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We study angularly excited as well as interacting nontopological solitons, the so-called Q balls, and

their gravitating counterparts, the so-called boson stars, in 3þ 1 dimensions.Q balls and boson stars carry

a nonvanishing Noether charge and arise as solutions of complex scalar field models in a flat space-time

background and coupled minimally to gravity, respectively. We present examples of interacting Q balls

that arise due to angular excitations, which are closely related to the spherical harmonics. We also

construct explicit examples of rotating boson stars that interact with nonrotating boson stars. We observe

that rotating boson stars tend to absorb the nonrotating ones for increasing, but reasonably small

gravitational coupling. This is a new phenomenon as compared to the flat space-time limit and is related

to the negative contribution of the rotation term to the energy density of the solutions. In addition, our

results indicate that a system of a rotating and nonrotating boson star can become unstable if the direct

interaction term in the potential is large enough. This instability is related to the appearance of

ergoregions.

DOI: 10.1103/PhysRevD.79.064013 PACS numbers: 04.40.�b, 11.27.+d

I. INTRODUCTION

Solitons play an important role in many areas of physics.
As classical solutions of nonlinear field theories, they are
localized structures with finite energy, which are globally
regular. In general, one can distinguish topological and
nontopological solitons. While topological solitons [1]
possess a conserved quantity, the topological charge, which
stems (in most cases) from the spontaneous symmetry
breaking of the theory, nontopological solitons [2,3] have
a conserved Noether charge that results from a symmetry
of the Lagrangian. The standard example of nontopolog-
ical solitons areQ balls [4], which are solutions of theories
with self-interacting complex scalar fields. These objects
are stationary with an explicitly time-dependent phase. The
conserved Noether charge Q is then related to the global
phase invariance of the theory and is a function of the
frequency. Q can e.g. be interpreted as a particle number
[2].

While in standard scalar field theories it was shown that
a nonrenormalizable �6 potential is necessary [5], super-
symmetric extensions of the standard model (SM) also
possess Q-ball solutions [6]. In the latter case, several
scalar fields interact via complicated potentials. It was
shown that cubic interaction terms that result from
Yukawa couplings in the superpotential and supersymme-
try breaking terms lead to the existence of Q balls with
nonvanishing baryon or lepton number or electric charge.
These supersymmetric Q balls have been considered re-
cently as possible candidates for baryonic dark matter [7],
and their astrophysical implications have been discussed

[8]. In [9], these objects have been constructed numerically
using the exact form of the supersymmetric potential.
Q-ball solutions in 3þ 1 dimensions have been studied

in detail in [5,10,11]. It was realized that, next to non-
spinning Q balls, which are spherically symmetric, spin-
ning solutions exist. These are axially symmetric with
energy density of toroidal shape and angular momentum
J ¼ kQ, where Q is the Noether charge of the solution and
k 2 Z corresponds to the winding around the z axis.
Approximated solutions of the nonlinear partial differen-
tial equations were constructed in [5] by means of a
truncated series in the spherical harmonics to describe
the angular part of the solutions. The full partial differen-
tial equation was solved numerically in [10–12] (for a short
review see [13]). It was also realized in [5] that in each k
sector, parity-even (P ¼ þ1) and parity-odd (P ¼ �1)
solutions exist. Parity even and parity odd refer to the
fact that the solution is symmetric and antisymmetric,
respectively, with respect to a reflection through the x-y
plane, i.e. under � ! �� �.
These two types of solutions are closely related to the

fact that the angular part of the solutions constructed in
[5,10,11] is connected to the spherical harmonic Y0

0ð�; ’Þ
for the spherically symmetric Q ball, to the spherical
harmonic Y1

1ð�; ’Þ for the spinning parity-even (P ¼ þ1)
solution, and to the spherical harmonic Y1

2ð�; ’Þ for the
parity-odd (P ¼ �1) solution, respectively. Radially ex-
cited solutions of the spherically symmetric, nonspinning
solution were also obtained. These solutions are still
spherically symmetric but the scalar field develops one or
several nodes for r 2�0, 1½. In relation to the apparent
connection of the angular part of the known solutions to the
spherical harmonics, ‘‘�-angular excitations’’ of the Q
balls corresponding to the spherical harmonics Yk

l ð�;’Þ,
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�l � k � l have been constructed explicitly for some
values of k and l in [12]. These excited solutions could
play a role in the formation ofQ balls in the early universe,
since it is believed that Q balls forming due to condensate
fragmentation at the end of inflation first appear in an
excited state and only then settle down to the ground state
[14]. The fact that these newly formed Q balls are excited,
i.e., in general, not spherically symmetric, could, on the
other hand, be a source of gravitational waves [15].

The interaction of two Q balls has also been studied in
[12]. It was found that the lower bound on the frequencies
!i, i ¼ 1, 2 is increasing for increasing interaction cou-
pling. Explicit examples of a rotating Q ball interacting
with a nonrotating Q ball have been presented.

Complex scalar field models coupled to gravity exhibit a
new type of solution, the so-called ‘‘boson stars’’ [16–18].
In [10,11] boson stars have been considered that have flat
space-time limits in the form of Q balls.

In this paper, we study interacting boson stars with flat
limit solutions in the form of the interacting Q balls that
have been studied in [12]. The boson stars are interacting
via a potential term, but of course also through gravity.

The paper is organized as follows: in Sec. II we give the
model, the Ansatz, and boundary conditions. In Secs. III
and IV we discuss our results for Q balls and their grav-
itating counterparts (boson stars), respectively. Section V
contains our conclusions.

II. THE MODEL

In the following, we study a scalar field model coupled
minimally to gravity in 3þ 1 dimensions describing two
interacting boson stars. The action S reads

S ¼
Z ffiffiffiffiffiffiffi�g

p
d4x

�
R

16�G
þLm

�
(1)

where R is the Ricci scalar, G denotes Newton’s constant,
and Lm denotes the matter Lagrangian:

L m ¼ �1
2@��1@

���
1 � 1

2@��2@
���

2 � Vð�1;�2Þ; (2)

where both �1 and �2 are complex scalar fields and we
choose ð� þþþÞ as a signature of the metric. The poten-
tial reads

Vð�1;�2Þ ¼
X2
i¼1

ð�ij�ij6 � �ij�ij4 þ �ij�ij2Þ

þ �j�1j2j�2j2; (3)

where �i, �i, �i, i ¼ 1, 2 are the standard potential pa-
rameters for each boson star, while � denotes the interac-
tion parameter. The masses of the two bosonic scalar fields
are then given by ðmi

BÞ2 ¼ �i, i ¼ 1, 2.
Along with [10–12], we choose in the following the

values

�i ¼ 1; �i ¼ 2; �i ¼ 1:1; i ¼ 1; 2: (4)

In [5] it was argued that a �6 potential is necessary in
order to have classical Q-ball solutions. This is still neces-
sary for the model we have defined here, since we want
�1 ¼ 0 and �2 ¼ 0 to be a local minimum of the poten-
tial. A pure �4 potential which is bounded from below
would not fulfill these criteria.
The matter LagrangianLm (2) is invariant under the two

independent global U(1) transformations

�1 ! �1e
i�1 ; �2 ! �2e

i�2 : (5)

As such, the total conserved Noether current j�ðtotÞ, � ¼ 0,

1, 2, 3, associated with these symmetries is just the sum of
the two individually conserved currents j�1 and j�2 with

j
�
ðtotÞ ¼ j

�
1 þ j

�
2

¼ �ið��
1@

��1 ��1@
���

1Þ
� ið��

2@
��2 ��2@

���
2Þ; (6)

with j
�
1 ;� ¼ 0, j

�
2 ;� ¼ 0, and j

�
ðtotÞ ;� ¼ 0.

The total Noether charge QðtotÞ of the system is then the

sum of the two individual Noether charges Q1 and Q2:

QðtotÞ ¼ Q1 þQ2 ¼ �
Z

j01d
3x�

Z
j02d

3x: (7)

Finally, the energy-momentum tensor reads

T�	 ¼ X2
i¼1

ð@��i@	�
�
i þ @	�i@��

�
i Þ � g�	L: (8)

A. Ansatz and equations

For the metric, the Ansatz in Lewis-Papapetrou form
reads [10]

ds2 ¼ �fdt2 þ l

f

�
gðdr2 þ r2d�2Þ

þ r2sin2�

�
d’þm

r
dt

�
2
�
; (9)

where the metric functions f, l, g, and m are functions of r
and � only. For the scalar fields, the Ansatz reads

�iðt; r; �; ’Þ ¼ ei!itþiki’
iðr; �Þ; i ¼ 1; 2; (10)

where the !i and the ki are constants. Since we require
�ið’Þ ¼ �ið’þ 2�Þ, i ¼ 1, 2, we have ki 2 Z. The mass
M and total angular momentum J of the solution can be
read off from the asymptotic behavior of the metric func-
tions [10]:

M ¼ 1

2G
lim
r!1r

2@rf; J ¼ 1

2G
lim
r!1r

2m: (11)

The total angular momentum J ¼ J1 þ J2 and the Noether
charges Q1 and Q2 of the two boson stars are related by
J ¼ k1Q1 þ k2Q2. Boson stars with ki ¼ 0 thus have van-
ishing angular momentum. Equally, interacting boson stars
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with k1 ¼ �k2 and Q1 ¼ Q2 have vanishing angular
momentum.

The coupled system of partial differential equations is
then given by the Einstein equations

G�	 ¼ 8�GT�	 (12)

with T�	 given by (8) and the Klein-Gordon equations
�
hþ @V

@j�ij2
�
�i ¼ 0; i ¼ 1; 2: (13)

Details about these equations for one complex scalar field
can e.g. be found in [10].

B. Boundary conditions

We require the solutions to be regular at the origin. The
appropriate boundary conditions read

@rfjr¼0 ¼ 0; @rljr¼0 ¼ 0; gjr¼0 ¼ 1;

mjr¼0 ¼ 0; 
ijr¼0 ¼ 0; i ¼ 1; 2; (14)

for solutions with ki � 0, while for ki ¼ 0 solutions, we
have

@rfjr¼0 ¼ 0; @rljr¼0 ¼ 0; gjr¼0 ¼ 1;

mjr¼0 ¼ 0; @r
ijr¼0 ¼ 0; i ¼ 1; 2: (15)

The boundary conditions at infinity result from the require-
ment of asymptotic flatness and finite energy solutions:

fjr!1 ¼ 1; ljr!1 ¼ 1; gjr!1 ¼ 1;

mjr!1 ¼ 0; 
ijr!1 ¼ 0; i ¼ 1; 2:
(16)

For � ¼ 0 the regularity of the solutions on the z axis
requires

@�fj�¼0 ¼ 0; @�lj�¼0 ¼ 0; gj�¼0 ¼ 1;

@�mj�¼0 ¼ 0; 
ij�¼0 ¼ 0; i ¼ 1; 2;
(17)

for ki � 0 solutions, while for ki ¼ 0 solutions, we have

@�fj�¼0 ¼ 0; @�lj�¼0 ¼ 0; gj�¼0 ¼ 1;

@�mj�¼0 ¼ 0; @�
ij�¼0 ¼ 0; i ¼ 1; 2:
(18)

The conditions at � ¼ �=2 are given by

@�fj�¼�=2 ¼ 0; @�lj�¼�=2 ¼ 0; @�gj�¼�=2 ¼ 0;

@�mj�¼�=2 ¼ 0; @�
ij�¼�=2 ¼ 0; i ¼ 1; 2 (19)

for even-parity solutions, while for odd-parity solutions the
conditions for the scalar field functions read
ij�¼�=2 ¼ 0,
i ¼ 1, 2.

C. Numerical procedure

In the following, we will solve the system of partial
differential equations (PDE) (12) and (13) subject to the
appropriate boundary conditions given in Sec. II B. This

has been done using the PDE solver FIDISOL [19]. We have
mapped the infinite interval of the r coordinate ½0:1� to the
finite compact interval ½0:1� by using the new coordinate
�z :¼ r=ðrþ 1Þ. We have typically used grid sizes of 150
points in the r direction and 70 points in the � direction.
The solutions presented here have relative errors of 10�3 or
smaller.

III. Q BALLS

In this section, we study solutions in a flat space-time
background; i.e. we choose G ¼ 0. The Q balls then
interact only via the potential for � � 0.

A. Single Q balls

In order to be able to understand the structure of a
system of two interacting Q balls and their gravitating
counterparts, we briefly reconsider the one Q-ball system.
This has been studied in great detail in [5,10–12] and arises
from our model for � ¼ 0 and 
2 � 0. In this section, we
would like to emphasize some of the properties which are
important to understand the gravitating case. In the present
section on single Q balls, we will omit the index 1, re-
spectively 2, for all quantities. As was noticed in [12]—
using spherical coordinates ðr; �; ’Þ and a standard sepa-
ration of variables—the solutions to the linearized scalar
field equation are given by


ðr; �; ’Þ / Jlþ1=2ð!rÞffiffiffi
r

p Yk
l ð�; ’Þ (20)

where J denotes the Bessel function and Yk
l are the stan-

dard spherical harmonics with the l integer and �l � k �
l. As was shown in [12]—at least for the first few values of
k and l—solutions to the full field equations exist in
correspondence to the symmetries of the spherical harmon-
ics. Explicit examples of the angular excited solutions have
been presented for specific values of k and l. In the follow-
ing, these solutions will be labeled by the two quantum
numbers k and l; i.e. if we use 
k

l , we refer to the solution

of the full equation which corresponds to the spherical
harmonic Yk

l .

As already stated in Sec. II B, the boundary conditions
depend on l, k. Here, we want to state the boundary
conditions explicitly together with the parity P of the
solution under � ! �� � for the first few values of k
and l (see Table I). Let us stress that all these conditions
are compatible with the trivial solution 
 � 0. Therefore,
the numerical construction of nonvanishing solutions turns
out to be a nontrivial task. Solutions for the choices of l and
k given in Table I have been presented in [12].

B. Interacting Q balls

Interacting Q balls were studied in detail in [12]. The
interaction is characterized by the coupling constant �. The
two Q balls decouple in the limit � ¼ 0. Here, we want to
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present the energy density of some of the solutions in order
to illustrate the influence of the interaction term.

In Fig. 1 we present the energy density for a spherically
symmetric, nonrotating Q ball interacting with an axially
symmetric, rotating and parity-even Q ball for � ¼ 1 and
!1 ¼ !2 ¼ 0:8. Note that we use cylindrical coordinates
here with z ¼ r cos� and � ¼ r sin�. The local maximum
appears at z ¼ 0, � � 2:2 and is connected to the rotating
Q ball. In Fig. 2 we show the energy density corresponding
to a spherically symmetric, nonrotatingQ ball with l1 ¼ 0,
k1 ¼ 0 interacting with an axially symmetric, nonrotating,
i.e. angularly excited, Q ball with l2 ¼ 1, k2 ¼ 0. Again,
we have chosen � ¼ 1 and !1 ¼ !2 ¼ 0:8 for this case.
The energy density has local maxima at three different
values of z. The energy density thus consists of two tori
at z > 0 and z < 01 and a deformed spherical ball at z ¼ 0.

IV. BOSON STARS

Once gravity is included (G � 0), the different possible
Q-ball solutions discussed in the previous section become
deformed by gravity and are called boson stars. Since only
k2 appears in the equation for the Q ball, the sign of k does
not matter and we can restrict ourselves to k � 0 without
losing generality in the flat space-time background case.
This changes if we consider solutions in curved space-
time, i.e. for G> 0. The reason is that the energy-
momentum tensor involves terms that are linear in k.
Reversing the sign of k, the solutions will have the same
energy, but opposite angular momentum.
In the case of interacting boson stars, the situation is

more involved: when two boson stars with k1 and k2 of the
same sign interact, the angular momentum is nonvanishing.
However, for k1 ¼ �k2 the function mðr; �Þ ¼ 0 and the
total angular momentum is vanishing.
In the presence of gravity, the boson stars interact by

means of the direct coupling term in the potential for � �
0, but also through gravity. To understand the pattern of
solutions, we study the energy density in more detail. This
reads

T0
0 ¼ Vð
1; 
2Þ þ

X2
j¼1

f

lg
ð@r
jÞ2 þ f

r2lg
ð@�
jÞ2

þ 1

f
!2

j

2
j þ

�
f

lr2sin2�
� m2

fr2

�
k2j


2
j : (21)

The important point about this expression is that the term

FIG. 1 (color online). The energy density of two interacting Q
balls with l1 ¼ 0, k1 ¼ 0 (spherically symmetric, nonrotating)
and l2 ¼ 1, k2 ¼ 1 (axially symmetric, rotating, parity even).
Here � ¼ 1 and !1 ¼ !2 ¼ 0:8. Note that we use cylindrical
coordinates z ¼ r cos� and � ¼ r sin�.

FIG. 2 (color online). The energy density of two interacting Q
balls with l1 ¼ 0, k1 ¼ 0 (spherically symmetric, nonrotating)
and l2 ¼ 1, k2 ¼ 0 (axially symmetric, nonrotating). Here � ¼ 1
and !1 ¼ !2 ¼ 0:8. Note that we use cylindrical coordinates
z ¼ r cos� and � ¼ r sin�.

TABLE I. Boundary conditions and parity P for different
choices of l and k.

l k r ¼ 0 r ¼ 1 � ¼ 0 � ¼ �=2 P

0 0 @r
 ¼ 0 
 ¼ 0 @�
 ¼ 0 @�
 ¼ 0 �
1 0 @r
 ¼ 0 
 ¼ 0 @�
 ¼ 0 
 ¼ 0 �
1 1 
 ¼ 0 
 ¼ 0 
 ¼ 0 @�
 ¼ 0 þ
2 0 @r
 ¼ 0 
 ¼ 0 @�
 ¼ 0 @�
 ¼ 0 þ
2 1 
 ¼ 0 
 ¼ 0 
 ¼ 0 
 ¼ 0 �

1Note that we plot the solution only for z > 0, but we can
continue it to z < 0 due to its symmetry.
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containing the ‘‘rotation function’’ mðr; �Þ leads to a nega-
tive contribution to the energy density. Hence, rotation
tends to decrease the energy of the solution.

A. Numerical results

In the following, we will abbreviate � ¼ 8�G and focus
on the case !1 ¼ !2. We have fixed the parameters of the
potential according to (4).

1. l1 ¼ 0, k1 ¼ 0, l2 ¼ 0, k2 ¼ 0

This case describes two interacting nonrotating boson
stars. The solutions are spherically symmetric. In particu-
lar, we find gðrÞ ¼ 1 andmðrÞ ¼ 0. The bound state of two
spherically symmetric boson stars with a given value of �
behaves roughly as a single boson star with �=2. The mass
M and the values 
ið0Þ (i ¼ 1, 2), fð0Þ, lð0Þ, and T0

0ð0Þ
slowly decrease when the parameter � increases. We found
no evidence of a limiting behavior, i.e. no critical� beyond
which the solutions cease to exist.

2. l1 ¼ 0, k1 ¼ 0, l2 ¼ 1, k2 ¼ 1

This corresponds to the interaction of a nonrotating
boson star and a rotating, axially symmetric and parity-
even solution.

The contour plot of a typical solution of this type is
presented in Fig. 3 for � ¼ 0:2, � ¼ 0, and !1 ¼ !2 ¼
0:8. Clearly, the metric functions show nontrivial behavior
now.

Varying the gravitational constant � (with all other
parameters fixed), our numerical results show that the
scalar field function
1 of the spherically symmetric boson
star tends uniformly to zero and that only the spinning
boson star survives for sufficiently large �. This result is
consistent with the fact that rotation, i.e. nonvanishing
mðr; �Þ, tends to decrease the energy [see (21)]. The rotat-
ing boson star is therefore energetically favored in com-
parison to the nonrotating case. This phenomenon is,
however, strongly related to the gravitational interaction
of the two boson stars. Indeed, the nonrotating spherically
symmetric boson alone (for 
2 � 0) exists for (arbitrarily)
large values of �. This is illustrated in Fig. 4 for � ¼ 0 and
!1 ¼ !2 ¼ 0:8, where we plot the massM, charge Q, and

1ð0Þ, which corresponds to the maximal value of the
scalar field function 
1ðrÞ for nonrotating, spherically
symmetric solutions The quantities corresponding to inter-
acting boson stars are given by solid lines. 
1ð0Þ, and with
this the field 
1ðrÞ corresponding to the nonrotating boson
star, becomes identically zero for � ¼ �cr � 0:25, while
the single boson star (dashed lines) exists for much larger
values of �. To illustrate this phenomenon further, we also
plot the energy density of these solutions for two different
values of � in Fig. 5. The solution for � ¼ 0:1 shows quite
large values for T0

0 at the origin � ¼ 0, z ¼ 0. Since a

nonvanishing contribution to the energy density at the

origin can only come from the spherically symmetric,
nonrotating boson star, the contribution of this boson star
is still quite strong here. When increasing �, the axially
symmetric, rotating boson star tends to absorb the non-
rotating one. This is clearly seen when comparing the � ¼
0:1 plot with that for � ¼ 0:2. Here, the value of T0

0 at the

origin has decreased strongly and the energy density tends
to the shape of a torus, signaling that the spherically
symmetric contribution nearly vanishes.
We observe qualitatively the same effect for ��0. The

critical value of the gravitational coupling �cr, where 
1

becomes identically zero, depends slightly on the coup-
ling constant �. We find e.g. �crð�¼0:5Þ�0:30, �crð�¼
0Þ�0:25, and �crð�¼�0:5Þ�0:22, respectively.
Since the appearance of ergoregions for globally regular

solutions signals the existence of instabilities [20], we have
studied these here as well. The ergoregions of single boson
stars have been studied extensively in [11]. Ergoregions
exist if the g00 component of the metric becomes positive,
i.e. for

g00 ¼ �fþ lm2

f
sin2� � 0: (22)

We have studied the appearance of ergoregions for � ¼
0:1,!1 ¼ !2 and two different values of �, namely, � ¼ 0
and � ¼ 1:5, respectively. Our results are shown in Fig. 6.
Very similar to the case for fixed !1 ¼ !2 and varying �,
the spherically symmetric, nonrotating boson star disap-
pears from the solution for !1 <!1;cr. We demonstrate

this by plotting 
1ð0Þ [
1ðrÞ has its maximal value at r ¼
0] as a function of !1. We find that !1;cr decreases with

increasing �, e.g. we find that !1;cr � 0:37 for � ¼ 0 and

!1;cr � 0:35 for � ¼ 1:5. This is easy to understand, since

an increasing � means an increasing direct interaction
between the two boson stars. We also plot the maximal
value of g00, g00;m as a function of !1. Interestingly, for

� ¼ 0, g00;m stays negative as long as the spherically

symmetric boson star is present. Thus for � ¼ 0:1 and � ¼
0, there are no instabilities due to ergoregions for those
values of !1 ¼ !2 where genuine interacting boson stars
exist. For smaller values of !1 ¼ !2 (and the second
branch of solutions), the curve for g00;m would follow the

curve for a single rotating boson star given in [11]. The
situation changes for � ¼ 1:5. Here, g00;m becomes zero at

a value of !1 ¼ !ð0Þ
1 which is larger than the value !1;cr at

which the spherical boson star disappears from the system.

We find !ð0Þ
1 � 0:38 for � ¼ 0:1 and � ¼ 1:5. Thus for

!1;cr � !1 � !ð0Þ
1 the two interacting boson stars possess

an ergoregion signaling an instability. It appears that the
stronger direct interaction between the boson stars tends to
destabilize the system. A more detailed investigation and
plots of the ergoregions will be presented in a future
publication.
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FIG. 3. The contour plots of the metric functions f, l, g, and m as well as of the scalar field functions 
1 and 
2 are shown for two
interacting boson stars with l1 ¼ 0, k1 ¼ 0 (spherically symmetric, nonrotating) and l2 ¼ 1, k2 ¼ 1 (axially symmetric, rotating,
parity even). Here � ¼ 0:2, � ¼ 0, and !1 ¼ !2 ¼ 0:8. Note that we use cylindrical coordinates z ¼ r cos� and � ¼ r sin�.
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FIG. 6. The value of the scalar field function at the origin
associated with the spherically symmetric boson star 
1ð0Þ as
well as the maximal value of the time component of the metric
g00;m are shown as functions of !1 ¼ !2 for � ¼ 0:1 and � ¼ 0
(solid lines) and � ¼ 1:5 (dashed lines), respectively. Here l1 ¼
0, k1 ¼ 0, l2 ¼ 1, k2 ¼ 1.

FIG. 4. The dependence of the mass M, charge Q, and 
1ð0Þ
on � is shown for two interacting boson stars with l1 ¼ 0, k1 ¼
0 (spherically symmetric, nonrotating) and l2 ¼ 1, k2 ¼ 1 (ax-
ially symmetric, rotating, parity even) (solid lines). Here � ¼ 0.
For comparison we also give the values for the l1 ¼ 0, k1 ¼ 0
single boson star for which 
2 � 0 (dashed lines).

FIG. 5 (color online). The energy density of two interacting
boson stars with l1 ¼ 0, k1 ¼ 0 (spherically symmetric, non-
rotating) and l2 ¼ 1, k2 ¼ 1 (axially symmetric, rotating, parity
even) for � ¼ 0:1 (upper curve) and � ¼ 0:2 (lower curve),
respectively. Here � ¼ 0 and !1 ¼ !2 ¼ 0:8. Note that we use
cylindrical coordinates z ¼ r cos� and � ¼ r sin�.

FIG. 7 (color online). The energy density of two interacting
boson stars with l1 ¼ 0, k1 ¼ 0 (spherically symmetric, non-
rotating) and l2 ¼ 2, k2 ¼ 1 (axially symmetric, rotating, parity
odd). Here � ¼ 0, !1 ¼ !2 ¼ 0:8, and � ¼ 0:05 (top panel),
and � ¼ 0:2 (bottom panel), respectively. Note that we use
cylindrical coordinates z ¼ r cos� and � ¼ r sin�.
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FIG. 8. The contour plots of the metric functions f, l, g, and m, as well as of the scalar field functions 
1 and 
2 are shown for two
interacting boson stars with l1 ¼ 0, k1 ¼ 0 (spherically symmetric, nonrotating) and l2 ¼ 2 and k2 ¼ 1 (axially symmetric, rotating,
parity odd). Here � ¼ 0:1, � ¼ 0, and !1 ¼ !2 ¼ 0:8.
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3. l1 ¼ 0, k1 ¼ 0, l2 ¼ 2, k2 ¼ 1

This corresponds to the interaction of a nonrotating
boson star and a rotating, axially symmetric, parity-
odd—or in our notation ‘‘angularly excited’’—solution.
The 
2 component corresponding to the rotating boson
star is odd under the z ! �z reflection. Our numerical
results indicate that this case is qualitatively similar to the
previous case. For vanishing and small � the energy den-
sity has its maximum in a ball centered around the origin as
well as in two tori at z > 0 and z < 0. This is clearly seen in
Fig. 7, where we plot the energy density of the solutions for
two different values of �, � ¼ 0 and !1 ¼ !2 ¼ 0:8.
When the parameter � increases, the spherically symmet-
ric boson star disappears and the solution becomes purely
axially symmetric. This is indicated in Fig. 7 for � ¼ 0:2
and � ¼ 0:05. Again for � ¼ 0:05, the energy density has
a big value at the origin which results from the nonrotating
boson star. For � ¼ 0:2 this value has decreased signifi-
cantly and the energy density looks like that of an axially
symmetric solution. We also present the contour plots of
the metric and matter field functions in Fig. 8 for � ¼ 0:1,
� ¼ 0, and !1 ¼ !2 ¼ 0:8.

Considering the ergoregions of these solutions, we find
that for � ¼ 0:1 and both values of � ¼ 0 and � ¼ 1:5,
respectively, g00;m stays negative for all values of!1 ¼ !2

for which genuine interacting boson stars exist. When
interacting with a rotating, parity-odd boson star, the
spherically symmetric boson star disappears from the so-
lution for values of!1 larger than in the case of interaction
with a parity-even boson star (see previous section). For
!1 ¼ !2 smaller than !1;cr, i.e. the frequency at which


1ð0Þ [the maximal value of 
1ðrÞ] vanishes (and for the
second branch of solutions), the curve thus follows the
curve of the rotating, parity-odd boson star presented in
[11]. We find that !1;cr � 0:43 for � ¼ 0:1 and � ¼ 0,
while !1;cr � 0:41 for � ¼ 0:1 and � ¼ 1:5. The corre-

sponding data are plotted on Fig. 9.

V. CONCLUSION

In this paper we have studied angularly excited as well
as interacting Q balls and their gravitating counterparts,
boson stars. When a nonrotating boson star interacts with a
rotating boson star for fixed angular frequency ! and
varying gravitational coupling, the nonrotating boson star
tends to disappear from the system if the gravitational
coupling reaches a critical value. For gravitational cou-
plings above these critical values, only single, axially
symmetric boson stars exist. The same holds true if the
gravitational coupling is fixed and the angular frequency
lowered. Then below a critical value of the angular fre-
quency !, the nonrotating boson stars have disappeared
from the bound system. As a consequence, the bound state
of two boson stars with l1 ¼ k1 ¼ 0 and l2 ¼ k2 ¼ 1 exists
only on a finite domain of the parameter space !1, !2. We
observe that this behavior is qualitatively independent of
the choice of the direct interaction parameter � in the
potential.
When considering the existence of ergoregions for our

solutions, which would signal an instability, we observe
that the two cases of a nonrotating boson star interacting
with a rotating, parity-even boson star on the one hand and
with a rotating, parity-odd boson star on the other hand are
qualitatively different. While in the latter case no ergore-
gions appear for genuinely interacting boson stars, i.e. with
the nonrotating boson star present in the system, ergore-
gions appear in the former case if the interaction parameter
� is made large enough.
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