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We present a study of scattering of massless planar scalar waves by a charged nonrotating black hole.

Partial wave methods are applied to compute scattering and absorption cross sections, for a range of

incident wavelengths. We compare our numerical results with semiclassical approximations from a

geodesic analysis, and find excellent agreement. The glory in the backward direction is studied, and its

properties are shown to be related to the properties of the photon orbit. The effects of the black hole charge

upon scattering and absorption are examined in detail. As the charge of the black hole is increased, we find

that the absorption cross section decreases, and the angular width of the interference fringes of the

scattering cross section at large angles increases. In particular, the glory spot in the backward direction

becomes wider. We interpret these effects under the light of our geodesic analysis.
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I. INTRODUCTION

Almost a century ago, Schwarzschild discovered a
pleasingly simple exact solution to Einstein’s gravitational
field equations. Ever since, exact solutions have been
cherished by theoretical physicists as islands of refuge
[1], that is to say, natural harbors, from which the choppy
waters of the nonlinear dynamical theory may be safely
explored.

Exact black hole solutions are both elegant and simple.
Members of the Kerr-Newman family depend on just three
numbers: massM, chargeQ, and angular momentum J [2].
Uniqueness and stability proofs suggest that these simple
stationary spacetimes arise as the generic final outcomes
from complicated dynamical processes such as stellar col-
lapse [3].

To examine dynamics, one may try perturbing a black
hole away from its stationary configuration. The interac-
tion of fields with Kerr-Newman black holes is of relevance
to questions about formation, stability, and gravitational
wave emission. For example, it is now well established that
black holes have no hair; in other words, all long-ranged
classical fields (‘‘hair’’) must decay away [4].

In the 1970s and 1980s, significant effort was devoted to
the study of the scattering and absorption of planar waves
that impinge upon black holes in vacuum (cf., e.g., Ref. [5]
and references therein). This subject has also received
attention in recent years (e.g., see Refs. [6–10]). In the
standard scenario, authors consider a black hole irradiated

by a long-lasting monochromatic plane wave of frequency
! which is incident from infinity. Flux is absorbed and
scattered, and, if the wave has intrinsic spin, polarized. The
resulting scattering pattern may be interpreted as the sig-
nature of the black hole. Its features depend primarily upon
the dimensionless coupling !M. The large-angle scatter-
ing pattern, in particular, the so-called glory in the back-
ward direction, is inextricably linked to the near-horizon
geometry of the hole. It is conceivable that such patterns
may one day be observed experimentally at gravitational
wave detectors.
Although Reissner-Nordström black holes have not re-

ceived the same degree of attention as Schwarzschild and
Kerr black holes, some effort has been devoted to study the
emission and absorption properties of charged black holes.
In 1977, Page [11] considered the Hawking emission rates
from a nonrotating black hole of small charge, calculated
for electrons and muons and their antiparticles. Absorption
properties of massive scalars by Reissner-Nordström black
holes were analyzed by Jung, Kim, and Park [12]. The
absorption and emission spectra of higher-dimensional
static charged black holes have been computed by Jung
and Park both in the brane and in the bulk for the massless
scalar field [13]. The electromagnetic absorption cross
section of Reissner-Nordström black holes has been
studied by two of the present authors [14].
Notwithstanding, to the best of our knowledge, there are
no previous works devoted to planar wave scattering by
Reissner-Nordström black holes in the literature. The
present paper is dedicated to the study of scattering and
absorption of massless scalar waves by static charged black
holes in four dimensions.
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The Reissner-Nordström spacetime line element is given
by

ds2 ¼ fðrÞdt2 � ½fðrÞ��1dr2 � r2ðd�2 þ sin2�d�2Þ;
(1)

where fðrÞ ¼ ð1� rþ=rÞð1� r�=rÞ with r� ¼
M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 �Q2
p

. We use natural units with c ¼ G ¼ 1
and the metric signature (þ���).

In this work, we exhibit results for three different abso-
lute values of the black hole charge, namely,Q ¼ 0, jQj ¼
0:5M, and jQj ¼ M. Here, Q ¼ 0 is the Schwarzschild
case which was investigated in Refs. [15,16], jQj ¼ 0:5M
is a typical Reissner-Nordström black hole example, and
jQj ¼ M is the extreme Reissner-Nordström black hole
case. Our formalism can be used to obtain results for
arbitrary values of the ratio q � jQj=M, in the interval 0 �
q � 1.

The remainder of the paper is organized as follows: In
Sec. II we consider the geodesics of the Reissner-
Nordström spacetime. The partial wave approach is out-
lined in Sec. III, where we give expressions for the mass-
less scalar field, and the absorption and scattering cross
sections. Our numerical results are presented in Sec. IV.
We conclude with some final remarks in Sec. V.

II. CLASSICAL ANALYSIS

Here we analyze geodesics in the Reissner-Nordström
spacetime. The key results obtained in this section are used
to check the validity of our numerical results, obtained
from the partial wave scattering analysis of Sec. III.

The geodesics of the Reissner-Nordström spacetime can
be found by using Eq. (1) to write

_s 2 ¼ fðrÞ _t2 � ½fðrÞ��1 _r2 � r2ð _�2 þ _�2sin2�Þ ¼ �; (2)

where the overdot denotes the derivative with respect to an
affine parameter. For massive particles we have � ¼ 1, and
for massless particles we have � ¼ 0.

The orbit equation for massless particles is [17]�
du

d�

�
2 ¼ 1

b2
� u2 þ 2Mu3 �Q2u4; (3)

where u ¼ 1=r and b is the impact parameter. By integrat-
ing Eq. (3) we obtain the deflection angle

�ðbÞ ¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ðu3 � u1Þðu2 � u0Þ

p ½KðkÞ � Fðz; kÞ� � �;

(4)

where Fðz; kÞ and KðkÞ are the incomplete and complete
elliptic integrals of the first kind [18], respectively, with

k2 ¼ ðu3 � u2Þðu1 � u0Þ
ðu3 � u1Þðu2 � u0Þ ;

and

z ¼
�
�u0ðu3 � u1Þ
u3ðu1 � u0Þ

�
1=2

:

Here, u0, u1 ¼ 1=rmin, u2, and u3 are roots of the right-
hand side of Eq. (3), and rmin is the radius of closest
approach. For scattering geodesics, the roots obey the
inequalities u0 < 0 and u3 > u2 � u1 > 0. (An analysis
of the scattering of null geodesics on the Reissner-
Nordström spacetime is presented in the Appendix. A
more extensive study of geodesics on black hole space-
times may be found in [19], for example.)
By differentiating Eq. (3) we get

d2u

d�2
þ u ¼ 3Mu2 � 2Q2u3: (5)

We solved Eqs. (3) and (5) numerically to examine how
the black hole charge influences geodesics in Reissner-
Nordström spacetime, and compared with the
Schwarzschild case. In Fig. 1 we compare the geodesics
on different Reissner-Nordström spacetimes. The mass of
the holeM is fixed but the charge-to-mass ratio q ¼ jQj=M
is varied. We find that, for a fixed impact parameter b, a
larger ratio q leads to a smaller deflection angle �.
Using Eqs. (3) and (5) we may derive an analytical

approximation to the scattering cross section for small
angles. Considering the weak-field limit, the deflection
angle is found to be [20–22]

�ðbÞ � 4M

b
þ 3�

4
ð5� q2ÞM

2

b2
: (6)

Note that for large impact parameters we obtain �ðbÞ �
4M=b, which is Einstein’s deflection angle [23].
The classical differential scattering cross section is given

by
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FIG. 1 (color online). Geodesics in the Reissner-Nordström
spacetime for different values of the ratio q ¼ jQj=M. Here,
the impact parameter has been chosen to be b ¼ 5:2M. We see
that the black hole has a stronger influence in the particle
trajectory for smaller values of q.
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d�sc

d�

��������cl
¼ b

sin�

��������
db

d�

��������: (7)

From Eqs. (6) and (7) we conclude that the classical
differential scattering cross section for small angles is

d�sc

d�

��������cl
� 16M2

�4
þ 15�M2

4�3
� 3�Q2

4�3
: (8)

We see that, in the weak-field limit, the presence of the
black hole charge does not modify the dominant term
neither in the deflection angle nor in the scattering cross
section. We can thus conclude that in the high-frequency
(short-wavelength) limit the differential scattering cross
section for small angles must be approximately indepen-
dent of the black hole charge.

The presence of an unstable photon orbit at r ¼ rc (see
the Appendix) means that, in theory, geodesics may be
deflected through any angle. This property, together with
the axial symmetry of our plane-wave scattering scenario,
implies that a glory will be present. Just as in optics, a glory
is a bright spot or halo arising in the scattered intensity in
the antipodal direction. The intensity and size of the spot or
halo depends on the wavelength of the incident perturba-
tion, leading to chromatic effects. The magnitude and size
of the bright spot may be estimated using the approxima-
tion derived by Matzner et al. [24]

d�sc

d�

�����������
� 2�!b2g

��������
db

d�

���������¼�
½J2sð!bg sin�Þ�2: (9)

Here, bg is the impact parameter that corresponds to a

deflection angle of �, J2sðxÞ is a Bessel function of the
first kind (of order 2s), and s is the spin of the field (s ¼ 0
for the scalar wave). We recall that Eq. (9) is an approxi-
mation valid at high frequencies (!M � 1), for angles
close to the backward direction (� � �).

The value of bg can be obtained by (i) numerically

solving the orbit equation (3), or by (ii) considering an
analytical approximation of the deflection angle, valid for
impact parameters close to the critical one (b � bc). We
compare the results of methods (i) and (ii) in the Appendix.
We find that there is a significant difference between these
two approaches. The approximate approach (ii) suggests
that the glory peak intensity will decrease monotonically as
the black hole charge-to-mass ratio is increased. This is not
supported by the numerical approach (i), however. We find
that the peak intensity decreases, reaches a minimum, and
increases again, as q increases. This demonstrates that the
approximate method (based on the ‘‘Darwin approxima-
tion’’ [25]) is not sufficiently accurate for our purposes.

We combined method (i) with the glory approximation
(9), to estimate the magnitude and width of the glory. We
found

d�sc

d�

�����������
� AðqÞ½J0ðbgðqÞ! sin�Þ�2; (10)

where AðqÞ=ð!M3Þ ¼ f30:75; 29:73; 28:87g and
bgðqÞ=M ¼ f5:36; 5:14; 4:30g for q ¼ 0, 0.5, 1, respec-

tively. In Sec. IV we check the scattering cross section
obtained via the partial wave method against this semiclas-
sical prediction.

III. PARTIALWAVE ANALYSIS

A. Massless scalar field equation

In curved spacetimes the equation for the minimally
coupled massless scalar field is

r�r�� ¼ 0: (11)

For r > rþ, the Reissner-Nordström spacetime, which is
spherically symmetric, has a global timelike Killing field,
@t. Hence, we may write

� ¼ c !lðrÞ
r

Ylmð�;�Þe�i!t: (12)

Here, Ylmð�;�Þ are the scalar spherical harmonics. The
radial solutions c !l can be expressed in terms of two
independent sets of modes: one incoming from the past
white-hole horizon H� and the other incoming from the
past null infinity J� (see, e.g., Ref. [26] for more detail).
Here we are dealing with scattering of waves by black
holes, so that we need only to consider those modes
incoming from J�.
The equation for c !l can be written as

fðrÞ d
dr

�
fðrÞ d

dr
c !lðrÞ

�
þ ½!2 � VeffðrÞ�c !lðrÞ ¼ 0;

(13)

where the effective potential is given by

VeffðrÞ ¼ fðrÞ
�
1

r

dfðrÞ
dr

þ lðlþ 1Þ
r2

�
: (14)

To better treat the solution of Eq. (13) in the asymptotic
limits, we introduce the tortoise coordinate x defined by

d

dx
¼ fðrÞ d

dr
; (15)

or, in integral form,

x¼ rþ r2þ
rþ � r�

ln

��������
r

rþ
� 1

���������
r2�

rþ � r�
ln

��������
r

r�
� 1

��������þC;

(16)

where C is an integration constant. Our numerical results
for the scattering cross section are independent of the
choice of C, and we have set C ¼ 0.
In terms of the tortoise coordinate, the radial equation

(13) may be written as

d2

dx2
c !lðxÞ þ ½!2 � VeffðxÞ�c !lðxÞ ¼ 0: (17)
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In Fig. 2 we plot the effective potential as a function of
the tortoise coordinate for an extreme Reissner-Nordström
black hole.

In Fig. 3 we compare the effective potential, with l ¼ 0,
for the three cases: Q ¼ 0, jQj ¼ 0:5M, and jQj ¼ M. As
we can see, the effective potential goes to zero as r ! rþ
and as r ! 1, for all cases. The height of the effective
potential barrier increases with the charge-to-mass ratio q.

For r � rþ, we have

c !lðxÞ � !x½ð�iÞlþ1Ain
!lh

ð1Þ	
l ð!xÞ þ ilþ1Aout

!l h
ð1Þ
l ð!xÞ�;

(18)

where hð1Þl ðxÞ are the spherical Bessel functions of the third
kind [18], and Ain

!l and Aout
!l are complex constants.

Now, recalling that hð1Þl ðxÞ � ð�iÞlþ1eix=x as x ! 1,

and using that the effective potential goes to zero as x !

�1, we get

c !lðxÞ �
�
Atr
!le

�i!x ðx ! �1Þ;
Ain
!le

�i!x þ Aout
!l e

i!x ðx ! 1Þ; (19)

with the relation jAin
!lj2 ¼ jAout

!l j2 þ jAtr
!lj2 satisfied.

B. Absorption cross section

The total absorption cross section can be written as

�abs ¼
X1
l¼0

�ðlÞ
abs; (20)

where �ðlÞ
abs is the partial absorption cross section, namely

�ðlÞ
abs ¼

�

!2
ð2lþ 1Þ

�
1�

��������
Aout
!l

Ain
!l

��������
2
�
: (21)

From the classical analysis, developed in Sec. II, the
geometrical optics (high-frequency) limit of the total ab-
sorption cross section can be found to be

�hf
abs ¼ �

ð3Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

p Þ4
8ð3M2 � 2Q2 þM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

p Þ
: (22)

It is easy to check that for Q ¼ 0 we get from Eq. (22)

�hf
abs ¼ 27�M2 ¼ ð27=4Þ�r2þ [27]. (We recall that rþ ¼

2M and r� ¼ 0 in the Schwarzschild case.) For jQj ¼ M

we get �hf
abs ¼ 16�M2 ¼ 16�r2þ. (We recall that rþ ¼

r� ¼ M in the extreme Reissner-Nordström case.)

C. Scattering cross section

The phase shifts of the scattered waves are defined by

exp½2i�lð!Þ� ¼ ð�1Þlþ1 A
out
!l

Ain
!l

: (23)

The scattering amplitude is given by

gð�Þ ¼ 1

2i!

X1
l¼0

ð2lþ 1Þ½e2i�lð!Þ � 1�Plðcos�Þ; (24)

and the differential scattering cross section is

d�sc

d�
¼ jgð�Þj2: (25)

A selection of our key results for the absorption and
scattering cross sections is presented in the next section.
The numerical method we have used is described in
Ref. [28]. In addition, we have used the method developed
in Refs. [7,29] to improve the numerical convergence of
the partial wave series (24).

IV. RESULTS

In Fig. 4 we plot the partial absorption cross section of
Reissner-Nordström black holes divided by the black hole
area, A ¼ 4�r2þ, for l ¼ 0, and for q ¼ 0 (Schwarzschild
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FIG. 2 (color online). The effective potential for the extreme
Reissner-Nordström black hole as a function of the tortoise
coordinate (16), plotted for different choices of l.
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FIG. 3 (color online). The effective potential given by Eq. (14)
with l ¼ 0 is plotted for q ¼ 0 (solid line), q ¼ 0:5 (dashed
line), and q ¼ 1 (dotted line). The effective potential goes to
zero at the event horizon and at infinity. As we can see, the
maximum of the potential increases as the black hole charge
increases.
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case), q ¼ 0:5 (typical Reissner-Nordström case) and q ¼
1 (extreme case). We see that in the low-frequency limit we

have �ð0Þlf
abs ¼ A [30,31]. In this limit, the only nonvanish-

ing contribution to the total absorption cross section comes
from the isotropic mode with l ¼ 0.

The total absorption cross section of Reissner-
Nordström black holes is plotted in Fig. 5, for the same
three choices of the charge (q ¼ 0, 0.5, 1). As we can see,
the absorption cross section decreases as the charge-to-
mass ratio increases. (The same behavior is observed for
the electromagnetic field absorption cross section [14].)
This is in concordance with the observation that the height
of the effective potential barrier (see Fig. 3) increases with
the charge-to-mass ratio. The straight lines in Fig. 5 show
the geometric-optics limit for each case.

In Fig. 6 we plot the differential scattering cross sections
of Reissner-Nordström black holes for the massless scalar
field at !M ¼ 3:0. The values chosen for the black hole

charge are again such that q ¼ 0, q ¼ 0:5, and q ¼ 1. In
this figure we also plot the glory scattering cross sections
given in Eq. (10). We find an excellent agreement between
the numerical results and the glory approximation for � �
�.
We compare the scattering cross sections in Fig. 7, for

the same choices of the black hole charge (q ¼ 0, 0.5, 1), at
!M ¼ 1:0. In Fig. 8 we make the same comparison for
!M ¼ 3:0. We see that, at fixed frequency, the glory peak
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FIG. 4 (color online). The partial absorption cross section with
l ¼ 0 plotted for Reissner-Nordström black holes, with q ¼ 0
(solid line), q ¼ 0:5 (dashed line), and q ¼ 1 (dotted line). We

see that �ð0Þ
abs ! A as !M ! 0.
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FIG. 6 (color online). Comparison between the scattering cross
section of Reissner-Nordström black holes and the glory ap-
proximation at !M ¼ 3, for q ¼ 0, 0.5, and 1. As we can see,
for the three cases, the numerical results are in excellent agree-
ment with the glory approximation for angles close to 180
.
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is wider for larger values of the charge-to-mass ratio q.
This can be understood by the fact that, from Eq. (9), the
glory peak width is proportional to 1=ðbg!Þ, and from Eq.

(10) we see that bg is smaller for larger values of q.

V. FINAL REMARKS

In the preceding sections, we have computed absorption
and scattering cross sections for planar monochromatic
massless scalar waves impinging upon Reissner-
Nordström black holes. We found that the interaction
depends on frequency !M and charge-to-mass ratio q ¼
jQj=M. We developed the formalism needed to obtain
scattering and absorption cross sections for arbitrary values
of 0 � q � 1. We showed typical results for three different
values of the charge-to-mass ratio of the black hole,
namely, q ¼ 0, q ¼ 0:5, and q ¼ 1.

What, then, are the effects of black hole charge upon the
scattering and absorption of massless scalar waves? Let us
summarize. The effect on absorption is clear: the absorp-
tion cross section decreases as the charge-to-mass ratio
increases (Fig. 5). This is compatible with the fact that
the horizon area shrinks from 16�M2 at q ¼ 0 to 4�M2 at
q ¼ 1. In our numerical results we have observed that, in
the low-frequency limit, the absorption cross section tends
to the black hole area (Fig. 4) [30]. This is a general result
for the absorption cross section of the minimally coupled
massless scalar field in stationary black hole spacetimes
[31]. We have also observed that, in the high-frequency
limit, the absorption cross sections oscillate about the
geometric-optics value (Fig. 5). Similar behavior has pre-
viously been observed for the electromagnetic field [14].
The effects of black hole charge upon wave scattering

are more subtle. By using the weak-field approximation
(6), we showed that the scattering cross section at small
angles ð� � 0Þ is still dominated by the ‘‘Schwarzschild
term’’ 16M2=�4 [cf. Eq. (9)]. Black hole charge leads only
to a subdominant correction term proportional to Q2=�3 at
small angles. However, the black hole charge does have a
significant effect upon the cross section observed at large
angles (Figs. 7 and 8). We found that the angular width of
the so-called spiral scattering oscillations increases with q.
In particular, the glory peak becomes wider as q increases
(Fig. 6). These effects are related to the fact that the radius
of the photon orbit shrinks as q increases.
In principle, highly accurate measurements of, for ex-

ample, the gravitational wave flux scattered by a black hole
could one day be used to estimate the black hole’s charge.
A more immediate possibility is that scattering and absorp-
tion patterns may be observed with black hole analog
systems created in the laboratory [28]. Even if experimen-
tal verification is not forthcoming, we hope that studies of
wave scattering by black holes will continue to improve
our understanding of how black holes interact with their
environments.
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APPENDIX: ANALYTICALAPPROXIMATION FOR
THE GLORY COEFFICIENTS

Here we derive an approximation to the deflection angle
given in Eq. (4), in order to obtain an analytic expression

−1

−0.5

 0

 0.5

 1

 1.5

 2

 2.5

 40  60  80  100  120  140  160  180

lo
g 1

0|
(d

σ s
c 

/d
Ω

)/
M

2 |

θ (deg)

Reissner−Nordström scattering cross section for ωM = 3.0

q = 0
q = 0.5

q = 1
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Nordstrom black holes with charges q ¼ 0, q ¼ 0:5, and q ¼ 1,
for !M ¼ 3:0. Here, as in Fig. 7, the width of the glory peak
increases as the black hole charge increases.
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FIG. 7 (color online). Scattering cross section for Reissner-
Nordstrom black holes with charges q ¼ 0 (solid line), q ¼ 0:5
(dashed line), and q ¼ 1 (dotted line), for !M ¼ 1:0. The width
of the glory peak gets wider for bigger values of the black hole
charge.
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for the glory impact parameter bg and its derivative. Our

aim is to estimate the magnitude and width of the glory
peak for Reissner-Nordström black hole scattering. Let us
begin by finding the roots of the right-hand side of Eq. (3)
when the impact parameter is critical (b ¼ bc). We have

�u 0 ¼ ½ðMþ yÞ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðMþ yÞ

q
�=4Q2; (A1)

�u 1 ¼ uc ¼ ð3M� yÞ=4Q2; (A2)

�u 2 ¼ uc; (A3)

�u 3 ¼ ½ðMþ yÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðMþ yÞ

q
�=4Q2; (A4)

where y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

p
. Note that a root is repeated in the

critical case: u1 ¼ u2 ¼ uc. The radius of the circular
photon orbit is rc ¼ 1=uc. The critical impact parameter is

bc ¼ ð3Mþ yÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð3M2 � 2Q2 þMyÞp : (A5)

In the Schwarzschild limit (Q ¼ 0) we recover u0 ¼
�1=6M, u1 ¼ u2 ¼ 1=3M, u3 ¼ þ1, and bc ¼

ffiffiffiffiffiffi
27

p
M

[23].
When the impact parameter is close to critical (b � bc),

the perturbed roots are

u0 ¼ �u0 þOð�2Þ; (A6)

u1 ¼ uc � uc��þOð�2Þ; (A7)

u2 ¼ uc þ uc��þOð�2Þ; (A8)

u3 ¼ �u3 þOð�2Þ; (A9)

where �2 ¼ ðb� bcÞ=bc and �2 ¼ 2=ð6� u2cb
2
cÞ.

For near-critical orbits we find that the coefficient k of
the elliptic integrals in Eq. (4) behaves as

k2 ¼ 1� 2ucð �u3 � �u0Þ�
ð �u3 � ucÞðuc � �u0Þ�þOð�2Þ: (A10)

To derive the logarithmic deflection formula, we make use
of the approximations for k � 1

KðkÞ � 1

2
ln

�
16

1� k2

�
; (A11)

Fðz; kÞ � 1

2
ln

�
1þ z

1� z

�
; (A12)

and also ðu3 � ucÞðuc � u0Þ ¼ 2=ðQucbc�Þ2 and u3 �
u0 ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y=M

p
=Q2. Putting all these elements into Eq.

(4), we find

�ðbÞ � ��ðqÞ ln
�
b� bc
	ðqÞM

�
; (A13)

where the dimensionless coefficients are

�ðqÞ ¼ ucbcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� u2cb

2
c

p ; (A14)

	ðqÞ ¼ 32ð6� u2cb
2
cÞ3

u6cb
3
cM

3ð1þ y=MÞ
ð1� zÞ2
ð1þ zÞ2 e

��=�ðqÞ: (A15)

The glory formula is

d�sc

d�

�����������
� AðqÞ½J2sðbg! sin�Þ�2; (A16)

where the magnitude of the glory peak is given by

A ðqÞ ¼ 2�!b2g

��������
db

d�

���������¼�
: (A17)

In Fig. 9 we compare the values of bg and jdb=d�j�¼�

calculated from approximation (A13) with exact values
determined from numerical integration. It shows clearly
that the estimate of bg found from (A13) is significantly

more accurate than the corresponding estimate of its de-
rivative with respect to �.
The magnitude of the glory peak obtained using the

logarithmic approximation [Eqs. (A13)–(A15) and (A17)]
is plotted in Fig. 10, and it can be seen that it decreases with
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FIG. 9 (color online). Glory parameters bg and jdb=d�j�¼�

shown as a function of q. The plots compare the approximation
Eq. (A13) (dotted line) with accurate results from numerical
integration (solid line). The approximation for jdb=d�j�¼� is
clearly less good than the approximation of bg, and the accuracy

diminishes further as q ! 1.
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q. The logarithmic scattering results suggest that the glory
magnitude for q ¼ 1 should be significantly smaller than
for q ¼ 0. In Fig. 10 we also show the values of AðqÞ
obtained by solving the orbital equation (3) numerically. It
is interesting that these two approaches disagree signifi-
cantly near q ¼ 1 (the curve obtained using the orbital
equation goes up whereas the logarithmic approximation
curve goes down). It is clear that the exact solution does not
agree with the logarithmic approximation for the glory
scattering. For instance, for the Schwarzschild case, the
logarithmic approximation gives [25] Aðq ¼ 0Þ ¼
27:029!M3 whereas the exact value is Aðq ¼ 0Þ ¼
30:752!M3. We find bg ¼ 5:346 635M and

jdb=d�j�¼� ¼ 0:150 483M for the logarithmic approxi-
mation, compared with bg ¼ 5:356 959M and

jdb=d�j�¼� ¼ 0:170 554M, obtained numerically. As we
can see from Fig. 9, most of the error in the logarithmic
approximation comes from the derivative of b with respect
to �. The values of AðqÞ obtained via the partial wave
method (cf. Sec. III C) for !M ¼ 1:0, 3.0, and 5.0 are also
shown in Fig. 10. We see that they oscillate around the
semiclassical result obtained using the orbital equation (3).

Finally we note that the glory approximation (9) may be
improved by including the contribution from geodesics
passing more than once around the black hole (i.e., through
angles 3�, 5�, etc.) [5]. Higher-order contributions of this

kind will be suppressed by successive factors of e�2�=�ðqÞ.

Since the largest value of �ðqÞ is �ð1Þ � 1:4142, subse-
quent contributions will be suppressed by at least

e�2�=1:4142 � 1:2� 10�2. We neglect these contributions
here, although elsewhere it was shown [10] that adding the
second-order contribution may improve the approximation
slightly.

[1] H. Stephani, D. Kramer, M.A.H. MacCallum, C.

Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s

Field Equations (Cambridge University Press, Cambridge,

England, 2003), 2nd ed.
[2] C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(Freeman, San Francisco, 1973).
[3] S.W. Hawking and G. F. R. Ellis, The Large Scale

Structure of Space-Time (Cambridge University Press,

Cambridge, England, 1973).
[4] V. P. Frolov and I. D. Novikov, Black Hole Physics: Basic

Concepts and New Developments (Kluwer Academic

Publishers, Dordrecht, The Netherlands, 1998).
[5] J. A.H. Futterman, F. A. Handler, and R.A. Matzner,

Scattering from Black Holes (Cambridge University

Press, Cambridge, England, 1988).
[6] K. Glampedakis and N. Andersson, Classical Quantum

Gravity 18, 1939 (2001).
[7] C. Doran, A. Lasenby, S. Dolan, and I. Hinder, Phys. Rev.

D 71, 124020 (2005).
[8] S. R. Dolan, C. J. L. Doran, and A.N. Lasenby, Phys. Rev.

D 74, 064005 (2006).
[9] L. C. B. Crispino, E. S. Oliveira, A. Higuchi, and G. E. A.

Matsas, Phys. Rev. D 75, 104012 (2007).
[10] S. R. Dolan, Classical Quantum Gravity 25, 235002

(2008).

[11] D. N. Page, Phys. Rev. D 16, 2402 (1977).
[12] E. Jung, S. H. Kim, and D.K. Park, Phys. Lett. B 602, 105

(2004).
[13] E. Jung and D.K. Park, Nucl. Phys. B717, 272 (2005).
[14] L. C. B. Crispino and E. S. Oliveira, Phys. Rev. D 78,

024011 (2008).
[15] N. G. Sánchez, J. Math. Phys. (N.Y.) 17, 688 (1976); Phys.

Rev. D 16, 937 (1977); 18, 1030 (1978); 18, 1798 (1978).
[16] N. Andersson, Phys. Rev. D 52, 1808 (1995).
[17] S. Chandrasekhar, The Mathematical Theory of Black

Holes (Oxford University Press, New York, 1983).
[18] M. Abramowitz and I. A. Stegun, Handbook of

Mathematical Functions (Dover Publications, New York,

1965).
[19] G. Slezáková, Ph.D. thesis, University of Waikato, New

Zealand, 2006, http://adt.waikato.ac.nz/public/adt-

uow20061024.003016/index.html.
[20] E. F. Eiroa, G. E. Romero, and D. F. Torres, Phys. Rev. D

66, 024010 (2002).
[21] A. Bhadra, Phys. Rev. D 67, 103009 (2003).
[22] M. Sereno, Phys. Rev. D 69, 023002 (2004).
[23] R.M. Wald, General Relativity (The University of

Chicago Press, Chicago, 1984).
[24] R. A. Matzner, C. DeWitt-Morette, B. Nelson, and T.-R.

Zhang, Phys. Rev. D 31, 1869 (1985).

 20

 22

 24

 26

 28

 30

 32

 34

 0  0.2  0.4  0.6  0.8  1

/(
ω

M
3 )

q

Glory magnitude in Reissner−Nordström spacetime

exact
logarithmic approximation

ωM = 1.0
ωM = 3.0
ωM = 5.0

FIG. 10 (color online). Intensity of the glory peak A as a
function of q. The prediction of the logarithmic approximation is
compared with the exact solution of the orbital equation. We also
show the intensity of the glory peak computed numerically via
the partial wave method for !M ¼ 1:0, 3.0, and 5.0.

CRISPINO, DOLAN, AND OLIVEIRA PHYSICAL REVIEW D 79, 064022 (2009)

064022-8



[25] C. Darwin, Proc. R. Soc. A, 249, 180 (1959).
[26] L. C. B. Crispino, A. R. R. da Silva, and G. E. A. Matsas,

Phys. Rev. D 79, 024004 (2009).
[27] B. Mashhoon, Phys. Rev. D 7, 2807 (1973).
[28] S. R. Dolan, E. S. Oliveira, and L. C. B. Crispino, Phys.

Rev. D 79, 064014 (2009); L. C. B. Crispino, E. S.
Oliveira, and G. E. A. Matsas, Phys. Rev. D 76, 107502

(2007).
[29] D. R. Yennie, D. G. Ravenhall, and R.N. Wilson, Phys.

Rev. 95, 500 (1954).
[30] S. R. Das, G. Gibbons, and S. D. Mathur, Phys. Rev. Lett.

78, 417 (1997).
[31] A. Higuchi, Classical Quantum Gravity 18, L139 (2001);

19, 599 (2002).

SCATTERING OF MASSLESS SCALAR WAVES BY . . . PHYSICAL REVIEW D 79, 064022 (2009)

064022-9


