PHYSICAL REVIEW D 79, 064011 (2009)
Spherical scalar-tensor galaxy model

Jorge L. Cervantes-Cota,' Mario A. Rodriguez-Meza,' and Dario Niifiez*

(Instituto Avanzado de Cosmologia, IAC)

'Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México D.F. 11801, México
2Instituto de Ciencias Nucleares, Universidad Nacional Auténoma de México, A.P. 70-543, 04510 México D.F., México
(Received 8 December 2008; published 16 March 2009)

We build a spherical halo model for galaxies using a general scalar-tensor theory of gravity in its
Newtonian limit. The scalar field is described by a time-independent Klein-Gordon equation with a source
that is coupled to the standard Poisson equation of Newtonian gravity. Our model, by construction, fits
both the observed rotation velocities of stars in spirals and a typical luminosity profile. As a result, the
form of the new Newtonian potential, the scalar field, and dark matter distribution in a galaxy are
determined. Taking into account the constraints for the fundamental parameters of the theory (A, @), we
analyze the influence of the scalar field in the dark matter distribution, resulting in shallow density profiles

in galactic centers.
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I. INTRODUCTION

The recent indirect observational evidence of dark mat-
ter (DM) and dark energy in the Universe [1-9] has moti-
vated the study of new cosmological and astrophysical
scenarios that can encompass these observations. At a
cosmological level, the quintessence scenario [10-12] pro-
vides fittings to the present accelerated expansion rate of
the Universe and should be consistent with the other above-
mentioned observations. Typically, quintessence introdu-
ces new fields that have their origin in theories that attempt
to unify all forces of nature (strings, braneworlds). These
unification schemes result in extensions to general relativ-
ity, which determine a new dynamics. Scalar-tensor theo-
ries (STT) of gravity are examples of effective theories that
stem from such unifying schemes [13,14]. As one may
suspect, in addition to cosmological consequences, such
theoretical extensions also predict local, astrophysical ef-
fects. Traditionally, to understand the dynamics of a gal-
axy, a DM profile has been introduced[15] or, alternatively,
a modification to the Newtonian gravitational law, e.g. via
Yukawa couplings [16], or even modifications to the
Newtonian motion law, such as MOdified Newtonian
Dynamics [17,18]. Within the first approach, several DM
candidates have been proposed, including a scalar field
(SF) as DM itself [19,20]. The second approach has been
used to obtain flat rotation curves in spirals via STT,
without using DM halos. Adjusting rotation curve profiles
using STT implies that the strength of the Yukawa cou-
pling, «, has to be negative, leading to a phantomlike
nonminimally coupled field. Moreover, the adjustment of
different rotation curves of specific galaxies, points to
different values for the range parameter of the theory, A
[21], implying a mass spectrum for the fundamental theory
at hand. The third approach solves flat rotation curves
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dynamics in spirals, but fails to fully understand cluster
dynamics. This latter approach will not be considered here.
Our model is a combination of the first two approaches
mentioned above: we use both a DM halo and a SF non-
minimally coupled to general relativity, as long as these
two elements could simultaneously play a role in the
galactic dynamics, and mitigate the constraints imposed
on STT parameters, when using that theory alone.
Following this line of thought, we have recently studied
[22,23] the influence that STT have at galactic scales, see
also [24]. We considered the Newtonian limit of STT and
computed potential-density pairs of a spherical galaxy in
which Navarro, Frenk, and White’s (NFW) [25] and
Dehnen’s [26] density profiles were used. We also com-
puted some other relevant observational quantities (rota-
tion curves, dispersions), by which we accounted for the
influence of the STT scalar fields in the Galaxy. Such
influence is characterized by the two parameters (A, a) of
STT, see below. In this work we use this formalism to build
a galactic model that is, by construction, consistent with
the measured rotation curves of stars and with some lumi-
nosity profile. As a result, the form of the Newtonian
potential is exactly solved, and the SF and DM distribution
in a galaxy are numerically computed, and their specific
features depend on the fundamental parameters (A, ) of
the STT. For the values of the parameter space analyzed,
the resulting DM has shallow profiles near the center.
Some other models such as the gravitational suppression
hypothesis [27] have been put forward, in which a Yukawa
term is added in the Newtonian potential. Recently, [28]
analyzed the rotation curves best fit in this model, in which
a NFW profile is used. They concluded that this hypothesis
does not fit several rotational curves of spirals and, hence,
does not solve the core/cuspy problem of DM in the center
of galaxies. Arguments in favor of a cusplike center can be
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found in Refs. [29-33]; however, recently more evidence
has emerged favoring a corelike galactic center [34—45]. In
[46] a way can be found to reconcile both approaches.

The present work is organized as follows: in the next
section we give a brief description of the STT Newtonian
approximation, where the SF background value is set to
have the usual gravitational constant value at small dis-
tances, r << A. In Sec. III, we build a galactic model by
giving the rotation curves and baryon density profile, and
in Sec. IV we analyze the influence of the pair of parame-
ters (A, &) on the SF and DM density distributions. Finally,
in the last section we discuss the results and present our
conclusions.

II. THE NEWTONIAN APPROXIMATION OF STT
A typical STT is given by the following Lagrangian
[47,48]:
_Jg w(¢)
Sol[-or+ 2P @87 —vio) |+ Lule
ey

where g, is the metric, ¢ is a SF, and w(¢) and V(¢) are
arbitrary functions of it. £,(g,,) is the matter Lagrangian.
From Eq. (1) one obtains the gravity and SF equations.
Thus, the gravitational equation is

1 1 1
R,uV - Eg,u,VR = E[SWT,LLV + Ev(d))g,u,u
1

+ —ff) 0, by “’(d’)(a ¢ 8
+ d);,u,u - g,u,vljd)] (2)

The SF Klein-Gordon equation is

oV =2V 1 o 5

Det S5, ~ 352,07 — @@ )

where a prime (’) denotes the derivative with respect to SF.

In accordance with the Newtonian approximation, grav-
ity and SF are weak. Then, we expect to have small devia-
tions of the SF around the background field. Assuming also
that the velocities of stars and DM particles are nonrela-
tivistic, we perform the expansion of the field equations
around the background quantities (¢) and 1, 1i.e., g, =
N+ iy and @ = () + 8¢b.

The equations governing the weak energy (Newtonian)
limit of STT are well known [22,49-52] and written here in
physical units (& # 1, ¢ # 1)

1o Gy Rv2
2
V25 — ('”7‘:) 5 = —8map, (5)
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where the background value is chosen such as (¢) = (1 +
a)c?/Gy, a choice that sets the effective Newtonian
constant to the one locally observed, see [49,53] for a
detailed discussion. Equations (4) and (5) represent the
Newtonian limit of a set of STT that are distinguished by
the effective square mass m?> = a((¢>V¢ ) V£15=<</>>) -

207wl (DWVh_i4) = 2Vp—(py) and  a=1/(3+
() |p=(gy s w(¢p) is a generalization of the Brans-
Dicke parameter [47].

In the above expansion we have set the cosmological
constant equal to zero since within galactic scales its
influence is negligible. This is because the average density
in a galaxy is much larger than a cosmological constant
that is compatible with observations. Thus, we only con-
sider the influence of luminous and dark matter. These
matter components gravitate in accordance with the
modified-Newtonian theory determined by Eqs. (4) and
(5). The latter is a Klein-Gordon equation, which contains
the boson field of mass m, whose Compton wavelength
(A = h/mc) implies a length scale for the new dynamics.
We shall assume this scale to be of the order of kiloparsecs.

Note that Eq (4) can be cast as a Poisson equation for

= 2 (hOO <¢>)
G
V2 =—N 4
b=1 07 (6)
thus, the new Newtonian potential is now given by
c? 2 8¢
Oy =—hy = — @)

2 2 {(¢)

Solutions to these equations, the so-called potential-
density pairs [54], were found for the NFW’s and
Dehnen’s density profiles [22] and for axisymmetric sys-
tems [23]. For point particles the solution is well known,
see for instance [22,50], and with the choice of the above-
mentioned background field, one has

Gy M
l+a r

Oy = — —(1 + ae™ %), 8)
where M is the point particle mass producing the field. The
strength of the new scalar force is given by « and its action
range by A. For local scales, r << A, deviations from the
Newtonian theory are exponentially suppressed, and for
r >> A the Newtonian constant diminishes (augments) to
Gy/(1 + a) for positive (negative) a. Recently, the effect
of STT has been investigated in different cosmological
scenarios in which variations of the Newtonian constant
are constrained. For instance, [55] studied the influence of
varying G on the Doppler peaks of the cosmic microwave
background radiation, and concluded that their parameter
(€ = G/Gy) should be in the interval 0.75 = £ < 1.74 in
order to be within the error bars of the cosmic microwave
background radiation measurements. In our notation this
translates into —0.43 = « = 0.33. However, this range for
« has to be taken as a rough estimation, since these authors
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have only considered a variation of Gy, and not a full
perturbation study within STT. The latter has been done
by [56], who found some deviations from the Newtonian
dynamics, that when translated into our strength parameter
would correspond to & = 0.04; however, they do not com-
pare their results with observations. On the other hand, a
structure formation analysis has been done by [57], in
which deviations of the matter power spectrum are studied
by adding a Yukawa potential to the Newtonian. They
found some allowed dynamics, that turn out to constrain
our parameter to be within —1.0 = a = 0.5; but again a
self-consistent perturbation study in general STT is miss-
ing. Thus, the above three estimates can be taken as order-
of-magnitude constraints for our models. For definitive-
ness, we will take values within the range —0.3 = o = 3.
The value a = —0.3 yields an asymptotic growing factor
of 1.4 in Gy, whereas the value @« = 3.0 makes Gy to
asymptotically reduce by one-fourth.

III. A GALACTIC MODEL

We proceed to build a galactic model by assuming that
the total matter content consists of two components, bary-
ons and cold DM, p; = pg + ppm; Baryons represent
stars, and the cold DM component could be of any type.
The dynamics is determined by the theory explained in the
preceding section. There are two possibilities on the DM
origin: i) DM is not related to the SF, and ii) DM is
associated with the boson produced by the SF. In the
former case, DM can be, for example, an ensemble of
neutralinos, whose mass is in the range 200 GeV < m, <
300 GeV [58], within an effective supergravity theory that

|

2 .2 2
Virc = Vurep T VUrcu

A,
dr’
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nonminimally couples to gravity, see for example [59]. In
the latter case, ii), the mass of the DM particle is given by
Mpy = h/Ac, with A ~kpe, implying that Mpy ~
10726 eV. The smallness of this mass would have to be
explained by a particle physics theory, e.g. similar to light
scalar presented by [60], yet nonminimally coupled to
gravity.

Both baryons and DM ““feel” the same gravitational
potential, @y, but are differently distributed in the galaxy.
For the baryon component we assume a Freeman-disk
density profile [61,62], that is,

M; _
= r/rq 9
pp(r) 27”56 , 9

where M is the mass of the disk and r, its radius.

For the DM density we do not assume a particular
profile. Instead, we proceed to find its form by imposing
a general rotation pattern. In the past attempts have been
made to determine a universal rotation curve (URC) pro-
file, beginning with the pioneering work of Ref. [63]. In the
nineties, the authors of Refs. [64,65] considered more than
1100 optical and radio data of Sb-Im spirals to find a
phenomenological URC profile valid up to the outermost
radius where data were available at that time. Recently,
they have considered more data and have modified the
profile [66], extending it out to its virial radius, that is,
including the DM halo part. This profile is supposed to be
valid for spirals of different types [67] but a number of
issues are still open [66]. Accordingly, we assume for our
model that stars and DM particles obey the following URC
profile [66]:

ST GG P ) ()]

(10)

where the functions / and K are the modified Bessel functions, and p, and r, are the scaling density and radius of the
Burkert density profile [68]. The first part accounts for the disk contribution and the second for the halo’s. In a previous
work we have assumed a simpler, flat rotation curve profile [53].

The given circular velocity determines the form of gravitational potential @, through Eq. (10), which in turn is related

to pgm and 6 ¢ through Egs. (4), (5), and (7).
Integrating Eq. (10) for ®y yields

Oy = Dyp + Dy

= IGMd r[’ﬂ(z_:) (Zrd) I(zrd) (2rd)]
o () e ] )

(11
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TABLE I. Properties and best fitting parameters of the galaxies used.
Galaxy Type rq [kpe] My [Mo] ro [kpc] po [Mo/kpc’] Xred
DDO 47 1B 0.5 3.60 = 0.62 X 107 5.43 =0.09 2.67 £ 0.03 X 107 1.74
ESO 116 — G12 SBcd 1.7 2.09 *= 0.08 X 10° 4.77 = 0.03 4.44 = 0.04 X 107 0.99
NGC 7339 SABd 1.5 1.10 = 0.01 X 10'° 3.03 = 0.03 1.60 + 0.02 X 103 1.69
UGC 4325 SA 1.6 8.42 = 0.47 X 108 40.54 = 10.16 6.59 + 0.08 X 107 3.56

which leads to the motion of test particles in the Galaxy.
Substituting this result in the original system, Egs. (4) and
(5) transform into the following two equations:

2 2a
V26— s = — EV2a,, 12
¢ 0+ a) ¢ G N (12)
1 1 mc\2
= —pg +——V?D +—<—)6
pov = Pyt e Vit e\ ) 2
Po”?) 1

(%)Q&b (13)

for two variables, ppy and 6¢. The second equality of
Eq. (13) results since the disk contribution of Laplacian of

DDO 47 : URC
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FIG. 1.

@, cancels out with baryon density, see Eq. (11). Thus, the
resulting DM profile is the Burkert profile plus the SF
contribution. By substituting Eq. (11) into Eq. (12), one
solves for the scalar perturbation. Then, using Eq. (13) one
solves for the DM profile. The results depend on the STT
parameters (A, a) and on the rotation curve fitting parame-
ters (pg, ro, My, r4). Particular galaxies fix the latter pa-
rameters. As an example, we had chosen a set of four
galaxies of different types that have been used to test
particular gravity theories [28] and to test the validity of
some density profiles [36,69]. The galaxies are DD047,
ESO 116-G12, NGC 7339, and UGC 4325. A greater
galaxy set could have been used to test the rotation profile
given by Eq. (10), but this has already been done in

ESO 116—G12 : URC
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UGC 4325 : URC
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The continuous line is the fitted rotation curve for data of the four galaxies. The short-dashed line is the exponential disk

contribution and the long-dashed line is DM’s. At the bottom we plotted the residuals (vops — Vyre)-
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Ref. [36], and in Ref. [66] additional arguments are given
in favor of this rotation profile. In general, flat density
profiles, such as Burkert’s, tend to match rotation curves
data within Newtonian dynamics [36]. In Table I, we
present the properties and best fitted values of the galaxies’
parameters, and in Fig. 1 the best fits are shown. The
rotation curve data fit quite well to the profile URC given
by Eq. (10). In doing the fitting we have taken the values
for r;, which is directly measured by optical observations,
given in Ref. [70] for the first three galaxies and the values
given in ref. [69] for UGC 4325. Then, we have varied M ;,
ro and Po-

The first term of the right-hand side of Eq. (13) is the
Burkert profile, pgur = pora/(r + ro)(r* + r3) and one
can define py = giry (59°0¢ so that to express
Eq. (13) as ppm = pgur + py- The density py is the
contribution of the SF fluctuation to the total density.
Given this, the total density is py = pg + ppm = P +
pPeur T pg- In what follows we proceed to numerically
integrate the above equations.

IV. SPHERICAL SOLUTION

Unfortunately, these quantities cannot be computed an-
alytically, since the Newtonian potential involves cylindri-
cal and spherical dependencies. Therefore, to solve the
Eq. (12) we will assume spherical symmetry. Then, we
use the integrals given in Ref. [22] to numerically solve for
8.

We perform the integration for the low surface bright-
ness galaxy UGC 4325; because the NFW model does not
properly fit with the observations, so we plan for this
galaxy to contrast our results with them.

Let us explain the range of values for the STT parame-
ters taken in our analysis. Originally, STT [47,48] were
thought for positives values of « to have a standard kinetic
term in Eq. (1). But negatives values are also theoretically
possible [71,72] and they have been applied, for instance,
to accomplish, without a potential in Eq. (1), an infla-
tionary era in isotropic [73] and anisotropic models [74],
or more recently, to explain the present accelerated expan-
sion of the Universe in some quintessence models [75,76].
Thus, we will consider positive as well negative values of o
subject to the constraints mentioned at the end of Sec. II.
Therefore, we will analyze the solutions in the interval
—0.3 = a = 3.0. On the other hand, we will assume that
A is in the interval 0.1 kpc = A = 50 kpc to fit galactic
scales.

A. Solutions for positive «

In Fig. 2(a) we plot the resulting density profiles for & =
3.0 and A = 1.0 kpc. Of particular interest is the form of
the DM profile that flattens near the center of the Galaxy.
The latter is again shown in Fig. 2(b), where for compari-
son the standard Newtonian density profile py is plotted,
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FIG. 2. (a) It is shown all density profiles using « = 3.0 and

=1 kpc. (b) It is shown pngrw, ppm and py for comparison.

which is the profile to have vy as given by Eq. (10), but
turning off the SF; i.e., py is the density found by solving
the Poisson equation with Newtonian potential given by
®yy in Eq. (11). Thus, the Newtonian density is the
Burkert profile [68]. One observes that ppy is always
bigger than py, since the effect of the SF is to diminish
the effective gravitational constant for r > A, since G =
G(1 + ae™"/") /(1 + a), thus to compensate the reduction
of the gravitational constant, a denser DM profile is neces-
sary to have the same rotation curve profile. Concerning
the behavior of the profile, we have computed a numerical
fit of the inner part of the curve (r < r;), showing that
it behaves approximately as ppy ~ 7~ "™ with ypy =
0.0000630000%;  the uncertainties stemming basically
from the uncertainties in ry. On the other hand, the stan-
dard Newtonian model is just a little steeper py ~ r~ ¥
with yy = 0.000107000003. Both of these profiles are
essentially shallow. The NFW that best fitted rotation
curves data is included for comparison, which is known
to be cuspier in the inner region, pypw ~ r~ %0 %! For r ~
r, the behavior follows ppy ~ r %M with Spy =
0.04010011 " p\ ~ r v with 8y =~ 0.0417991¢ The NFW
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model behaves as pypw ~ 7~ W with Sypw ~ 1.003. For
r ~ 1y the behavior follows ppy ~ r~ %™ with Spy =
1447033 py ~ v with 8y =~ 1.44703¢, and the NFW
model behaves as pypw ~ 7~ OV with Sypw ~ 1.08.
Figure 2(b) shows that the DM profile is bigger than
NFW’s beyond r ~ 0.6 kpc. On the other hand, Ref. [69]
shows that NFW fits are bad for this galaxy, because
arbitrary low concentrations (i.e., large NFW scaling
length r,) are needed. In our case, the best fitted curve
implies a concentration ¢ = 1.22, which is clearly incon-
sistent with the cosmological expected values ¢ > 5 (for a
wide range of vy values) [9,77]. Thus, what we essen-
tially see in our plots of the NFW profile is its cuspy region,
as shown in Fig. 2(b).

The solution shown for the SF is the interior solution and
eventually at some » = R the exterior solution is valid [22];
one could think of R to be of the order of the halo size.
Thus, for r = R, the SF exponentially vanishes and we
obtain a standard Newtonian behavior. Therefore, asymp-
totically, for r > ry, ppm ~ ¥~ > similar to pxpw ~ 7 °.

In Figs. 3(a) and 3(b) we have plotted the SF and DM
profiles for various A. The SF fluctuation diminishes going
from the center to outer parts, and for smaller A the decay is
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FIG. 3. (a) It is shown the SF perturbation and (b) the DM
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profile for various A and fixed a = 3.0.
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FIG. 4. (a) It is shown the SF perturbation and (b) the DM

profile for various « and fixed A = 1 kpc.

stronger in inner regions. Figure 3(a) shows also that the SF
is bigger for larger A, since for large A, G+ approaches to
G. A consistency check implies that the SF must comply
with the condition 8¢ < (1 + a)c’Gy! = (1 + @)2.1 X
10'°M, /kpc in order to validate the perturbation theory
used, and it is indeed the case for the pair of parameters
(A, @) chosen. On the other hand, the DM profiles in
Fig. 3(b) diminish by augmenting A. The DM profile
more deviates from the standard Newtonian one for
smaller A.

In Figs. 4(a) and 4(b) we plotted the SF and DM
profiles for various « and fixed A = 1.0 kpc. Again the
constraint on 6¢ is fulfilled (Fig. 4(a)). As expected, for
small « the DM profile tends to the standard Newtonian
one (Fig. 4(b)).

B. Solutions for negative «

In Fig. 5(a) we again plot all densities, as in Fig. 2(a),
but now for « = —0.1 and A = 1.0 kpc. The DM profile
in the inner regions (r <K rg) is given by ppy ~ r~ P
with ypy = 0.000117539093 that is quite similar as
the standard Newtonian, which gives py ~ r~ 7, with
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FIG. 5. (a) It is shown all density profiles using « = —0.1 and

A =1 kpc. (b) It is shown pnpw, ppMm and py for comparison.

yy = 0.0001072390993: they are shallow. In contrast,
NFW’s profile in the same region that has a cuspy power
ynew = —1.00001. Figure 5(b) shows the DM,
Newtonian, and NFW profiles for comparison. It is clear
that the DM profile is less massive than the standard
Newtonian. This is because the effective gravitational
function, G = G(1 + ae™"/")/(1 + a), is increased for
negative a, and the gravitational pull, being proportional to
the term G M, is compensated by a decrease in M(r), that
is by a decrease of the DM profile. For r ~ r,; the behavior
is as follows: ppy ~ r~ %M with Spy = 0.03579903, the
standard Newtonian profile is py ~ v with &y =~
0.04170504, the NFW’s behaves nearly as Sypw = 1.00.
For r ~ r, the behavior follows ppy ~ 7~ %M with Spy =
1447038 py ~r % with 8y =~ 1.44%03¢ the NFW
model behaves as pypw ~ 7OV with Sypw ~ 1.08. As
in the a-positive case, Fig. 5(b) shows again that beyond
some region (r ~ 1 kpc) the DM profile is bigger than
NFW’s. Asymptotically, for r > ry, beyond some point
the exterior solution is valid, thus ppy ~ r73, similar to
PNEW ~ T

Figures 6(a) and 6(b) show the SF and DM profiles for
various A, respectively. The behaviors show systematic
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FIG. 6. (a) It is shown the SF perturbation and (b) the DM
profile for various A and fixed & = —0.1.

tendencies: the smaller A, the smaller |§¢|, and again
and for smaller A, the decay is stronger in inner regions
(Fig. 6(a)). The SF complies with §¢ < (1 + a)c*Gy',
guaranteeing the validity of the perturbation approach. On
the other hand, the bigger A, the closer the DM profile
approaches to the standard Newtonian model (Fig. 6(b)).

In Figs. 7(a) and 7(b) we plotted the SF and DM profiles
for various negative « and fixed A = 1.0 kpc. Again, the
constraint on d¢ is fulfilled. As expected, for smaller
|| the DM profile tends to the standard Newtonian one
(¢ =0).

V. DISCUSSION AND CONCLUSIONS

We have considered a general STT in its weak energy
limit in which two free parameters appear (A, «). This pair
can be constrained by the above-mentioned observations:
the first parameter is the Compton wavelength associated
with a light boson particle, which we have taken to be of
the order of kiloparsecs; this value implies a change of the
Newtonian constant only at distances of the order of galac-
tic scales or bigger, and therefore does not conflict with
local deviations of Newtonian dynamics [78]. The other
parameter is the strength of the new scalar force, given by
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«, which is subject to cosmological constraints.
Accordingly, we have taken values for « within the range
—0.3 = o = 3. We do not use bigger positive (negative)
values for a because they predict a weaker (stronger)
gravitational constant on scales larger than A, and bring
some unacceptable cosmological effects [55-57].

Using the STT formalism, we have constructed a galac-
tic model with a distribution of stars and DM that obey a
rotation profile compatible with observations given by the
URC of [66], as is shown in Fig. 1. This fitting determines
the form of the effective gravitational potential ®, given
by Eq. (11). Then, by taking a typical density profile for
baryons (Freeman exponential profile), the only two quan-
tities to be determined are the SF fluctuation and DM
profile, which are given by Eqgs. (12) and (13), respectively,
for which we have found numerical solutions." In a pre-

'"In other models, such as the gravitational suppression hy-
pothesis [27] one assumes a NFW DM profile to determine the
parameters (A, a) of that theory by fitting theoretical curves to
the rotation curves data [28]. In our approach, we determine the
DM profile by setting a fitted universal rotation curve that is
generic for different spiral types [66].

PHYSICAL REVIEW D 79, 064011 (2009)

vious work [53] we have found analytic solutions for a flat
rotation curve profile. Those solutions are similar to
NFW’s [25]. The numerical solutions found here are shal-
low near the galaxy center, since the universal rotation
curve of the halo (URCH), Eq. (10), stems from the
Burkert profile [68], which is shallow for r < ry. In order
to make a comparison with the standard Newtonian model,
we turned off the SF and solved for the density in the
standard Poisson using Eq. (11). The resulting profile is
called py and is the well-known Burkert profile. The DM
profile found here is slightly shallower (cuspier) than the
Newtonian profile for positive (negative) values of «, and
in any case much shallower than NFW’s. To quantitatively
analyze the solutions we have considered the two scales
involved in the URC fitting, that are the disc radius, rg,
and the DM scale, r,. The DM solutions near
the galactic center (r < r;) with a positive are a bit
shallower (p ~ r~ 0000625550y than those with « negative
(p — r_OOO 011+0.00 004

-000002), and both of them are much shallower
than NFW’s profiles [25,29,31,33]. Solutions at r ~ r, for
a positive decay as (ppy ~ r~*040%667) and for a negative

,0.035+0.015

decay weaker (p ~ r 000 ). At r~r for positive «
—1.44

the DM profile behavesas p ~ r 02 and for negative «
the behavior is p ~ r~ 44203, The uncertainties stemming
from the allowed values of the fitting parameters reported
in Table I. For the allowed values of r(, the DM exponents
for r < r; vary between 20%-34%, for r ~ r,; between
17%-29%, and for r > r; vary between 18%—-24%. The
slopes of the DM profiles change smoothly, so that their
behavior does not qualitatively differ from their mean
value. With respect to the variations of M, and p, the
exponents vary less than (or of the order of) 1%.

On the other hand, for positive (negative) a, ppy 1S
bigger (smaller) than py always, since the effect of the
SF is to diminish (augment) the effective gravitational
constant for r > A, being G = G(1 + ae™/") /(1 + a),
thus it is necessary to compensate it with a corresponding
larger (smaller) DM density. Finally, asymptotically, for
r >> r,, the exterior solution is valid, and thus ppy ~ r >
is similar to pypy ~ 7 °.

We have found numerical solutions for the allowed
parameter space for strength of the SF potential, —0.3 =
a = 3.0, and within galactic distances, 0.1 kpc = A =
50 kpc. The results indicate some systematic tendencies:
the effect of the SF is more apparent for A < r,, and its
influence attenuates for A > r(, since in this regime the
behavior is essentially Newtonian (A = o) for r < r(. For
small || the DM profile tends to the standard Newtonian
one (a = 0).

The intention of the present work was to study the
influence of a massive SF in a galaxy model that is com-
patible with a typical baryon distribution and follows the
URC of observed galaxies. This construction fixes the
Newtonian potential, and for the STT parameters analyzed,
the resulting DM profile is shallow at the center of the halo.

064011-8
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These results are encouraging showing the important role
that both contributions, DM and STT, could have in the
dynamics of the systems. We think that numerical N-body
simulations using the STT of gravity have to be done to
confirm the solutions discussed here. Some preliminary
computations have been carried out in Refs. [79,80].
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