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We study the Hamiltonian formulation of the general first order action of general relativity compatible

with local Lorentz invariance and background independence. The most general simplectic structure

(compatible with diffeomorphism invariance and local Lorentz transformations) is obtained by adding to

the Holst action the Pontriagin, Euler, and Nieh-Yan invariants with independent coupling constants. We

perform a detailed canonical analysis of this general formulation (in the time gauge) exploring the

structure of the phase space in terms of connection variables. We explain the relationship of these

topological terms and the effect of large SUð2Þ gauge transformations in quantum theories of gravity

defined in terms of the Ashtekar-Barbero connection.
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I. INTRODUCTION

The possibility of describing the phase space of gravity
as a background independent SUð2Þ connection gauge
theory is a remarkable property of the first order formula-
tion of general relativity in four dimensions. This is the
basis of the canonical quantization program of gravity
known as loop quantum gravity [1]. After the discovery
of the self-dual connection formulation of canonical gen-
eral relativity by Ashtekar [2], it was soon realized by
Barbero [3] that a formulation in terms of a real SUð2Þ
connection was indeed possible. The only price to be paid
is the appearance of a new free parameter � 2 R� f0g (the
so-called Immirzi parameter [4]) into the definition of the
canonical variables. A first step in clarifying the origin of
the Immirzi parameter was to show [5] that the Ashtekar-
Barbero variables can be obtained directly from the
Hamiltonian formulation of general relativity defined by
the first order action

S½e;!� ¼
Z

?ðeI ^ eJÞ ^ FJIð!Þ þ 1

�
eI ^ eJ ^ FIJð!Þ;

(1)

where e is a vierbein and ! is a Lorentz connection. The
first term is the standard Palatini action of general relativ-
ity, while the second term can be shown not to affect the
classical equations of motion. The reason for this is that
�!S ¼ 0 is independent of �, and implies the connection
to be the uniquely defined torsion free connection compat-
ible with e:! ¼ !ðeÞ. The second term contribution to the
equation �eS ¼ 0 vanishes identically when evaluated on
!ðeÞ due to the Riemann tensor identity R½abc�d ¼ 0.

The canonical formulation of the Holst action leads in
this way to a one parameter family of SUð2Þ connection
formulations of the phase space of general relativity: all of

them related by canonical transformations. However, in the
quantum theory the canonical transformations relating dif-
ferent connection formulations appear not to be unitarily
implemented. For instance the spectra of geometric opera-
tors are modulated by �. Formally speaking, the off-shell
contributions of the second term in the action (1) have a
nontrivial effect on amplitudes in the path integral formu-
lation of quantum gravity.
There is at least another real parameter—describing the

family of possible SUð2Þ connection formulations of grav-
ity—with very similar qualitative effects: the so-called �
parameter. Again, this parameter labels classically equiva-
lent formulations that become physically different upon
quantization. The reason for this is geometrically more
transparent than the case of the Immirzi parameter as the
effects of the � parameter in the quantum theory are
associated to the transformation properties of physical
states under large SUð2Þ gauge transformations [6,7].
Physically, the phenomenon is in strict analogy with the
� parameter effects in QCD.
All this motivates the following questions (we shall

explore in this work): Are there yet more general SUð2Þ
connection formulations of gravity? i.e., are there new
parameters in addition to � and �? and if so, how naturally
do they arise from the Lagrangian framework, and, what
are their possible physical effects upon quantization? More
particularly, does the � parameter in the connection for-
mulation of gravity have a natural description at the
Lagrangian level? We will shed some light on these ques-
tions by studying the canonical formulation of a general
family of actions for general relativity (in a sense described
below).
Holst’s action allows to understand the presence of a

nonvanishing and finite Immirzi parameter from a more
clear standpoint. In fact, not having the second term in the
first order formulation of general relativity (i.e. choosing
� ¼ 1 or in other words the Palatini formulation) would
be unnatural from the Wilsonian perspective that calls for
including in the action principle all terms compatible with
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the symmetry and field content of the theory. From this
perspective the Immirzi parameter � 2 R� f0g is not an
input but a consequence of local Lorentz plus diffeomor-
phism invariance together with the choice of e and ! as

fundamental fields. If we pursue this logic further then the
most general action principle—compatible with diffeo-
morphism invariance and Lorentz invariance—describing
pure gravity in the first order formalism is

S½e;!� ¼
Z

�1 ? ðeI ^ eJÞ ^ FJIð!Þ þ �2e
I ^ eJ ^ FIJð!Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Holst

þ �3F
IJð!Þ ^ FJIð!Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Pontrjagin

þ �4F
IJð!Þ ^ ?FJIð!Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Euler

þ �5d!e
I ^ d!eI � eI ^ eJ ^ FIJð!Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nieh-Yan

þ �6e
I ^ eJ ^ eK ^ eL�IJKL|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cosmological constant

; (2)

where �1, �2, and �5 have M2 dimension, �3 and �4 are
real dimensionless parameters, and �6 is proportional to
the cosmological constant. It is a remarkable feature that
only finitely many terms are allowed by the symmetry once
first order variables are chosen. This is in clear contrast
with the formulation of pure -gravity in terms of metric
variables where the most general action has infinitely many
(higher-curvature) contributions.1 We should point out that
special cases of the previous general action have been
studied in the literature by Montesinos [8] and more re-
cently by Date et al. in [9] and by Mercuri in [10] (the last
two references consider coupling with fermion). We will
discuss in detail these special cases at the end of this paper.

Notice that the terms proportional to �3, �4, and �5 are
the Pontrjagin, the Euler, and the Nieh-Yan classes, re-
spectively. As the term proportional to �2, these topologi-
cal invariants have no effect on the equations of motion of
gravity as they can be written as the exterior derivative of
suitable 3-forms (see Eq. (3) below). However, these
boundary terms affect the canonical structure of the theory:
they act as generating functionals of canonical transforma-
tions. As mentioned above this might have physical
relevance when these canonical transformations cannot
be unitarily implemented in the quantum theory.
Heuristically, the off-shell contributions of the topological
terms in (2) to transition amplitudes (in the language of the

functional integral) might have a nontrivial effect in quan-
tum gravity.
The paper is organized as follows: In the following

section we perform the canonical analysis of the action
(2). In addition to providing a complete analysis of the
effect of the addition of topological invariants to the Holst
action (completing existing results in the literature [8,9]),
this section provides a detailed presentation of Holst’s
results [5] in a way that is alternative to the formulation
of Barros e Sa [11]. As there are second class constraints
that, for general values of the couplings, cannot be explic-
itly solved in Sec. III we compute the Dirac brackets in all
generality. In Sec. IV we specialize to the family of cou-
plings for which second class constraints can be solved,
and we show that the term leading to the � parameter in
gravity cannot be obtained for real couplings. We discuss
the way in which the � term can be introduced at the
Lagrangian level in Sec. V. We conclude with a discussion
of our results in Sec. VI.

II. CANONICAL ANALYSIS

The first step in trying to understand the effects of the
topological terms added to the Holst action is to perform
the canonical analysis of our action. In order to do this it
will be convenient to write the topological terms in (2)
explicitly as exterior derivatives of 3-forms, namely

S½e;!� ¼
Z

�1 ? ðeI ^ eJÞ ^ FJIð!Þ þ �2e
I ^ eJ ^ FIJð!Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Holst

þ ð�3 � i�4ÞdLCSð!ASDÞ þ ð�3 þ i�4ÞdLCSð!SDÞ
þ �5dðd!eI ^ eIÞ; (3)

where !SD ¼ ið?!ÞSD ¼ !� ið?!Þ and !ASD ¼
ið?!ÞASD ¼ !þ ið?!Þ are the self-dual and anti-self-
dual parts of the Lorentz connection !, respectively, and

L CSð!Þ ¼ !IJ ^ d!IJ þ 2
3!IJ ^ ½! ^!�IJ (4)

is the Chern-Simons Lagrangian density. Despite the pres-
ence of complex variables in the above expression of the
action, the action principle is manifestly real as the strict
equality with (2) holds. In performing the canonical analy-
sis of our theory we will use both (2) as well as (3)
according to convenience.

1Incidentally, this would imply the renormalizability of quan-
tum gravity if in the construction of the quantum theory one
could find a regularization prescription compatible with the
symmetries of (2).
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As mentioned above, the addition of boundary terms to
the action principle induces canonical transformations in
the phase-space formulation. Notice that the terms added to
Holst’s formulation are the most general total differentials
that one can write using the fields e and!without breaking
local Lorentz invariance and diffeomorphism invariance.
Therefore, studying the canonical structure behind (2)
amounts for studying the most general set of possible
canonical transformations compatible with the field con-
tent and symmetries of the action.

We assume that the spacetime manifold has topology
M ¼ �� R, with � compact. In order to perform the
Hamiltonian formulation we start by doing the customary
(3þ 1) decomposition consisting of choosing an arbitrary
foliation of spacetime in terms of the level hypersurfaces of
a global time function t. The hypersurfaces t ¼ constant
will be denoted � as well. We denote na the normal to the
foliation. The arbitrariness in the choice of foliation is
encoded in the lapse scalar N and the shift vector (tangent
to the foliation) Na which imply that the time vector ta

(defined by taðtÞ ¼ 1) takes the form ta ¼ Na þ Nna. This
implies that the following equation for the projection of the
tetrad in the ta direction:

eIt ¼ NnI þ eIaN
a;

where nI � naeIa. With these definitions the Holst action
(for the moment we are ignoring the topological terms, i.e.
taking �3 ¼ �4 ¼ �5 ¼ 0) takes the simple form:

L H ¼ 2�abceIae
J
bqIJKLF

KL
tc þ 2N�abcnIeJaqIJKLF

KL
bc

þ 2Nd�abceIde
J
aqIJKLF

KL
bc ; (5)

where qIJKL ¼ �1�IJKL þ �2�IJKL denoting by �IJKL ¼
�½IjKj�J�L the invariant metric in the Lie algebra of the

Lorentz group. If we define �a
KL ¼ 2�abceIbe

J
cqIJKL then

the previous action takes the form

LH ¼ �a
I _e

I
a þ�a

IJ _!IJ
a þ NIJDa�

a
IJ

þ 2N�abcnIeJaqIJKLF
KL
bc þ Na�b

IJF
IJ
ba

þ ð1Þ�I
a�

a
I þ ð2Þ�KL

a ð�a
KL � 2�abceIbe

J
cqIJKLÞ; (6)

where NIJ � !IJ
t , N, Na, ð1Þ�I

a, and
ð2Þ�KL

a are Lagrange
multipliers imposing the primary constraints of the Holst
action. On the other hand �a

IJ and �a
I denote the momen-

tum conjugate to !IJ
a and eIa, respectively. Therefore, the

primary constraints are

�a
I � 0; (7)

�a
KL � 2�abceIbe

J
cqIJKL � 0; (8)

Lorentz-Gauss law Da�
a
IJ ¼ 2Dað�abceIbeJcqIJKLÞ � 0;

(9)

Vector constraint �abceIde
J
aqIJKLF

KL
bc � 0; (10)

Scalar constraint �abcnIeJaqIJKLF
KL
bc � 0: (11)

A simple look at the list of primary constraints tell us that
there will be secondary constraints when we require the
primary to be preserved by the Hamiltonian evolution.
However, before continuing and completing the analysis
it will be convenient to treat the general case including the
topological terms.

A. The Holst action plus topological terms

Including the topological terms is straightforward at this
level. According to (3), and using that @� ¼ 0, the
Lagrangian (5) is modified by the addition of the total
time derivative, namely

L ¼ LH þ ð�3 � i�4Þ@tLCSð!ASDÞ
þ ð�3 þ i�4Þ@tLCSð!SDÞ þ �5@tðd!eI ^ eIÞ; (12)

which, using that @tLCSð!Þ ¼ 2Ba
IJð!Þ _!IJ

a where Ba
IJ ¼

�abcFbcð!Þ, implies that the conjugate momenta �a
IJ and

�a
I receive additional contributions of the form 4�3B

a
IJ þ

4�4�IJ
KLBa

KL þ �5�
abcðebÞ½IðebÞJ� and 2�5�

abcd!e
I
bc, re-

spectively. Notice that, due to @� ¼ 0, the addition of the
topological terms only affects the kinetic term of the Holst
action. More precisely if we define the real functional

Wð!IJ
a ; e

I
aÞ ¼

Z
�
ð�3 � i�4ÞLCSð!ASDÞ

þ ð�3 þ i�4ÞLCSð!SDÞ þ �5ðd!eI ^ eIÞ;
(13)

the new constraints become

�a
I �

�W

�eIa
¼ �a

I � 2�5�
abcðd!eÞbcI � 0; (14)

�a
IJ � 2�abceKb e

L
c qIJKL � �W

�!IJ
a

¼ �a
KL � 2�abceIbe

J
cqIJKL � �5�

abcðebÞ½KðebÞL�
� 4�3B

a
KL � 4�4�KL

IJBa
IJ � 0; (15)

Lorentz-Gauss law Da�
a
IJ ¼ 2Dað�abceIbeJcqIJKLÞ � 0;

(16)

Vector constraint �abceIde
J
aqIJKLF

KL
bc � 0; (17)

Scalar constraint �abcnIeJaqIJKLF
KL
bc � 0: (18)

Notice that the addition of the topological invariants, being
just boundary terms, modify only the constraints defining
the momenta. The vector and scalar constraints remain the
same as they do not depend on momentum variables at this

FOUR-DIMENSIONAL LORENTZIAN HOLST ACTION WITH . . . PHYSICAL REVIEW D 79, 064026 (2009)

064026-3



stage (eIa is here considered a configuration variable). The
Gauss law (16) does depend on the momenta (as written in
the left-hand side); however, it also remains unchanged (as
in the right-hand side) due to the Bianchi identity implying
DaB

a
IJ ¼ 0.

B. The time gauge: Reducing SOð3; 1Þ to SOð3Þ
Let us now introduce the standard gauge condition that

reduces the Lorentz gauge symmetry to an SOð3Þ gauge
symmetry. The gauge condition is often called the time-
gauge condition. It corresponds to the requirement that the
zeroth element of the tetrad coincides with the conormal to
�, namely nIe

I
� ¼ n�. This implies the phase-space addi-

tional gauge-fixing constraint

nIe
I
a � 0; (19)

which now must be added to the list of the primary con-
straint above. The previous gauge-fixing condition is nec-
essary to recover the compact gauge group connection
variables that are used in loop quantum gravity (LQG).2

One can of course complete the Hamiltonian formulation
without breaking the local Lorentz invariance. However,
the price to be paid is a nontrivial Dirac bracket between
the components of the Lorentz connection !IJ

a [13] pre-
cluding the existence of a Lorentz connection representa-
tion in the quantum theory. A proposal for quantizing the
noncommutative connection can be found in [14].

The condition (19) is second class with respect to the
projection of Eq. (7) in the nI internal direction. In other
words the requirement that the gauge (19) is preserved in

time fixes the Lagrange multipliers ð1Þ�a
I in (6). This means

that we can impose nI�a
I ¼ 0 and nIe

I
a ¼ 0 strongly. From

now on we will take nI ¼ ð1; 0; 0; 0Þ and denote with lower
case Latin alphabet letters the spacelike internal directions.
The new restricted dynamical system is described by

�a
i � 2�5�

abcðd!eÞbci � 0; (20)

1
2 �k

ij�a
ij � ð2�2 � �5Þ�abceibejc�ijk þ 4�3�k

ijBa
ij

� 16�4B
a
k0; (21)

�a
k0 � 2�1�

abceibe
j
c�ijk þ 4�3B

a
k0 � 4�4�k

lmBa
lm; (22)

Lorentz-Gauss law

�
�mlkE

alK̂k
a � 0;

@dE
dk þ �ijk�̂

i
dE

dj � 0;

(23)

Vector constraint �b
ijF

ij
ba þ 2�b

i0F
i0
ba � 0; (24)

Scalar constraint �abceiaq0ijkF
jk
bc þ 2�abceiaq0i0kF

0k
bc � 0;

(25)

where we have used the following definitions:

Ea
i � 1

2�
abcejaekb�ijk; K̂i

a � !0i
a �̂i

a � 1
2�

i
jk!

jk
a

(26)

and the Bianchi identity to write the Gauss law constraints
(23). We will see in a moment that the previous variables
are indeed the extrinsic curvature component and the Levi-
Civita spin connection, respectively, which justifies the
notation. Equations (21) and (22) can be combined in a
way to simplify the dependence on the triad eia: notice that
the triad dependence is the same in both equations.
Therefore, one can introduce new variables

�P a
i � 1

4
�i

jk�a
jk �

2�2 þ �5

4�1

�a
i0

¼ 1

4
�i

jk�a
jk �

1

2�
�a

i0; (27)

where we introduced the definition � � 2�1

2�2��5
. The pre-

vious new momenta are the conjugate of new SOð3Þ con-
nections

�!dl ¼ ��!dl0 þ 1
2�l

mn!dmn; (28)

and we recognize � as the Immirzi parameter at this stage.
In the time gauge, one can write the functional Wð!IJ

a ; e
I
aÞ

defined in (13) as a functional as Wð!IJ
a ; e

I
aÞ ¼

W0ðþ!i
a;
� !i

aÞ þ �5�
abcðd!eÞiabeci where W0ðþ!i

a;
�!i

aÞ
is simply the value of Wð!IJ

a ; e
I
aÞ for �5 ¼ 0. Using the

new variables the constraints become

ðIÞai � �a
i � 2�5�

abcðd!eÞbci � 0; (29)

ðIIÞak � þP a
k � 2

�1

�
�abceibe

j
c�ijk � �W0

�þ!i
a

; (30)

ðIIIÞak � �P a
k �

�W0

��!i
a

; (31)

Boosts constraint Bk � @dE
dk � �ijk�̂

i
dE

dj � 0 ) Bk

¼ ��ijkE
aið�̂j

a � �j
aÞ � 0; (32)

SOð3ÞGauss law Gm � �mlkE
alK̂k

a � 0; (33)
2It is possible to recover SUð2Þ connection variables without

explicitly imposing the time gauge [12].
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Vector constraint Va � �b
ijF

ij
ba þ 2�b

i0F
i0
ba � 0;

(34)

Scalar constraint S� �abceiaq0ijkF
jk
bc þ 2�abceiaq0i0kF

0k
bc

� 0; (35)

where

K̂ i
a ¼ 1

2�
ðþ!i

a � �!i
aÞ; �̂i

a ¼ 1

2
ð�!i

a þ þ!i
aÞ:
(36)

Notice that we have rewritten the boost part of the
Lorentzian Gauss law—which we should expect to be
second class due to the time-gauge condition (19)—in
terms of the spin connection �i

a, i.e., the solution of
Cartan’s first structure equation

@½aekb� � �kij�
i
½ae

j
b� ¼ 0: (37)

Indeed it will be convenient to introduce the quantity

ðIVÞia � �̂i
a � �i

a: (38)

We will explicitly show in what follows how three compo-
nents of the boost part of the Lorentzian Gauss law plus six
secondary constraints (not derived yet) imply ðIVÞia � 0
which will be shown to be second class.

By setting W ¼ 0 one recovers the primary constraints
of Holst [5]. Notice in addition that, as mentioned above,
only the first three constraints in the previous list are
modified by the addition of the Pontrjagin, Euler, and
Nieh-Yan invariants to the Holst action. The modification
is very simple: if we take fþ!i

a;
�!i

a; e
i
ag as configuration

variables then, the Holst momenta are shifted according to
p ! pþ fp;Wðþ!i

a;
�!k

a; e
i
aÞg, where p denotes þP a

i ,�P a
i , and �a

i . The modification introduced by the topo-
logical invariants is just a canonical transformation gener-
ated by Wðþ!i

a;
�!k

a; e
i
aÞ. For that reason, the constraint

algebra is not affected by the topological terms. Therefore,
the consistency conditions (secondary constraints) that
follow from requiring that primary constraints are pre-
served by the total Hamiltonian remain unchanged. This
also holds for the classification between first class and
second class constraints. Collecting all primary constraints
the Hamiltonian becomes

H ¼
Z
�
NSþ NaVa þ NkGk þ �kBk þ �ð1Þ

dl ðIÞdl

þ �ð2Þ
dl ðIIÞdl þ �ð3Þ

dl ðIIIÞdl: (39)

At this point one needs to look for a potential secondary
constraint by requiring that the constraint surface be pre-
served by the time evolution defined by the previous

Hamiltonian. This leads to the following consistency con-
ditions:

0 � fðIÞai ; HTg ¼ 4�1

�
�abc�ð2Þj

b ekc�ijk þ additional terms;

(40)

0 � fðIIÞai ; HTg
¼ 1

2
�jEak�ijk � ð�5 þ 2ð2�2 � �5ÞÞ�ijk�abcejb�ð1Þk

c

� �H0

�þ!k
a

; (41)

0 � fðIIIÞai ; HTg

¼ 1

2
�jEak�ijk � �5�ijk�

abcejb�
ð1Þk
c � �H0

��!k
a

; (42)

0 � fBi;HTg ¼ �1
2�ijk�

ð3Þj
b Ebk þ additional terms; (43)

where H0 �
R
� NSþ NaVa þ NkGk is a linear combina-

tion of the scalar, vector, and SOð3Þ Gauss constraints.
Equations (40) and (41) completely determine the

Lagrange multipliers �ð2Þj
b and �ð1Þj

b , respectively. Equa-

tion (43) determines the antisymmetric part of �ð3Þ
ij �

�ð2Þ
bi E

b
j , i.e., it fixes three out of the nine components of

the Lagrange multiplier �ð3Þj
b . Hence, there are no second-

ary constraints arising from these equations.
Equation (42) leads to secondary constraints. To see this

one has to replace in (42) the solution for �ð1Þi
a obtained

from (41). Consider the quantity

Cij � ðeaÞjfðIIIÞai ; HTg: (44)

Then it is easy to see that the three conditions C½ij� ¼ 0 can

be used to fix the Lagrange multipliers �i while the re-
maining six conditions CðijÞ ¼ 0 are proportional to

CðijÞ ¼ ðeaÞðjfðIIIÞaiÞ; HTg / �abdEdðmd
ð�̂Þ
a eblÞ � 0; (45)

where d�̂ is the exterior covariant differential computed

with �̂. Notice now that the six independent above con-

straints over �̂ can be combined with the three boost
constraints Bi in (32) into the nine component constraint
(38), namely

Bi ¼ 0 in addition to

CðijÞ ¼ 0 , ðIVÞia � �̂i
a � �i

a ¼ 0:
(46)

We can therefore rearrange the total Hamiltonian in the
more convenient form

HT ¼
Z
�
NSþ NaVa þ NkGk þ �ð1Þ

dl ðIÞdl þ �ð2Þ
dl ðIIÞdl

þ �ð3Þ
dl ðIIIÞdl þ �ð4Þd

l ðIVÞld; (47)
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where instead of adding the secondary constraint (45) to
the primary constraint Hamiltonian, we have dropped the
term �kBk from the integrand in (39) and added the term

�ð4Þd
l ðIVÞld in the previous expression of the total

Hamiltonian. One can check that the consistency condi-
tions of the new set of constraints fix the Lagrange multi-

pliers �ð�Þ for � ¼ 1, 2, 3, 4, while the Lagrange
multipliers N, Na, and Nk are left arbitrary. From this
one concludes that the 36 constraints ðIÞai , ðIIÞai , ðIIIÞai ,
and ðIVÞia are second class constraint while the seven
remaining constraints (the scalar S, vector Va, and Gauss
Gk constraints) are first class.

3 There are 27 configuration
variables eia,

þ!i
a, and

�!i
a; therefore, the counting of

degrees of freedom yields the expected 2 degrees of free-
dom of gravity.

III. CONSTRUCTION OF THE DIRAC BRACKET

The analysis up to this point follows the same logical
line as in the Holst’s case, by the simple fact that the
addition of a surface term to the action does not change
the Poisson brackets among the constraints. However,
contrary to the Holst case, we cannot explicitly solve the
constraint ðIIÞai . The reason is the presence of the curvature
tensor in the magnetic field contributions to (30) which
prevents one from eliminating the densitized triad as a
function of the connection and its momenta: the depen-
dence on the densitized triad is quite complicated due to
the nonpolynomial character of the spin connection �i

aðEÞ.
Thus, in order to complete the canonical analysis of the
general action, we need to explicitly construct the Dirac

brackets for the second class constraints ðIÞai , ðIIÞai , ðIIIÞai ,
and ðIVÞia. Before computing the constraint algebra it will
be convenient to replace the constraint ðIÞai . The constraint
algebra is

fðIÞai ; ðIÞbj g ¼ 0; (48)

fðIÞai ; ðIIÞbj g ¼ ð4�2 � �5Þ�abc�ijkekc�3ðx; yÞ; (49)

fðIÞai ; ðIIIÞbj g ¼ �5�
abc�ijke

k
c�

3ðx; yÞ; (50)

fðIÞai ; ðIVÞjbg ¼
��j

bðyÞ
�eiaðxÞ ; (51)

fðIIÞai ; ðIIÞbj g ¼ 0; (52)

fðIIÞai ; ðIIIÞbj g ¼ 0; (53)

fðIIÞai ; ðIVÞjbg ¼ �1
2�

b
a�

j
i�

3ðx; yÞ; (54)

fðIIIÞai ; ðIIIÞbj g ¼ 0; (55)

fðIIIÞai ; ðIVÞjbg ¼ �1
2�

b
a�

j
i�

3ðx; yÞ; (56)

fðIVÞai ; ðIVÞbj g ¼ 0: (57)

We construct the Dirac matrix, which we represent
symbolically as

M ¼
0 ð4�2 � �5ÞAab

ij ðx; yÞ �5A
ab
ij ðx; yÞ Bbk

al ðx; yÞ
�ð4�2 � �5ÞAab

ij ðx; yÞ 0 0 �1
2I

bk
al ðx; yÞ

��5A
ab
ij ðx; yÞ 0 0 �1

2I
bk
al ðx; yÞ

�Bbk
al ðx; yÞ 1

2I
bk
al ðx; yÞ 1

2I
bk
al ðx; yÞ 0

0
BBBB@

1
CCCCA;

where

2Strictly speaking the scalar S, vector Va, and Gauss Gk constraints are not first class as written here. In order to make them into first
class constraints one would need to add to them appropriate linear combinations of the second class constraints. Nevertheless, the fact
that N, Na, and Nk are not fixed by the equations of motion implies the existence of seven first class constraints and that these coincide
with the scalar S, vector Va, and Gauss Gk constraints once the second class constraints have been solved. To see this in a more general
way, suppose we have two sets of constraints, 	A and �A, such that

f	A;	Bg ¼ 0; f	A; �Bg ¼ MAB; f�A; �Bg ¼ �AB;

where � is an invertible matrix and M not. We can ‘‘decouple’’ the two sets of constraints by the redefinition:

	A ! ~	A ¼ 	A �MACð��1ÞCD�D;
the algebra becomes

f ~	A; ~	Bg ¼ f	A �MACð��1ÞCD�D; 	B �MBCð��1ÞCD�Dg � 0;

f ~	A; �Bg ¼ �fMACð��1ÞCD; �Bg�D � 0; f�A; �Bg ¼ �AB;

this is completely equivalent to solving first the Dirac brackets for the �A sector and then recomputing the remaining algebra for the	A

sector.
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Ibkal ðx; yÞ ¼ �b
a�

k
l �

3ðx; yÞ;

Aab
ij ðx; yÞ ¼ �abc�ijke

k
c�

3ðx; yÞ;

and

Bbk
al ðx; yÞ �

��k
aðxÞ

�elbðyÞ
:

The inverse of this matrix is

M�1 ¼ �

4�1

0 �ðA�1Þijabðx; yÞ ðA�1Þijabðx; yÞ 0

ðA�1Þijabðx; yÞ 0 �2ðA�1 � BÞklabðx; yÞ �2�5I
bk
al ðx; yÞ

�ðA�1Þijabðx; yÞ 2ðA�1 � BÞklabðx; yÞ 0 2ð4�2 � �5ÞIbkal ðx; yÞ
0 2�5I

bk
al ðx; yÞ �2ð4�2 � �5ÞIbkal ðx; yÞ 0

0
BBBB@

1
CCCCA;

where the dot in the above expression involves the appro-
priate index contraction and integration over �, explicitly

ðA�1 � BÞklabðx; yÞ �
Z

dzðA�1Þkmac ðx; zÞBcl
bmðz; yÞ: (58)

The only explicit inversion that one needs is that of the
tensor density Aab

ij ðx; yÞ. It is straightforward to show that
the inverse is given by

ðA�1Þijabðx; yÞ ¼
�eiaðxÞ
�Eb

j ðyÞ
; (59)

which can be computed explicitly using that eia ¼
1
2 �abc�

ijkEb
jE

c
k=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞp Þ, as implied by Eq. (26). Notice

also that the previous equation implies

ðA�1 � BÞklabðx; yÞ ¼
��k

aðxÞ
�Eb

l ðyÞ
: (60)

Thus, the full Dirac bracket is given by

ff; ggD ¼ ff; gg � �

4�1

Z �
�ff; ðIÞai ðxÞg

�eiaðxÞ
�Eb

j ðyÞ
fðIIÞbj ðyÞ; gg þ ff; ðIÞai ðxÞ

�eiaðxÞ
�Eb

j ðyÞ
fðIIIÞbj ðyÞ; gg

þ ff; ðIIÞai ðxÞg
�eiaðxÞ
�Eb

j ðyÞ
fðIÞbj ðyÞ; gg � 2ff; ðIIÞai ðxÞg

��i
aðxÞ

�Eb
j ðyÞ

fðIIIÞbj ðyÞ; gg � 2�5½f; ðIIÞai ðxÞgfðIVÞiaðyÞ; gg

� ff; ðIIIÞai ðxÞg
�eiaðxÞ
�Eb

j ðyÞ
fðIÞbj ðyÞ; gg þ 2ff; ðIIIÞai ðxÞg

��i
aðxÞ

�Eb
j ðyÞ

fðIIÞbj ðyÞ; gg þ 2ð4�2 � �5Þff; ðIIIÞai ðxÞgfðIVÞiaðyÞ; gg

þ 2�5ff; ðIVÞai ðxÞgfðIIÞai ðyÞ; gg � 2ð4�2 � �5Þff; ðIVÞai ðxÞgfðIIIÞiaðyÞ; gg-
�
d3xd3y: (61)

From (61) we obtain the new commutation relations:
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fþ!i
aðxÞ; ejbðyÞgD ¼ �

4�1

�eiaðxÞ
�Eb

j ðyÞ
;

fþ!i
aðxÞ;þ!j

bðyÞgD ¼ 0;

fþ!i
aðxÞ;�!j

bðyÞgD ¼ �

2�1

��j
bðyÞ

�Ea
kðxÞ

;

feiaðxÞ; ejbðyÞgD ¼ 0;

fekaðxÞ;þP b
j ðyÞgD ¼ � �

4�1

Z �emd ðzÞ
�Ea

i ðxÞ
�

�þ!m
d ðzÞ

�
�W0

�þ!j
bðyÞ

� �W0

��!j
bðyÞ

�
dz;

fekaðxÞ;�P b
j ðyÞgD ¼ � �

4�1

Z �emd ðzÞ
�Ea

i ðxÞ
�

��!m
d ðzÞ

�
�W0

�þ!j
bðyÞ

� �W0

��!j
bðyÞ

�
dz;

fþP a
i ðxÞ;þP b

j ðyÞgD ¼ � �

2�1

Z � �2W0

�þ!i
aðyÞ�þ!k

cðzÞ
��k

cðzÞ
�Ed

mðwÞ
�2W0

��!m
d ðwÞ�þ!j

bðyÞ
� i

a

 !
$ j

b

 !�
dzdw;

f�P a
i ðxÞ;�P b

j ðyÞgD ¼ � �

2�1

Z � �2W0

��!i
aðyÞ�þ!k

cðzÞ
��k

cðzÞ
�Ed

mðwÞ
�2W0

��!m
d ðwÞ��!j

bðyÞ
� i

a

 !
$ j

b

 !�
dzdw;

f�!i
aðxÞ;�P b

j ðyÞgD ¼ � �

2�1

Z ���m
d ðzÞ

�Ea
i ðxÞ

�2W0

��!j
bðyÞ�þ!m

d ðzÞ
�
dz;

fþ!i
aðxÞ;þP b

j ðyÞgD ¼ �b
a�

i
j�ðx; yÞ �

�

2�1

Z ���m
d ðzÞ

�Ea
i ðxÞ

�2W0

�þ!j
bðyÞ��!m

d ðzÞ
�
dz:

(62)

If from now on we use only the Dirac brackets, we are
allowed to eliminate all the second class constraints, in
particular (46). Thus, writing everything only as functions
of þ!dl and Edl the scalar and vector constraints become

S ¼ 4�1e
�1�ijkEb

jE
c
k½��2Fbciðþ!Þ þ ð�2 þ 1ÞFbcið�Þ�;

Vd ¼ �4�1½�EckFdckðþ!Þ þ ð�2 þ 1ÞKk
d½þDcE

c�k�:
(63)

The expression of þP as a function of þ!dl and Edl is

þP d
k ¼ 4�2E

d
k þ �dab½ð4�4� � 4�3�

2ÞFabkðþ!Þ
¼ �3ð1þ �2ÞFabkð�Þ

þ
�
6�3 þ 2�4�� 4

�4

�

�
�kmnK

m
a K

n
b

�
:

IV. WHICH W0 LEAD TO CANONICAL
TRANSFORMATIONS?

The Dirac algebra among the basic variables found in
the previous section for arbitrary W0 is quite complicated.
In this section we investigate the possible choices of W0

such that ð4�1E=�;
þ!Þ ! ðþP ;þ!Þ is a canonical

transformation.
The necessary and sufficient condition that one needs to

satisfy is

Z ���m
d ðzÞ

�Ea
i ðxÞ

�2W0

�þ!j
bðyÞ��!m

d ðzÞ
�
dz ¼ 0 (64)

for all field configurations and for W0 a functional of þ!
and �!, respectively. This condition holds if and only if

�2W0

�þ!j
bðyÞ��!m

d ðzÞ
¼ 0; (65)

whose solution is given by W0½þ!;�!� ¼ Wþ
0 ½þ!� þ

W�
0 ½�!�. We should point out that the integral equationZ ��m

d ðzÞ
�Ea

i ðxÞ
Vd
mðz; yÞdz ¼ 0 (66)

admits nontrivial solutions. Recall that each Ea
i gives a

unique spin connection �i
a; however, this relationship is not

invertible. The reason is that �i
aðEÞ ¼ �i

að�EÞ for � ¼
constant. Therefore, only the scale invariant geometry (E
up to a constant factor) can be recovered from �i

a. This
implies a nontrivial solution of Eq. (66), for instance
Va
i ðx; yÞ ¼ Ea

i ðxÞ�ðyÞ. Nevertheless, that solution depends
explicitly on E and cannot be realized by derivatives ofW0.
This in turn implies that the canonical transformation takes
the simple form

þP a
i ¼ 4

�1

�
Ea
i þ

�Wþ
0

�þ!i
a

: (67)

Recall that we started from the most general action prin-
ciple for general relativity in the tetrad first order formu-
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lation. Therefore, in addition to the factorization property
written above, the generating function must derive from a
particular combination of the Pontrjagin, Euler, and Nieh-
Yan invariants (which are Lorentz invariant). The general
solution to these constraints is � ¼ �i (or equivalently
�2i�1 ¼ 2�2 � �5) and �3 and �4 arbitrary. The canoni-
cal transformation (67) becomes in this case

þP a
i ¼ �i4�1E

a
i þ 2ð�3 � i�4Þ�abcFbciðþ!Þ; (68)

which corresponds to the one obtained in [8] for the special
case �5 ¼ 0 and �3 ¼ i�4. For instance when �5 ¼ 0 the
action becomes

S½e;!� ¼
Z

�1ðeI ^ eJÞ ^ FJIð!SDÞ
þ ð�3 � i�4ÞdLCSð!ASDÞ
þ ð�3 þ i�4ÞdLCSð!SDÞ: (69)

Notice that the momentum shift (68)—analog of the ca-
nonical transformation induced by the addition of the
Pontrjagin invariant in Yang-Mills theory that introduces
the � parameter in QCD—can only be obtained for values
of the free parameters in the action (2) that make the
formulation complex.

V. THE THETA PARAMETER IN GENERAL
RELATIVITY

In the previous section we have shown that the most
general family of connection variables that can be obtained
from the standard Ashtekar-Barbero variables and general
action (2) contains the � parameter family only in the
complex self-dual or anti-self-dual formulations.
Therefore, contrary to what one might have naively ex-
pected, the real connection formulation of gravity with
nontrivial � is not contained in the family of possible
phase-space parametrizations stemming from (2). In this
section we will show that the requirement of manifest
Lorentz invariance, that initially led to (2), is too restrictive
to contain that case.

Indeed one can recover the canonical transformation if
one is ready to introduce a boundary term that violates the
Lorentz gauge symmetry. More precisely, using the addi-
tional structure provided by the gauge condition (19), we
define

!̂ IJ
� ¼ �IJCDð�!KC

� þ 1
2�

CK
MN!

MN
� ÞnKnD: (70)

Note that !̂ transforms as an SOð3Þ connection for
SOð3Þ 	 SOð3; 1Þ gauge transformations that leave invari-
ant the internal vector nI. Notice that the components of

(70) are such that !̂i0
� ¼ 0 for i ¼ 1, 2, 3, and !̂ij

a ¼
�ijkþ!k

a for a ¼ 1, 2, 3 (coordinates adapted to the
foliation �). It follows from this that the curvature com-

ponents F̂i0
�
 ¼ 0, F̂ij

td ¼ @½t!̂
ij
d� � !̂ik

½t !̂
kj
d�, and F̂ij

ab ¼
�ijkFk

ab½þ!�. Now we can introduce topological boundary

terms defined in terms of the connection (70). Notice that
the Euler term vanishes identically. This leaves the
Pontrjagin term for !̂IJ

� which takes the form

�7

Z
M

Tr½Fð!̂Þ ^ Fð!̂Þ� ¼ 2�7�
abcð@tðþ!aÞkFk

bcðþ!Þ
þ t�ð!̂�ÞkDaF

k
bcðþ!ÞÞ:

(71)

Notice that the second term in the previous expression
vanishes due to the Bianchi identities. The Pontrjagin
term depends only on þ!; therefore, it satisfies the condi-
tion (65). In fact it is obvious from the form of the previous
expression that its effect is the expected one producing the
canonical transformation

þP a
i ¼ 4

�1

�
Ea
i þ 2�7�

abcFbciðþ!Þ; (72)

which is real for real Immirzi parameter �.
We have just shown how the theta term in quantum

gravity can be obtained from the addition of the total
derivative (71). In other words, the canonical transforma-
tion studied in the quantum context in [6] cannot be
obtained from the most general manifestly Lorentz invari-
ant first order formulation of gravity. In order to define the
appropriate boundary term one needs to introduce a bound-
ary term that brings in an SOð3Þ 	 SLð2; CÞ by explicitly
choosing an internal vector nI. This might seem strange at
first sight as one would seem to be violating both Lorentz
invariance in sharp conflict with general covariance. From
the point of view of the classical theory is its clear that this
is not the case since the term added has no effect on the
equation of motion of the theory. However, the situation
might appear more obscure in the quantum theory. After all
we have seen—as in QCD— the theta term can have
important dynamical as well as kinematical effects in the
quantum theory. So even when it is clear that no violation
of Lorentz or diffeomorphism invariance is present in the
classical theory (i.e. on shell) we need to make sure that
this remains true in the context of quantum gravity where
off-shell contributions to physical amplitudes cannot be
avoided.
So, can the boundary term (71) produce a Lorentz

violating effect in the quantum theory? The answer to
this question is in the negative as we argue now. The reason
is the topological character of (71). The quantity computed
in (71) is proportional to the Pontrjagin invariant of an
SUð2Þ principal bundle obtained through the choice of an
internal normalized vector nI (for a mathematical descrip-
tion see [15]). As the latter takes discrete values it must be
invariant under continuous deformations of nI. The ques-
tion remains of whether there are homotopically inequiva-
lent choices of nI. This corresponds to the possible winding
of the maps from M ¼ �� R into the hyperboloid H 2
M4 defined by the condition nInJ�IJ ¼ �1. As this wind-
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ing is trivial we conclude that the term (71) is independent
of the choice of nI and hence well defined.

VI. CONCLUSIONS

We have completed the canonical analysis of the general
action (2) and obtained the Dirac bracket for arbitrary
values of the couplings �1 to �6. As long as we restrict
to this action the family of connection formulations is
described by the following two cases:

(1) Real variables The phase-space variables are

labeled by an SUð2Þ connection given by þ! ¼ �þ
�K̂ with Immirzi parameter � ¼ 2�1=ð2�2 � �5Þ
and �3 ¼ �4 ¼ 0, and conjugate momentum
þP a

i ¼ 4 �1

� Ea
i . This shows that both �2 and �5

enter the definition of the Immirzi parameter.
Hence it is possible to obtain a nontrivial � by
simply adding the Nieh-Yang topological invariant
to the Palatini action as shown in [9].

(2) Complex variables The configuration variable is
described by a self-dual or anti-self-dual connection
þ! ¼ �þ �K̂ with � ¼ �i and the other parame-
ters constrained to satisfy �ið2�2 � �5Þ ¼ 2�1,
with �3 and �4 arbitrary. The conjugate momentum
is þP a

i ¼ 4 �1

� Ea
i þ 2ð�3 þ ��4Þ�abcFbciðþ!Þ.

This second set contains the one studied by [8] as
a subclass.

If in turn one wants to describe the effects of SUð2Þ large
gauge transformations for real variables by the addition of
a term to the first order action one has no choice but to
break manifest Lorentz invariance by the addition of the
term (71) to the action (2) with parameters in the first class
above. This explicit symmetry breaking is only apparent as
the term added does not affect the classical equations of
motion on the one hand, and it does change the quantum
theory but in a Lorentz invariant way as argued in the last
section.

Finally notice that if one is ready to break manifest
Lorentz invariance in a more general way then the set of
possible connection formulations becomes infinite dimen-
sional. For instance the canonical transformations

ðþ!i
a;

þP b
j Þ ! ðþ ~!i

a ¼ þ!i
a þ �W½þP �=�þP a

i ;
þP b

j Þ
(73)

for W½þP � an arbitrary diffeomorphism invariant and
SUð2Þ invariant functional of þP i

a. This kind of canonical
transformation—consisting of shifting one canonical vari-
able by the total derivative of a functional of the canoni-
cally conjugate one—is available in any field theory. For
instance in the case of a real scalar field 	 with conjugate
momentum � the analog of the canonical transformations
above is given by the shift ð�;	Þ ! ð�þ fð	Þ; 	Þ for
some f: R ! R. The quantization in this case strongly
depends on the choice of canonical variables. Notice that

this transformation would turn a simple free theory (which
can straightforwardly be quantized using for instance the
Fock representation) into a highly nonlinear (depending on
fð	Þ) theory where those techniques cannot be directly
applied.
The situation in the case of LQG is much simpler at first

sight. The reason is that the canonical transformation (73)
preserves the connection nature of the configuration vari-
able and therefore allows for a straightforward implemen-
tation of the standard LQG quantization techniques: the
definition of holonomy-flux algebra of basic kinematical
observables and construction of the (unique) diffeomor-
phism invariant representation. However, this uniqueness
of the construction appears to have some unexpected im-
plications. On the one hand questions concerning the geo-
metric interpretation of the kinematical variables in the
kinematical Hilbert space seem to arise, as well as the
possibility of physically distinguishable sectors (due to
the potential unitary inequivalence of the different formu-
lations). As this concerns entirely the quantum theory these
questions will be investigated elsewhere. In the appendix
we explicitly exhibit the infinite dimensional nature of this
family of connection formulations.
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APPENDIX

In order to simplify the notation let us assume that we
are in the real connection variables setting. The functional
W½þP � appearing in (73) can be simply thought of as a
functional W½E� as the triad E is proportional to þP (at
least in the �7 ¼ 0 case). An example of a suitable gen-
erating functional is

W2½E� ¼
Z
�
�1LCSð�Þ þ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞ

p
þ �3R½E�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞ

p
þ �4RabcdR

abcd½E� ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞp þ � � � ; (A1)

where R½E� and Rabcd are the scalar curvature and
Riemann tensor of � associated to E, and LCS is the
Chern-Simons Lagrangian evaluated in the spin connection
�i
aðEÞ. Unlike the previous case, the generating function

W2 contains infinitely many parameters—we have given a
few characteristic examples; however, any scalar density
local functional of E is assumed to be contained inW2. The
action on the connection variables is to shift the connection
as ðA; EÞ ! ðAþ �W3=�E; EÞ. This observation implies
that an infinite dimensional set of simple connection var-
iables for general relativity exists.
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Notice the word simple in the previous sentence. The
fact that the connection formulations are infinitely dimen-
sional should have been expected from the fact that any
phase-space functional generates a Hamiltonian vector
field which (if the latter is diffeomorphism invariant and
gauge invariant) can be viewed as a one parameter family
of canonical transformations preserving the connection
nature of the variables. However, the most general trans-
formation is generated by a functional depending on both
the connection and the electric field and in general these
transformations will not be analytically integrable or be
more complicated. Here we concentrate on infinitesimal
canonical transformations which can be explicitly expo-
nentiated and lead to a close formula for the new variables
as a function of the old ones.

Among the functionals of both the connection A and E
whose associated Hamiltonian flow can be integrated in

close form there is an important example, namely

W3½A; E� ¼ �
Z
�
ðAi

a � �i
aÞEa

i þ � � � (A2)

The generating function W2 generates rescaling of the
Immirzi parameter � ! ð1þ �Þ�. The exponentiated ver-
sion generates finite redefinition of the Immirzi parameter.
This one is clearly not unitarily implementable at the
kinematical level in LQG.
The existence of an infinite dimensional set of possible

SUð2Þ connection formulations of general relativity has
little interest from the classical point of view. They are
all equivalent ways of writing the same classical theory.
However, questions arise as to what the interpretation and
effects of these parameters might be in the quantum theory.
These questions will be addressed elsewhere.
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