): the total amount of dark matter
associated with a nonzero matter density � is infinite (see
Appendix E); therefore, kernel (78) is too simple to be
quite adequate for the task at hand.

For a point mass m with �ðt;xÞ ¼ m�ðxÞ, the
Newtonian potential given by Eq. (79) can be expressed as

�ðt;xÞ ¼ �Gm

jxj þ
Gm


ln

�jxj


�
: (80)

The observational data for spiral galaxies indicate that  is
of the order of a kpc, so that the logarithmic term in
Eq. (80) is essentially negligible in the Solar System.
Moreover, the universality of the kernel in the linear ap-
proximation implies, via  ¼ GM=v2

0, that for spiral gal-

axies M / v2
0, since  should be independent of any

particular physical system.
It is remarkable that in the simple considerations regard-

ing Eqs. (79) and (80)—based on our linear approximation
scheme—we have recovered the significant proposal put
forward by Tohline and further developed by Kuhn et al.
[38,39] to solve the dark-matter problem by a natural
modification of the Newtonian law of gravitation. An
interesting discussion of the Tohline-Kuhn scheme is con-
tained in the review paper of Bekenstein [39]. Despite
various successes, the main drawback of this approach
appears to be the violation of the Tully-Fisher relation,
which implies that M / v4

0 [38,39]. To agree with the

empirical Tully-Fisher law, it seems necessary to go be-
yond the linear approximation scheme.

Within the general framework of this work, but going
beyond the linear approximation as well as the specific
constitutive model employed thus far, it may be possible in
principle to have a relation of the general form of Eq. (67)
with a kernel that is highly dependent upon the particular
system under consideration. This could provide a natural
way to interpret the observational evidence for dark matter
as the nonlocal manifestation of the gravitational interac-
tion. It remains to elucidate the physical origin of the
constitutive kernel that has been the starting point of our
investigation.

VI. CONCLUSION

To develop a nonlocal generalization of GR, it proves
useful to approach Einstein’s theory via its equivalent
within teleparallelism gravity, namely, GRk. Therefore,

we work in Weitzenböck spacetime with a tetrad field
ei

� and its dual ej�, a metric gij, and a flat connection

�i
�� ¼ ��i

�� that is chosen to vanish globally (�i
�� ¼

0). The gravitational field strength is given by Cij
� and the

modified field strength byCij
�. In this framework, which is

capable of nonlocal generalization, GRk corresponds to a

specific gravitational Lagrangian. Working with a nonlocal
‘‘constitutive’’ kernel Kðx; x0Þ in the linear approximation,
we construct an explicit nonlocal generalization of
Einstein’s theory of gravitation that is consistent with
causality. This theory can be reformulated as linearized
general relativity but with dark matter, which mimics the
contribution of nonlocal gravity. We find that the effective
energy-momentum tensor of dark matter is simply the
integral transform of the energy-momentum tensor of
matter.
The application of our nonlocal model in the linear

approximation to the dark-matter problem in spiral gal-
axies is in conflict with the empirical Tully-Fisher relation.
It is possible that the situation can be significantly im-
proved with a suitable choice for the kernel in the nonlinear
regime. However, a more basic theory is needed to deter-
mine the nonlocal constitutive kernel from first principles.
This is a task for the future.
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APPENDIX A: TRANSLATIONAL GAUGE
THEORY IN EXTERIOR CALCULUS

The coframe 1-form #� ¼ ei
�dxi represents the gravi-

tational potential; here i; j; . . . ¼ 0; 1; 2; 3 are (holonomic)

coordinate indices and �;�; . . . ¼ 0̂; 1̂; 2̂; 3̂ are (anholo-
nomic) frame indices. The frame e� ¼ ej�@j is dual to

the coframe, that is, ei
�ei� ¼ ��

� and ei
�ej� ¼ �j

i . The

field strength of gravitation is the object of anholonomity
2-form C� :¼ d#�.
Spacetime is described by a Weitzenböck geometry with

a teleparallel connection 1-form ��
� ¼ �i�

�dxi and with
the curvature 2-form

R�
� :¼ d��

� � ��
� ^ ��

� ¼ 1

2
Rij�

�dxi ^ dxj (A1)

that vanishes

R�
� ¼ 0: (A2)

We decompose the connection into a Riemannian (Levi-
Civita) part and the contortion,

��
� ¼ ~��

� � K�
�; (A3)

with the following definitions of the torsion 2-form and the
contortion 1-form, respectively,

T� :¼ D#� ¼ d#� þ ��
� ^ #�; T� ¼: K�

� ^ #�:

(A4)
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As in a Euclidean space, one can likewise choose in a
Weitzenböck space suitable frames such that the connec-
tion vanishes everywhere:

��
� ¼ �i�

�dxi ¼� 0: (A5)

Equation (A5) should be understood as a choice of a
certain gauge, which is possible since the curvature R�

�

vanishes everywhere. Many calculations are simplified in
this gauge.

The Lagrangian 4-form is the sum of a gravitational part
and a matter part

L ¼ Lgð#�; CaÞ þ Lmðc ; dc ; #aÞ: (A6)

The field equation reads

dH� � E� ¼ �Lm

�#� ¼ ��: (A7)

Here we have the 2-form H� :¼ �@Lg=@C
� ¼

1
2Hij�dx

i ^ dxj as the excitation and the 3-form �� as

the energy-momentum density of matter, whereas the 3-
form E� represents the energy-momentum density of the
gravitational field [10]

E� :¼ e�cLg þ ðe�cC�Þ ^H�: (A8)

Equations (A7) with (A8) represent the Lagrangian-
based form of the field equations. If we express the gravi-
tational energy-momentum 3-form E� in terms of a
Minkowski type current [or, equivalently, if we substitute
Lg ¼ � 1

2C
� ^H � into Eq. (A8)], we find the general

field equations

dH� � 1

2
½H� ^ ðe�cC�Þ � C� ^ ðe�cH�Þ�¼� ��: (A9)

This is the exterior-form version of the inhomogeneous
field equations (7) with Eq. (8).

UsuallyH� is, like in electrodynamics, linear in the field
strength

H� ¼ g��
�

?ða1ð1ÞC� þ a2
ð2ÞC� þ a3

ð3ÞC�Þ: (A10)

Here ðIÞC� are the different irreducible pieces of C� and ?
represents the Hodge star. The ‘‘Einsteinian’’ choice for
ðIÞC�, I ¼ 1, 2, 3, turns out to be

a1 ¼ �1; a2 ¼ 2; a3 ¼ 1

2
: (A11)

In this case, Eq. (A10) is distinguished from all linear
Lagrangians in that it becomes locally Lorentz covariant.

APPENDIX B: PROPERTIES OF THE WORLD
FUNCTION �

Consider a variation of Eq. (25) that changes the end-
points, then

��ðx; x0Þ ¼ ð�1 � �0Þ
�
gij

d
j

d�
�
i

�
�1

�0

: (B1)

On the other hand,

�� ¼ @�

@xa
�xa þ @�

@x0i
�x0i; (B2)

so that

@�

@xa
¼ ð�1 � �0ÞgabðxÞdx

b

d�
;

@�

@x0i
¼ �ð�1 � �0Þgijðx0Þ dx

0j

d�
:

(B3)

It is possible to see from Eq. (23) that the integrand in
Eq. (25) is indeed constant; therefore,

�ðx; x0Þ ¼ 1

2
ð�1 � �0Þ2gabðxÞdx

a

d�

dxb

d�

¼ 1

2
ð�1 � �0Þ2gijðx0Þ dx

0i

d�

dx0j

d�
: (B4)

It follows from Eqs. (B3) and (B4) that Eq. (27) is satisfied;
moreover, � ¼ 0 for a null geodesic, � ¼ 1

2 �
2 for a time-

like geodesic of length � and � ¼ � 1
2�

2 for a spacelike

geodesic of length �.
In Minkowski spacetime � is given by

�ðx; x0Þ ¼ 1

2
�ijðx0i � xiÞðx0j � xjÞ: (B5)

According to our convention, �ij ¼ diagð1;�1;�1;�1Þ;
hence,

�ðx; x0Þ ¼ 1

2
½ðt0 � tÞ2 � ðx0 � xÞ2�: (B6)

In this case, we find that

�ai ¼ @2�ðx; x0Þ
@xa@x0i

¼ ��ai; (B7)

while

�ab ¼ @2�

@xa@xb
¼ �ab; �ij ¼ @2�

@x0i@x0j
¼ �ij: (B8)

APPENDIX C: SYMMETRY OF THE TENSOR
@jCi

j
k

The purpose of this appendix is to show that @jCi
j
k is a

symmetric tensor, so that in the field equations

@jC
ij
k ¼ �Tk

i (C1)

the energy-momentum tensor of the source is symmetric
(Tik ¼ Tki). In fact Eq. (C1) is identical to Einstein’s field
equations in the linear approximation.
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It follows from Eq. (41) that

@jC
ij
k ¼ � 1

2
ðhhk

i � hkj;
ijÞ þ 1

2
hij;kj �

1

2
�i
kh

jl
;jl

þ �i
khc � c ;

i
k; (C2)

where we have used the relation 2c jl
;jl ¼ hjl;jl. Define the

trace-reversed gravitational potentials �hik as

�h ik ¼ hik � 1

2
�ikh; (C3)

where h ¼ �ijh
ij ¼ 2c . Then, replacing hij by �hij þ

�ijc everywhere in Eq. (C2) results in

@jCi
j
k ¼ � 1

2
h �hki þ 1

2
�hk

j
;ij þ

1

2
�hi
j
;kj �

1

2
�ki

�hjl;jl;

(C4)

which is manifestly symmetric in i and k. From
Eqs. (C1) and (C4), we get

�h �hik þ �hi
j
;jk þ �hk

j
;ji � �ik

�hjl;jl ¼ 2�Tik: (C5)

These are exactly the same as Einstein’s field equations in
the linear approximation.

APPENDIX D: LIOUVILLE-NEUMANN METHOD
OF SUCCESSIVE SUBSTITUTIONS

Consider a linear integral equation of the second kind
given by

�ðxÞ ¼ fðxÞ þ
Z b

a
kðx; yÞ�ðyÞdy; (D1)

where a and b are constants. We seek a solution of this
Fredholm equation by the method of successive substitu-
tions. That is, we replace � in the integrand by its value
given by Eq. (D1). Repeating this process eventually leads
to an infinite series of the type

�ðxÞ ¼ fðxÞ þ
Z b

a
kðx; yÞfðyÞdy

þ
Z b

a

Z b

a
kðx; zÞkðz; yÞfðyÞdydzþ � � � : (D2)

If this series is uniformly convergent, we have a solution of
the integral equation (D1). This solution is unique in the
space of real continuous functions on the interval ½a; b�; a
generalization of this result to the space of square-
integrable functions is contained in Tricomi [40].

Let us define the iterated kernels kn; n ¼ 1; 2; . . . ; by

k1ðx; yÞ ¼ kðx; yÞ; knþ1ðx; yÞ ¼
Z b

a
kðx; zÞknðz; yÞdz:

(D3)

These functions occur in the infinite series of Eq. (D2). We
define the reciprocal kernel rðx; yÞ such that

� rðx; yÞ ¼ X1
n¼1

knðx; yÞ: (D4)

Then, Eq. (D2) can be written as

fðxÞ ¼ �ðxÞ þ
Z b

a
rðx; yÞfðyÞdy: (D5)

It is clear from Eqs. (D1) and (D5) that the kernels k and r
are reciprocal of each other.
Let us note here some properties of these kernels. It

follows from Eq. (D3) that

knþpðx; yÞ ¼
Z b

a
knðx; zÞkpðz; yÞdz; (D6)

where p ¼ 1; 2; . . . . Using Eqs. (D3) and (D4) we find that

kðx; yÞ þ rðx; yÞ ¼
Z b

a
kðx; zÞrðz; yÞdz

¼
Z b

a
rðx; zÞkðz; yÞdz: (D7)

Moreover, if k is symmetric, kðx; yÞ ¼ kðy; xÞ, then all
iterated kernels as well as rðx; yÞ are likewise symmetric.

APPENDIX E. CONVOLUTION KERNELS

Suppose that the spatial kernels in Sec. V are such that

Pðx; yÞ ¼ pðx� yÞ; Qðx; yÞ ¼ qðx� yÞ: (E1)

The purpose of this appendix is to point out the consequen-
ces of the convolution theorem for a system of density �
such that the density of dark matter �D is a convolution of
� and q. In general, the spatial kernels p and q could
depend on the characteristics of the particular system under
consideration. The main results of interest here are
Eqs. (69)–(75). Let us note that the particular solution of
Poisson’s equation (74) is given by

�ðt;xÞ ¼ �G
Z �ðt; yÞ þ �Dðt; yÞ

jx� yj d3y; (E2)

provided � vanishes sufficiently fast at spatial infinity. It
follows from Eq. (75) that this Newtonian potential can
also be expressed as

�ðt;xÞ ¼ �G
Z

Sðx� yÞ�ðt; yÞd3y; (E3)

where

SðrÞ ¼ 1

jrj þ
Z qðzÞd3z

jr� zj : (E4)

Let us assume that the functions of interest here can be
expressed as Fourier integrals; that is, for a function f,

�fðrÞ ¼
Z

f̂ðkÞeik�rd3k; (E5)

where f̂ðkÞ is given by
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�f̂ðkÞ ¼
Z

fðrÞe�ik�rd3r: (E6)

For the sake of simplicity, we have introduced here a
constant parameter �,

� ¼ ð2�Þ3=2: (E7)

We are interested in Fourier integral transforms of real

functions; therefore, f̂�ðkÞ ¼ f̂ð�kÞ.
It follows from the convolution theorem for Fourier

integrals that Eq. (75) implies

�̂ DðkÞ ¼ ��̂ðkÞq̂ðkÞ: (E8)

Here q̂ðkÞ is a dimensionless function such that

�q̂ð0Þ ¼ MD

M
; (E9)

where M ¼ ��̂ð0Þ is the mass of the system under consid-
eration and MD ¼ ��̂Dð0Þ is the corresponding dark mass.
Consider, for instance, kernel (78) that is associated with
the discussion of the rotation curves of spiral galaxies in
Sec. V; that is,

qðrÞ ¼ 1

4�

1

jrj2 : (E10)

It follows that

q̂ðkÞ ¼ 1

4ð2�Þ1=2
1

jkj : (E11)

Thus for any M> 0, MD ¼ 1.
Once q is determined from Eq. (E8), it is possible to

work out its reciprocal kernel. In fact, it follows from
Eqs. (71) and (73) that p̂1ðkÞ ¼ p̂ðkÞ,

p̂ nþ1ðkÞ ¼ ��p̂ðkÞp̂nðkÞ; (E12)

and

� q̂ðkÞ ¼ X1
n¼1

p̂nðkÞ: (E13)

It is then straightforward to show that

� q̂ðkÞ ¼ p̂ðkÞ
1þ �p̂ðkÞ : (E14)

Therefore,

� p̂ðkÞ ¼ q̂ðkÞ
1þ �q̂ðkÞ : (E15)

These results are consistent with the fact that p and q are
reciprocal of each other.
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