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The full set of equations governing the structure and the evolution of self-gravitating spherically

symmetric dissipative fluids with anisotropic stresses is written down in terms of five scalar quantities

obtained from the orthogonal splitting of the Riemann tensor, in the context of general relativity. It is

shown that these scalars are directly related to fundamental properties of the fluid distribution, such as

energy density, energy density inhomogeneity, local anisotropy of pressure, dissipative flux, and the active

gravitational mass. It is also shown that in the static case, all possible solutions to Einstein equations may

be expressed explicitly through these scalars. Some solutions are exhibited to illustrate this point.
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I. INTRODUCTION

The gravitational collapse of massive stars and its re-
sulting remanent (neutron star or black hole) represent one
of the few observable scenarios where general relativity is
expected to play a relevant role. Therefore, a detailed
description of gravitational collapse and the modelling of
the structure of compact objects under a variety of con-
ditions remain among the most interesting problems that
general relativity has to deal with. This fact explains the
great attraction that these problems exert on the commun-
ity of the relativists. Starting with the seminal papers by
Oppenheimer and Snyder [1] and Oppeheimer and Volkoff
[2], a long list of works has been presented trying to
provide models of evolving gravitating spheres and com-
pact objects ( just as a sample, and without the pretension
of being exhaustive, see [3–26] and references therein).

Motivated by the above arguments, we present in this
work a study on self-gravitating relativistic fluids in terms
of a set of scalars obtained from the orthogonal splitting of
the Riemann tensor. As we shall see these scalars have a
distinct physical meaning and appear to be particularly
well suited for the description of self-gravitating fluids.

We shall assume our system to be spherically symmet-
ric. This is a common assumption in the study of self-
gravitating compact objects, since deviations from spheri-
cal symmetry are likely to be incidental rather than basic
features of the process involved (see, however, the discus-
sion in [27–29]).

For sake of generality we shall further assume the fluid
to be locally anisotropic (principal stresses unequal) and
dissipative.

The assumption of local anisotropy of pressure, which
seems to be very sensible to describe matter distribution
under a variety of circumstances, has been proved to be
very useful in the study of relativistic compact objects and
related problems (see [30] for a comprehensive review
until 1997, and [31–72] and references therein, for more
recent developments).
On the other hand, it is already an established fact that

gravitational collapse is a highly dissipative process (see
[73–75] and references therein). This dissipation is re-
quired to account for the very large (negative) binding
energy of the resulting compact object (of the order of
�1053 erg).
In fact, it seems that the only plausible mechanism to

carry away the bulk of the binding energy of the collapsing
star, leading to a neutron star or black hole, is neutrino
emission [76].
As usual, we shall describe dissipation in two limiting

cases. The first case (diffusion) applies whenever the mean
free path of particles responsible for the propagation of
energy is very small as compared with the typical length of
the object. For example, for a main sequence star as the
sun, the mean free path of photons at the center is of the
order of 2 cm. Also, the mean free path of trapped neu-
trinos in compact cores of densities about 1012 g:cm�3

becomes smaller than the size of the stellar core [77,78].
Furthermore, the observational data collected from super-
nova 1987A indicates that the regime of radiation transport
prevailing during the emission process is closer to the
diffusion approximation than to the free-streaming limit
[79]. In this case, it is assumed that the energy flux of
radiation, as that of thermal conduction, is proportional to
the gradient of temperature.
The second case (free streaming), applies when the

mean free path of particles transporting energy is larger
than (or equal to) the typical length of the object. Since
this condition may hold for a large number of stellar
scenarios, it is advisable to include simultaneously both
limiting cases of radiative transport, diffusion, and free
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streaming, allowing for describing a wide range of
situations.

In the next section we shall introduce the relevant physi-
cal variables and deploy the equations for describing a
dissipative self-gravitating locally anisotropic fluid.

As mentioned before, a fundamental role in our study
will be played by a set of scalars derived from the orthogo-
nal splitting of the Riemann tensor. Such a splitting and the
ensuing variables are presented in Sec. III. In Sec. IV the
physical meaning of the above-mentioned scalars is dis-
cussed, and in Sec. V a general method to obtain all static
anisotropic solutions in terms of those scalars is presented.

Finally, the results are discussed in the last section.

II. THE GENERAL FORMALISM

In this section we shall present the physical variables
and the relevant equations for describing a dissipative self-
gravitating locally anisotropic fluid. Here we shall closely
follow the program outlined in [75], thus we refer the
reader to that article for more details.

A. Einstein equations

We consider spherically symmetric distributions of col-
lapsing fluid, which for the sake of completeness we
assume to be locally anisotropic, undergoing dissipation
in the form of heat flow (diffusion limit) and/or free-
streaming radiation (free-streaming limit), bounded by a
spherical surface �.

The line element is given in Schwarzschild-like (non-
comoving) coordinates by

ds2 ¼ e�dt2 � e�dr2 � r2ðd�2 þ sin2�d�2Þ; (1)

where �ðt; rÞ and �ðt; rÞ are functions of their arguments.
We number the coordinates: x0 ¼ t; x1 ¼ r; x2 ¼ �; x3 ¼
�.

The metric (1) has to satisfy Einstein field equations

G�
� ¼ �T�

�; (2)

with � ¼ 8� and which in our case read [3]:

� �T0
0 ¼ � 1

r2
þ e��

�
1

r2
� �0

r

�
; (3)

� �T1
1 ¼ � 1

r2
þ e��

�
1

r2
þ �0

r

�
; (4)

��T2
2 ¼ ��T3

3

¼ � e��

4
ð2 €�þ _�ð _�� _�ÞÞ

þ e��

4

�
2�00 þ �02 � �0�0 þ 2

�0 � �0

r

�
; (5)

� �T10 ¼ �
_�

r
; (6)

where dots and primes stand for partial differentiation with
respect to t and r, respectively. In order to give physical
significance to the T

�
� components we apply the Bondi

approach [3].
Thus, following Bondi, let us introduce purely locally

Minkowski coordinates ð�; x; y; zÞ
d� ¼ e�=2dt; dx ¼ e�=2dr;

dy ¼ rd�; dz ¼ r sin�d�:

Then, denoting the Minkowski components of the en-
ergy tensor by a bar, we have

�T 0
0 ¼ T0

0;
�T1
1 ¼ T1

1 ;
�T2
2 ¼ T2

2 ;

�T3
3 ¼ T3

3 ;
�T01 ¼ e�ð�þ�Þ=2T01:

Next, we suppose that when viewed by an observer
moving relative to these coordinates with proper velocity
! in the radial direction, the physical content of space
consists of an anisotropic fluid of energy density 	, radial
pressure Pr, tangential pressure P?, radial heat flux q, and
unpolarized radiation of energy density 
 traveling in the
radial direction. Thus, when viewed by this (comoving
with the fluid) observer the covariant energy-momentum
tensor in Minkowski coordinates is

	þ 
 �q� 
 0 0
�q� 
 Pr þ 
 0 0

0 0 P? 0
0 0 0 P?

0
BBB@

1
CCCA:

Then a Lorentz transformation gives

T0
0 ¼ �T0

0 ¼
	þ Pr!

2

1�!2
þ 2!q

1�!2
þ 
ð1þ!Þ

1�!
; (7)

T1
1 ¼ �T1

1 ¼ �Pr þ 	!2

1�!2
� 2!q

1�!2
� 
ð1þ!Þ

1�!
; (8)

T2
2 ¼ T3

3 ¼ �T2
2 ¼ �T3

3 ¼ �P?; (9)

T01 ¼ eð�þ�Þ=2 �T01

¼ �ð	þ PrÞ!eð�þ�Þ=2

1�!2
� qeð�þ�Þ=2

1�!2
ð1þ!2Þ

� eð�þ�Þ=2
ð1þ!Þ
1�!

: (10)

Note that the coordinate velocity in the ðt; r; �;�Þ sys-
tem, dr=dt, is related to ! by

! ¼ dr

dt
eð���Þ=2: (11)

Feeding back (7)–(10) into (3)–(6), we get the field
equations in the form

L. HERRERA PHYSICAL REVIEW D 79, 064025 (2009)

064025-2



	þ Pr!
2

1�!2
þ 2!q

1�!2
þ 
ð1þ!Þ

1�!

¼ � 1

�

�
� 1

r2
þ e��

�
1

r2
� �0

r

��
; (12)

Pr þ 	!2

1�!2
þ 2!q

1�!2
þ 
ð1þ!Þ

1�!

¼ � 1

�

�
1

r2
� e��

�
1

r2
þ �0

r

��
; (13)

P? ¼ � 1

�

�
e��

4
ð2 €�þ _�ð _�� _�ÞÞ

� e��

4

�
2�00 þ �02 � �0�0 þ 2

�0 � �0

r

��
; (14)

ð	þ PrÞ!eð�þ�Þ=2

1�!2
þ qeð�þ�Þ=2

1�!2
ð1þ!2Þ

þ eð�þ�Þ=2
ð1þ!Þ
1�!

¼ �
_�

�r
: (15)

Next, the four-velocity vector is defined as

u� ¼
�

e�ð�=2Þ

ð1�!2Þ1=2 ;
!e�ð�=2Þ

ð1�!2Þ1=2 ; 0; 0
�
; (16)

from which we can calculate the four acceleration, a� ¼
u�;�u

�

!a1 ¼ �a0e
ð���Þ=2

¼ � !

1�!2

��
!!0

1�!2
þ �0

2

�

þ eð���Þ=2
�
! _�

2
þ _!

1�!2

��
; (17)

the shear tensor 
��, and the expansion �


�� ¼ u�;� þ u�;� � u�a� � u�a� � 2

3
�h��; (18)

with

h�� ¼ g�� � u�u� � ¼ u
�
;�; (19)

� ¼ e��=2

2ð1�!2Þ1=2
�
_�þ 2! _!

1�!2

�

þ e��=2

2ð1�!2Þ1=2
�
!�0 þ 2!0

1�!2
þ 4!

r

�
; (20)


11 ¼ � 2

3ð1�!2Þ3=2
�
e�e��=2

�
_�þ 2! _!

1�!2

�

þ e�=2
�
!�0 þ 2!0

1�!2
� 2!

r

��
; (21)


22 ¼ � e��r2ð1�!2Þ
2


11; (22)


33 ¼ � e��r2ð1�!2Þ
2

sin2�
11; (23)


00 ¼ !2e��e�
11; (24)


01 ¼ �!eð���Þ=2
11: (25)

We may write the shear tensor also as


�� ¼ 1
2
ðs�s� þ 1

3h��
Þ; (26)

with


 ¼ � 1

ð1�!2Þ1=2
�
e�ð�=2Þ

�
_�þ 2! _!

1�!2

�

þ e�ð�=2Þ
�
!�0 þ 2!0

1�!2
� 2!

r

��
; (27)

and s� being defined by

s� ¼
�

!e�ð�=2Þ

ð1�!2Þ1=2 ;
e�ð�=2Þ

ð1�!2Þ1=2 ; 0; 0
�
; (28)

with the properties s�u� ¼ 0, s�s� ¼ �1.

It will be convenient to write the energy-momentum
tensor (7)–(10) as

T
�
� ¼ ~	u�u� � P̂h

�
� þ�

�
� þ ~qðs�u� þ s�u

�Þ; (29)

with

�
�
� ¼ �

�
s�s� þ 1

3
h
�
�

�
; ~q� ¼ ~qs�;

P̂ ¼ ~Pr þ 2P?
3

; ~	 ¼ 	þ 
; ~Pr ¼ Pr þ 
;

~q ¼ qþ 
; � ¼ ~Pr � P?:

For the exterior of the fluid distribution, the spacetime is
that of Vaidya, given by

ds2 ¼
�
1� 2MðuÞ

R

�
du2 þ 2dudR

�R2ðd�2 þ sin2�d�2Þ; (30)

where u is a coordinate related to the retarded time, such
that u ¼ constant is (asymptotically) a null cone open to
the future and R is a null coordinate (gRR ¼ 0).
The two coordinate systems ðt; r; �; �Þ and ðu;R; �; �Þ

are related at the boundary surface by

u ¼ t� r� 2M ln

�
r

2M
� 1

�
; (31)

R ¼ r: (32)

In order to match smoothly the two metrics above on the
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boundary surface r ¼ r�ðtÞ, we require the continuity of
the first and the second fundamental forms across that
surface, yielding (see [15] for details)

e�� ¼ 1� 2M

R�

; (33)

e��� ¼ 1� 2M

R�

; (34)

½Pr�� ¼ ½q��; (35)

where, from now on, subscript� indicates that the quantity
is evaluated on the boundary surface �, and (35) expresses
the discontinuity of the radial pressure in the presence of
heat flow, which is a well-known result [80].

Equations (33)–(35) are the necessary and sufficient
conditions for a smooth matching of the two metrics (1)
and (30) on �.

B. The Riemann and the Weyl tensor

We know that the Riemann tensor may be expressed
through the Weyl tensor C	

���, the Ricci tensor R��, and

the scalar curvature R as

R	
��� ¼ C	

��� þ 1
2R

	
�g�� � 1

2R���
	
� þ 1

2R���
	
�

� 1
2R

	
�g�� � 1

6Rð�	
�g�� � g���

	
�Þ: (36)

In the spherically symmetric case, the magnetic part of
the Weyl tensor vanishes and we can express the Weyl
tensor in terms of its electric part (E�� ¼ C����u

�u�) as

C���� ¼ ðg����g���� � ����������Þu�u�E��; (37)

with g���� ¼ g��g�� � g��g��, and ����� denoting the

Levi-Civita tensor. Observe that E�� may also be written

as

E�� ¼ E

�
s�s� þ 1

3
h��

�
; (38)

with

E ¼ e��

4

�
€�þ

_�ð _�� _�Þ
2

�
� e��

4

�
�00 þ �02 � �0�0

2

� �0 � �0

r
þ 2ð1� e�Þ

r2

�
; (39)

satisfying the following properties:

E�
� ¼ 0; E�� ¼ Eð��Þ; E��u

� ¼ 0: (40)

C. The mass function and the Tolman mass

Here we shall introduce the two most commonly used
definitions for the mass of a sphere interior to the surface
�, as well as some interesting relationships between them
and the Weyl tensor. These will be used later to provide

physical meaning to the five scalars quantities which will
be derived from the orthogonal splitting of the Riemann
tensor.

1. The mass function

For the line element (1) the mass function m is defined
by

R3
232 ¼ 1� e�� ¼ 2m

r
: (41)

Then, using (2), (36), and (38) we may write

3m

r3
¼ �

2
~	þ �

2
ðP? � ~PrÞ þ E: (42)

Observe that from (3) and (41) the mass function may also
be written as

m ¼ �

2

Z r

0
r2T0

0dr: (43)

Another interesting relationship for the mass function
may be obtained as follows. From field equations (12)–(14)
, (36), (38), and (43) we get

m ¼ �

6
r3ðT0

0 þ T1
1 � T2

2Þ þ
r3E

3
: (44)

Next, differentiating (44) with respect to r and using
(43), it follows�

r3E

3

�0 ¼ ��

6
r3ðT0

0Þ0 þ
�

6
½r3ðT2

2 � T1
1Þ�0; (45)

and integrating

E ¼ � �

2r3

Z r

0
r3ðT0

0Þ0drþ
�

2
ðT2

2 � T1
1Þ: (46)

Finally, inserting (46) into (44) we obtain

mðr; tÞ ¼ �

6
r3T0

0 �
�

6

Z r

0
r3ðT0

0Þ0dr: (47)

Now, there are three specific situations when T0
0 ¼ ~	

and T2
2 � T1

1 ¼ �, namely:
(i) In the static regime, i.e. when ! as well as all time

derivatives vanish.
(ii) In the quasistatic regime, where (see [15])

!2 � _! � €� � €� � _� _� � _�2 � 0: (48)

(iii) Immediately after the system departs from equilib-
rium, i.e. on a time scale of the order of (or smaller
than) the hydrostatic time, in which case ! � _� �
_� � 0; _! � 0.

Thus in the three cases above, (46) and (47) become

E ¼ � �

2r3

Z r

0
r3ð~	Þ0drþ �

2
�; (49)
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mðr; tÞ ¼ �

6
r3 ~	� �

6

Z r

0
r3ð~	Þ0dr: (50)

The first of these equations relates the Weyl tensor to
two fundamental physical properties of the fluid distribu-
tion, namely, density inhomogeneity and local anisotropy
of pressure. The second one expresses the mass function in
terms of its value in the case of a homogeneous energy
density distribution, plus the change induced by density
inhomogeneity.

2. Tolman mass

An alternative definition to describe the energy content
of a fluid sphere was proposed by Tolman many years ago.
The Tolman mass for a spherically symmetric distribution
of matter is given by (Eq. 24 in [81])

mT ¼ �

2

Z r�

0
r2eð�þ�Þ=2ðT0

0 � T1
1 � 2T2

2Þdrþ
1

2

�
Z r�

0
r2eð�þ�Þ=2 @

@t

�
@L

@½@ðg�� ffiffiffiffiffiffiffi�g
p Þ=@t�

�
g��dr;

(51)

where L denotes the usual gravitational Lagrangian density
(Eq. (10) in [81]). Although Tolman’s formula was intro-
duced as a measure of the total energy of the system, with
no commitment to its localization, we shall define the mass
within a sphere of radius r, completely inside �, as

mT ¼ �

2

Z r

0
r2eð�þ�Þ=2ðT0

0 � T1
1 � 2T2

2Þdrþ
1

2

�
Z r

0
r2eð�þ�Þ=2 @

@t

�
@L

@½@ðg�� ffiffiffiffiffiffiffi�g
p Þ=@t�

�
g��dr:

(52)

This extension of the global concept of energy to a local
level [82] is suggested by the conspicuous role played by
mT as the ‘‘active gravitational mass,’’ which will be
exhibited below.

Now, it can be shown after some lengthy calculations
(see [83] for details) that

mT ¼ eð�þ�Þ=2
�
mðr; tÞ � �

2
r3T1

1

�
: (53)

Replacing T1
1 by (4) and m by (41), one also finds

mT ¼ eð���Þ=2�0 r
2

2
: (54)

This last equation brings out the physical meaning ofmT as
the active gravitational mass. Indeed, as follows from (17),
the gravitational acceleration (a ¼ �s�a�) of a test parti-
cle, instantaneously at rest in a static gravitational field, is
given by (see also [84])

a ¼ e��=2�0

2
¼ e��=2mT

r2
: (55)

Another expression for mT , which appears to be more
suitable for the discussion in Sec. IV, may be obtained as
follows. Taking the r derivative of (54) (see [83] for details,
but notice some minor misprints in Eqs. (31) and (38) in
that reference as well as slight changes in notation) and
using (44) and (53) and field equations, we obtain

rm0
T � 3mT ¼ eð�þ�Þ=2r3

�
�

2
ðT1

1 � T2
2Þ � E

�

þ eð���Þ=2r3

2

�
€�þ

_�2

2
�

_� _�

2

�
; (56)

which can be formally integrated to give

mT ¼ ðmTÞ�
�
r

r�

�
3 � r3

Z r�

r

eð�þ�Þ=2

r

�
�

2
ðT1

1 � T2
2Þ � E

�
dr

� r3
Z r�

r

eð���Þ=2

2r

�
€�þ

_�2

2
�

_� _�

2

�
dr; (57)

or, using (46)

mT ¼ ðmTÞ�
�
r

r�

�
3 � r3

Z r�

r
eð�þ�Þ=2

�
�

r
ðT1

1 � T2
2Þ

þ 1

r4

Z r

0

�

2
~r3ðT0

0Þ0d~r
�
dr� r3

Z r�

r

eð���Þ=2

2r

�
�
€�þ

_�2

2
�

_� _�

2

�
dr: (58)

For the three cases considered above (i.e. the static
regime, the quasistatic regime, and immediately after the
system departs from equilibrium) we have T0

0 ¼ ~	 and

T2
2 � T1

1 ¼ �. Thus, in any of these cases, (58) expresses
the Tolman mass of a sphere of radius r interior to �, in
terms of its value in the case of a homogeneous energy
density and locally isotropic fluid in equilibrium (first
term), plus the change induced by density inhomogeneity
and local anisotropy (second term), plus changes derived
from the fact that the system is not in equilibrium (last
term). For a discussion on this last term, see [83]. We shall
come back to this expression in Sec. IV.
The important point to stress here is that the second

integral in (57) (or (58)) describes the contribution of
density inhomogeneity and local anisotropy of pressure
to the Tolman mass. It is also worth noticing that when
the system is evaluated immediately after its departure
from equilibrium, the value of ! remains unchanged.
Therefore the physical meaning of mT , as the active gravi-
tational mass obtained for the static (and quasistatic) case,
may be safely extrapolated to the nonstatic case within that
(hydrostatic) time scale.

D. Structure and evolution equations

As shown in [75] the following set of equations may be
derived to describe the self-gravitating fluid:
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~	 � þ ð~	þ ~PrÞ� ¼ 2

3

�
�þ 


2

�
�� ~qy � 2~q

�
aþ s1

r

�
;

(59)

~P y
r þ ð~	þ ~PrÞaþ 2s1

r
� ¼ ~q

3
ð
� 4�Þ � ~q�; (60)

�� þ �2

3
þ 
2

6
� ay � a2 � 2as1

r

¼ ��

2
ð~	þ 3 ~PrÞ þ ��; (61)

�



2
þ �

�y ¼ � 3
s1

2r
þ 3�

2
~q; (62)

Eþ �

2
� ¼ �ay � a2 � 
�

2
� �


3
þ as1

r
þ 
2

12
; (63)

�
�

2
~Pr þ 3m

r3

��
�þ 


2

�
þ

�
E� �

2
�þ �

2
~	

�� ¼ � 3�s1

2r
~q;

(64)

�
Eþ �

2
~	� �

2
�

�y ¼ 3s1

r

�
�

2
�� E

�
þ �

2
~q

�



2
þ �

�
;

(65)

3m

r3
¼ �

2
~	þ �

2
ðP? � ~PrÞ þ E; (66)

with fy ¼ f;�s
�, f� ¼ f;�u

�, a� ¼ as�, and




2
þ � ¼ 3!s1

r
: (67)

These equations are not independent and, of course,
provide no more information than the one contained in
Einstein equations, however, we present them all, since
depending on the problem under consideration, it may be
more advantageous using one set instead of the other.

The first two equations come from the ‘‘conservation’’
equations T�

�;� ¼ 0. Equations (61) (Raychaudhuri equa-

tion) and (62) are derived from the Ricci identities,
whereas Eq. (63) is a consequence of (2) and (36) and
Ricci identities. The next two equations follow from the
Bianchi identities written in terms of the Weyl tensor (see
[75] for details). Finally, (66) is just (42).

We shall next present the orthogonal splitting of the
Riemann tensor and express it in terms of the variables
considered so far.

III. THE ORTHOGONAL SPLITTING OF THE
RIEMANN TENSOR

The orthogonal splitting of the Riemann tensor was first
considered by Bel [85], here we shall follow closely (with
some changes) the notation in [86].

Thus following Bel, let us introduce the following ten-
sors:

Y�� ¼ R����u
�u�; (68)

Z�� ¼�
R����u

�u� ¼ 1
2���
	R


	
��u

�u�; (69)

X�� ¼�
R�
����u

�u� ¼ 1
2���


	R�

	��u

�u�; (70)

with R�
���� ¼ 1

2�
	��R��

	.

It can be shown that the Riemann tensor can be ex-
pressed through these tensors in what is called the orthogo-
nal splitting of the Riemann tensor (see [86] for details).
Now, instead of using the explicit form of the splitting of
the Riemann tensor (Eq. (4.6) in [86]), we shall proceed as
follows.
Using the Einstein equations we may write (36) as

R��
�� ¼ C��

�� þ 2�T½�
½��

��
��

þ �T

�
1

3
��

½��
�
�� � �½�

½��
��

��

�
; (71)

then feeding back (29) into (71) we split the Riemann
tensor as

R��
�� ¼ R��

ðIÞ�� þ R��
ðIIÞ�� þ R��

ðIIIÞ��; (72)

where

R��
ðIÞ�� ¼ 2�~	u½�u½����

�� � 2�P̂h½�½��
��

��

þ �ð~	� 3P̂Þ
�
1

3
��

½��
�
�� � �½�

½��
��

��

�
R��
ðIIÞ�� ¼ 2�ð�½�

½��
��

�� þ ~qs½�u½����
�� þ ~qu½�s½����

��Þ
R��
ðIIIÞ�� ¼ 4u½�u½�E��

�� � 
���
���E
�� (73)

with


��� ¼ u������; 
���u
� ¼ 0; (74)

and where the vanishing, due to the spherical symmetry, of
the magnetic part of the Weyl tensor (H�� ¼� C����u

�u�)

has been used.
From (74) it follows that 
���
��� ¼ u
u	�

���
	 �
���,

producing


���
��� ¼ ��
�h

�
� � �

�
�h

�
� þ u�ðu���

� � �
�
�u

�Þ; (75)

or, contracting � with � in (75)


���
��� ¼ �2h��: (76)

Using the results above, we can now find the explicit
expressions for the three tensors Y��, Z��, and X�� in

terms of the physical variables, and we obtain

Y�� ¼ �

6
ð~	þ 3P̂Þh�� þ �

2
��� þ E��; (77)
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Z�� ¼ �

2
~qs�
���; (78)

and

X�� ¼ �

3
~	h�� þ �

2
��� � E��: (79)

From the above, we can obtain expressions for two quan-
tities endowed with a profound physical meaning (see [86–
88] and references therein). They appear in the orthogonal
splitting of the Bel tensor [89]. One of them is the Bel
superenergy, defined by

�W ¼ 1
2ðX��X�� þ Y��Y��Þ þ Z��Z��; (80)

the other is the super-Poynting vector, defined as

�P� ¼ 
���ðY�
�Z

�� � X�
�Z

��Þ: (81)

Similar quantities may also be defined from the orthogo-
nal splitting of the Bel-Robinson tensor [90]. However, it
should be noticed that due to the vanishing of the magnetic
part of the Weyl tensor in the spherically symmetric case,
the super-Poynting vector associated to the Bel-Robinson
tensor vanishes. Also, in the conformally flat case the
superenergy associated to the Bel-Robinson tensor van-
ishes. In other words, these two definitions cover a much
wider range of situations, when defined from the Bel
tensor. Of course, in vacuum both sets of definitions coin-
cide. Then, from (80) and (81), using (77)–(79) we find

�W ¼ �2

24
ð5~	2 þ 6~	 P̂þ9P̂2 þ 4�2Þ þ 2

3
E2 þ �2

2
~q2;

(82)

�P� ¼ �2

2
~qð~	þ ~PrÞs�: (83)

Observe that the superenergy associated to the Bel-
Robinson tensor (W), which is defined by

W ¼ E��E��; (84)

(assuming the magnetic part of the Weyl tensor vanishes,
as it happens in our case), takes the form

W ¼ 2
3E

2: (85)

Combining (85) with (82) we found

�W �W ¼ �2

24
ð5~	2 þ 6~	 P̂þ9P̂2 þ 4�2Þ þ �2

2
~q2: (86)

It is also worth noticing that the super-Poynting vector
vanishes if and only if there is not dissipative flux. This
fact clearly illustrates the physical meaning of this vector
and fully justifies its name.

A. Five relevant scalars

We shall now derive five scalar quantities (hereafter
referred to as structure scalars), in terms of which we shall
write our Eqs. (59)–(66).
Let us first observe that tensors X�� and Y�� can be

splitted in terms of their traces and the corresponding trace-
free tensor, i.e.

X�� ¼ 1
3 TrXh�� þ Xh��i; (87)

with TrX ¼ X�
� and

Xh��i ¼ h��h��ðX�� � 1
3 TrXh��Þ: (88)

From (79) we have

Tr X � XT ¼ �~	; (89)

and

Xh��i ¼ XTF

�
s�s� þ h��

3

�
; (90)

where

XTF �
�
��

2
� E

�
: (91)

In a similar way we obtain

Tr Y � YT ¼ �

2
ð~	þ 3 ~Pr � 2�Þ (92)

and

Yh��i ¼ YTF

�
s�s� þ h��

3

�
; (93)

with

YTF �
�
��

2
þ E

�
: (94)

Finally a fifth scalar may be defined from (78) as

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z��Z

��
q

¼ �ffiffiffi
2

p ~q: (95)

From the above it follows that local anisotropy of pressure
is determined by XTF and YTF by

�� ¼ XTF þ YTF: (96)

We can now rewrite Eqs. (59)–(66) in terms of our five
structure scalars ðXT; XTF; YT; YTF; ZÞ:

�

2
~	� þ 1

3
ðXT þ YT þ XTF þ YTFÞ�

¼ 1

3

�
�þ 


2

�
ðXTF þ YTFÞ �

ffiffiffi
2

p �
Zy

2
þ aZþ s1

r
Z

�
;

(97)
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�

2
~Py
r þ 1

3
ðXT þ YT þ XTF þ YTFÞaþ s1

r
ðXTF þ YTFÞ

¼
ffiffiffi
2

p
3

�



2
� 2�

�
Z� ffiffiffi

2
p Z�

2
; (98)

�� þ 1

3
�2 þ 
2

6
� ay � a2 � 2

r
as1 ¼ �YT; (99)

�



2
þ �

�y ¼ � 3
s1

2r
þ 3

ffiffiffi
2

p
2

Z (100)

ay þ a2 þ 
�

2
þ 1

3
�
� a

r
s1 � 1

12

2 ¼ �YTF; (101)

1

3
½ðYT þ YTFÞ � 2XTF þ XT�

�
�þ 1

2



�
þ

�
XT

2
� XTF

��
¼ � 3

2r
s1

ffiffiffi
2

p
Z; (102)

�
�

2
~	� XTF

�y ¼ 3s1

r
XTF þ

ffiffiffi
2

p
2

Z

�



2
þ �

�
; (103)

3m

r3
¼ XT

2
� XTF: (104)

Whereas for the Bel superenergy and the super-Poynting
vector we find

�W ¼ 1
6ðX2

T þ Y2
TÞ þ 1

3ðX2
TF þ Y2

TFÞ þ Z2 (105)

and

�P� ¼
ffiffi
2

p
3 ZðXT þ YT þ XTF þ YTFÞs�: (106)

B. On the physical meaning of the structure scalars

Let us now focus on the physical meaning of the scalars
introduced in the previous subsection.

The physical meaning of XT and Z is evident and does
not require further clarification.

Let us now consider XTF. From (103) it follows that in
the absence of dissipation (Z ¼ 0), (using the regular
center condition),

~	 y ¼ 0 , XTF ¼ 0: (107)

In other words, in the absence of dissipation, XTF con-
trols inhomogeneities in the energy density.

The role of density inhomogeneities in the collapse of
dust [91] and, in particular, in the formation of naked
singularities [92–99], has been extensively discussed in
the literature.

In the nondissipative locally isotropic case, we obtain
from (103), ~	y ¼ 0 , E ¼ 0. This link between the Weyl
tensor and energy density inhomogeneity and the fact that
tidal forces tend to make the gravitating fluid more inho-

mogeneous as the evolution proceeds, led Penrose to pro-
pose a gravitational arrow of time in terms of the Weyl
tensor [100] (see also [101] and references therein).
However, the fact that such a relationship is no longer

valid in the presence of local anisotropy of the pressure
and/or dissipative processes, already discussed in [75],
explains its failure in scenarios where the above-mentioned
factors are present [102].
Here we see that the single scalar XTF (in the absence of

dissipation) controls density inhomogeneities and there-
fore should be the fundamental ingredient in the definition
of a gravitational arrow of time. If dissipative processes are
present, the scalar Z should be incorporated into that
definition.
To establish the physical meaning of YT and YTF let us

get back to Eqs. (57), using (94) (for the three cases
considered in II C 1) we get

mT ¼ ðmTÞ�
�
r

r�

�
3 þ r3

Z r�

r

eð�þ�Þ=2

r
YTFdr

� r3
Z r�

r

eð���Þ=2

2r
€�dr: (108)

Comparing the above expression with (58) we see that
YTF describes the influence of the local anisotropy of
pressure and density inhomogeneity on the Tolman mass.
It is also worth recalling that YTF, together with XTF,
determines the local anisotropy of the fluid distribution.
Finally, we observe that for a system in equilibrium or

quasiequilibrium, the Tolman mass (52) becomes

mT ¼ �

2

Z r

0
r2eð�þ�Þ=2ðT0

0 � T1
1 � 2T2

2Þdr; (109)

which for those two regimes may be written as

mT ¼
Z r

0
r2eð�þ�Þ=2YTdr: (110)

Thus YT appears to be proportional to the Tolman mass
‘‘density’’ for systems in equilibriun or quasiequilibrium.

IV. ALL STATIC ANISOTROPIC SPHERES

In this section we shall restrict ourselves to static sys-
tems. We shall see how the metric corresponding to any
static anisotropic sphere can be expressed in terms of the
structure scalars. We shall explore three possible
alternatives.

A. First alternative

From (41) and (104) it follows at once that

e�� ¼ 1� 2
3r

2ð12XT � XTFÞ: (111)

Next, using (99) and (101) in the static case, we may write

a ¼ r

3s1
ðYTF þ YTÞ: (112)
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On the other hand we have in the static case

a ¼ e�ð�=2Þ �
0

2
; s1 ¼ e�ð�=2Þ; (113)

where (17) and (28) have been used. Feeding back (113)
into (112) and integrating we obtain

e� ¼ Ce
R
ð2r=3ÞðYTFþYT Þ=ð1�ð2r2=3Þðð1=2ÞXT�XTFÞÞdr; (114)

where C is a constant of integration easily obtained from
(33).

Then, using (114) and (118) the line element (1) in the
static case may be written as

ds2 ¼ Ce
R
ð2r=3ÞðYTFþYT Þ=ð1�ð2r2=3Þðð1=2ÞXT�XTFÞÞdrdt2

� 1

1� 2
3 r

2ð12XT � XTFÞ
dr2 � r2ðd�2 þ sin2�d�2Þ:

(115)

Thus we see that all possible spacetimes generated by
static anisotropic fluids are fully determined by two sca-
lars, namely, YTF þ YT and 1

2XT � XTF.

B. Second alternative

Alternatively we may proceed as follows. From (43),
(89), and (104) we obtain

mðrÞ ¼ r3

3

�
m0

r2
� XTF

�
; (116)

which after integration produces

mðrÞ ¼ r3
�Z XTF

r
drþ c1

�
: (117)

Or, using (41)

e�� ¼ 1� 2r2
�Z XTF

r
drþ c1

�
; (118)

where the constant of integration c1 may be easily calcu-
lated from (34).

Next, the field equation (4) in the static case may be
written as

�

2
Pr ¼ 1

2

e�� � 1

r2
þ e�� �

0

2r
; (119)

or, using (41), (92), (94), (112), and (113),

�

2
Pr þ m

r3
¼ e�� �

0

2r
¼ Yh; (120)

with

Yh ¼ 1
3ðYT þ YTFÞ: (121)

We can now integrate (120) to obtain

e� ¼ c2e
R

2rYh=ð1�2r2ð
R
ðXTF=rÞdrþc1ÞÞdr; (122)

where the constant of integration c2 may be obtained from
(33).
Thus using (118) and (122), the line element (1) in the

static case may be written as

ds2 ¼ c2e
R

2rYh=ð1�2r2ð
R
ðXTF=rÞdrþc1ÞÞdrdt2

� 1

1� 2r2ðR XTF

r drþ c1Þ
dr2

� r2ðd�2 þ sin2�d�2Þ; (123)

allowing for the representation of all possible metrics in
terms of two scalar functions, Yh and XTF.

C. Third alternative

In the two previous alternatives we have seen that all line
elements corresponding to an anisotropic fluid may be
determined by two scalars. However, in both cases these
two scalars are a combination of four (alternative I) or three
(alternative II) of our structure scalars. Here we shall
present a third alternative, which allows for describing
any line element in terms of only two structure scalars,
namely XTF and YTF.
Now, in the static case we may write from (39),

E¼�e��

2

�
�00

2
þ

�
�0

2

�
2 þ �0

2

�
��0

2
� 1

r

�
þ �0

2r
þ 1� e�

r2

�
;

(124)

then introducing new variables

y ¼ e��;
�0

2
¼ u0

u
; (125)

(124) becomes

y0 þ 2y
u00 � u0

r þ u
r2

u0 � u
r

¼ 2uð1� 2r2EÞ
r2ðu0 � u

rÞ
; (126)

which after integration yields

y ¼ e�
R

kðrÞdr
�Z

e
R

kðrÞdrfðrÞdrþ C1

�
; (127)

with

kðrÞ ¼ 2
d

dr

�
lnðu0 � u

r
Þ
�
; fðrÞ ¼ 2uð1� 2r2EÞ

r2ðu0 � u
rÞ

;

and where C1 is a constant of integration easily obtained
from the junction conditions.
Then, getting back to original variables, (127) becomes

�0

2
�1

r
¼e�=2

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�2r2EÞþe��r2C1þe��r2

Z
ð2r2EÞ0e

�

r2
dr

s
:

(128)
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Next let us introduce the new variable z by

e� ¼ e2
R

zdr

r2
; (129)

producing

zðrÞ ¼ �0

2
þ 1

r
: (130)

Using (129) and (130) in (128) we get a link between E and z

zðrÞ ¼ 2

r
þ e�=2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2r2EÞ þ r4e�

R
2zðrÞdrC1 þ r4e�

R
2zðrÞdr Z ð2r2EÞ0 e

R
2zðrÞdr

r4
dr

vuut
: (131)

Next, from field equations (4) and (5) it follows

�� ¼ e��

�
��00

2
�

�
�0

2

�
2 þ �0

2r
þ 1

r2

�
þ e�� �

0

2

�
�0

2
þ 1

r

�
� 1

r2
; (132)

which, in terms of the variables z and y introduced above, becomes

y0 þ y

�
2z0

z
þ 2z� 6

r
þ 4

r2z

�
¼ � 2

z

�
1

r2
þ ��

�
: (133)

Integrating (133) we obtain for �:

e�ðrÞ ¼ z2ðrÞe
R
ðð4=r2zðrÞÞþ2zðrÞÞdr

r6ð�2
R zðrÞð1þ��ðrÞr2Þe

R
ðð4=r2zðrÞÞþ2zðrÞÞdr

r8
drþ CÞ

; (134)

where C is a constant of integration.
In terms of XTF and YTF, Eqs. (131) and (134) may be written as

zðrÞ ¼ 2

r
þ e�=2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� r2ðYTF � XTFÞ� þ r4e�

R
2zðrÞdrðC1 þ

Z
½r2ðYTF � XTFÞ�0 e

R
2zðrÞdr

r4
dr

vuut
; (135)

and

e�ðrÞ ¼ z2ðrÞe
R
ðð4=r2zðrÞÞþ2zðrÞÞdr

r6ð�2
R zðrÞ½1þðXTFþYTFÞr2Þe

R
ðð4=r2zðrÞÞþ2zðrÞÞdr

r8
drþ CÞ

:

(136)

Thus, given XTF and YTF and using (136) in (135) we
obtain z, which by virtue of (129) allows to find �. Then
using z in (136) determines �.

This approach is essentially equivalent to the method for
obtaining static anisotropic solutions presented in [68] (see
also [103]).

As a simple example let us consider all conformally flat
anisotropic fluids. Conformal flatness implies YTF ¼ XTF.
Feeding back this condition into (135) we obtain for z

z ¼ 2

r
þ e�=2

r
tanh

�Z e�=2

r
dr

�
: (137)

In order to specify a single solution we have to provide
another condition on our scalars. Thus, for example, if we

assume further the energy density to be constant, then
XTF ¼ 0 implying YTF ¼ 0, leading to the well-known
Schwarzschild interior solution.

V. CONCLUSIONS

We have presented a systematic study of spherically
symmetric self-gravitating relativistic fluids, based on sca-
lars functions derived from the orthogonal splitting of the
Riemann tensor. In the most general case (dissipative and
anisotropic fluid) we have five scalars, which reduce to
two, in the case of dissipationless dust and static aniso-
tropic fluids, and to one for static isotropic fluids.
The motivation to present such a study and to consider

further these scalars in the study of self-gravitating objects
stems from their distinct physical meaning. As we have
seen, two of them (XT and Z) define the energy density and
the dissipative flux, respectively. In the absence of dissi-
pation, XTF controls the inhomogeneity of energy density
and therefore is the relevant quantity in any definition of a
gravitational arrow of time à la Penrose. Of course, in the
dissipative case Z must also enter into that definition.
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The two scalars YTF and YT are related in a conspicuous
way to the Tolman mass. On the one hand YTF describes
the influence of both energy density inhomogeneity and
local anisotropy of pressure on the Tolman mass. On the
other hand YT acts as a Tolman mass density. It is worth
noticing that these two scalars are the only ones that appear
in the ‘‘kinematical’’ Eqs. (99) and (101). Also observe that
Z is the only structure scalar appearing in (100).

In the static case, Einstein equations reduce to three
ordinary differential equations for five variables
ð	; Pr; P?; �; �Þ, implying that any specific solution is

determined by two scalar functions. This was illustrated
in the three subsections above. Furthermore, these two
scalar functions may be XTF and YTF as shown in the third
alternative developed in subsection IVC. This brings out
further the physical relevance of the structure scalars.
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[86] A. Garcı́a-Parrado Gomez Lobo, Classical Quantum

Gravity 25, 015006 (2008).
[87] J.M. Senovilla, Classical Quantum Gravity 17, 2799

(2000).
[88] L. Herrera, A. Di Prisco, and J. Carot, Phys. Rev. D 76,

044012 (2007).
[89] L. Bel, C. R. Acad. Sci. Paris Ser. IV 248, 1297 (1959).
[90] L. Bel, C. R. Acad. Sci. Paris Ser. IV 247, 1094 (1958);

Cahiers de Physique 16, 59 (1962); Gen. Relativ. Gravit.
32, 2047 (2000).

[91] F. Mena and R. Tavakol, Classical Quantum Gravity 16,
435 (1999).

[92] D.M. Eardley and L. Smarr, Phys. Rev. D 19, 2239 (1979).
[93] D. Christodoulou, Commun. Math. Phys. 93, 171 (1984).
[94] R. P. A. C. Newman, Classical Quantum Gravity 3, 527

(1986).
[95] B. Waugh and K. Lake, Phys. Rev. D 38, 1315 (1988).
[96] I. Dwivedi and P. Joshi, Classical Quantum Gravity 9, L69

(1992).
[97] P. S. Joshi and I. H. Dwivedi, Phys. Rev. D 47, 5357

(1993).
[98] T. P. Singh and P. Joshi, Classical Quantum Gravity 13,

559 (1996).
[99] P. Joshi, N. Dadhich, and R. Maartens, Phys. Rev. D 65,

101501 (2002).
[100] R. Penrose, General Relativity, An Einstein Centenary

Survey, edited by S.W. Hawking and W. Israel
(Cambridge University Press, Cambridge, 1979), p. 581–
638.

[101] J. Wainwright, Gen. Relativ. Gravit. 16, 657 (1984); S.W.
Goode and J. Wainwright, Classical Quantum Gravity 2,
99 (1985); W.B. Bonnor, Phys. Lett. A 112, 26 (1985).

[102] W.B. Bonnor, Phys. Lett. 122A, 305 (1987); S.W. Goode,
A. Coley, and J. Wainwright, Classical Quantum Gravity
9, 445 (1992); N. Pelavas and K. Lake, Phys. Rev. D 62,
044009 (2000).

[103] K. Lake, Phys. Rev. Lett. 92, 051101 (2004).

L. HERRERA PHYSICAL REVIEW D 79, 064025 (2009)

064025-12


