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In this paper, we introduce the n-dimensional Lorentzian wormhole solutions of third order Lovelock

gravity. In contrast to Einstein gravity and as in the case of Gauss-Bonnet gravity, we find that the

wormhole throat radius r0 has a lower limit that depends on the Lovelock coefficients, the dimensionality

of the spacetime, and the shape function. We study the conditions of having normal matter near the throat,

and find that the matter near the throat can be normal for the region r0 � r � rmax, where rmax depends on

the Lovelock coefficients and the shape function. We also find that the third order Lovelock term with

negative coupling constant enlarges the radius of the region of normal matter, and conclude that the higher

order Lovelock terms with negative coupling constants enlarge the region of normal matter near the throat.
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I. INTRODUCTION

Wormholes are tunnels in the geometry of space and
time that connect two separate and distinct regions of
spacetimes. Although such objects were long known to
be solutions of Einstein equation, a renaissance in the study
of wormholes has taken place during 80’s motivated by the
possibility of quick interstellar travel [1]. Wormhole phys-
ics is a specific example of adopting the reverse philosophy
of solving the gravitational field equation, by first con-
structing the spacetime metric, then deducing the stress-
energy tensor components. Thus, it was found that these
traversable wormholes possess a stress-energy tensor that
violates the standard energy conditions (see, e.g., [2,3], or
[4] for a more recent review). The literature is rather
extensive in candidates for wormhole spacetimes in
Einstein gravity, and one may mention several cases, rang-
ing from wormhole solutions in the presence of the cos-
mological constant [5], wormhole geometries in higher
dimensions [6], to geometries in the context of linear and
nonlinear electrodynamics [7]. Also, the stability of worm-
hole solutions has been analyzed by considering specific
equations of state [8], or by applying a linearized radial
perturbation around a stable solution [9].

One of the main areas in wormhole research is to try to
avoid, as much as possible, the violation of the standard
energy conditions. For static wormholes of Einstein gravity
the null energy condition is violated, and thus, several
attempts have been made to somehow overcome this prob-
lem. In order to do this, some authors resort to the alter-
native theories of gravity: the wormhole geometries of
Brans-Dicke theory that have been investigated in [10];
of Kaluza-Klein theory in [11]; and of a higher curvature
gravity in [12]. In the latter, it was found that the weak
energy condition may be respected in the throat vicinity of
the wormholes of higher curvature gravity. A special

branch of higher curvature gravity, which respects the
assumptions of Einstein—that the left-hand side of the
field equations is the most general symmetric conserved
tensor containing no more than two derivatives of the
metric—is the Lovelock gravity [13]. This theory repre-
sents a very interesting scenario to study how the physics
of gravity are corrected at short distance due to the pres-
ence of higher order curvature terms in the action. Static
solutions of second and third order Lovelock gravity have
been introduced in [14,15], respectively. For wormholes
with small throat radius, the curvature near the throat is
very large, and therefore the investigation of the effects of
higher curvature terms becomes important. The possibility
of obtaining a wormhole solution from the instanton solu-
tions of Lovelock gravity has been studied in [16]. The
wormhole solutions of dimensionally continued Lovelock
gravity have been introduced in [17], while these kinds of
solutions in second order Lovelock gravity and the possi-
bility of obtaining solutions with normal and exotic matter
limited to the vicinity of the throat have been explored in
[18]. Here, we want to add the third order term of Lovelock
theory to the gravitational field equations, and investigate
the effects of it on the possibility of having wormhole
solutions with normal matter. We also want to explore
the effects of higher order Lovelock terms on the region
of normal matter near the throat.
The outline of this paper is as follows: We give a brief

review of the field equations of third order Lovelock grav-
ity and introduce the wormhole solutions of this theory in
Sec. II. In Sec. III, we present the conditions of having
normal matter near the throat and exotic matter every-
where. We finish our paper with some concluding remarks.

II. STATIC WORMHOLE SOLUTIONS

We first give a brief review of the field equations of third
order Lovelock gravity and then we consider the static
wormhole solutions of the theory. The most fundamental*mhd@shirazu.ac.ir
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assumption in standard general relativity is the requirement
that the field equations be generally covariant and contain
at most second order derivative of the metric. Based on this
principle, the most general classical theory of gravitation in
n dimensions is the Lovelock gravity. The Lovelock equa-
tion up to third order terms without the cosmological
constant term may be written as [19]
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X3

p¼2
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respectively.
As in the paper of Morris and Thorne [1], we adopt the

reverse philosophy in solving the third order Lovelock field
equation, namely, we first consider an interesting and
exotic spacetime metric, then find the matter source re-
sponsible for the respective geometry. The generalized
metric of Morris and Thorne in n dimensions may be
written as

ds2 ¼ �e2�ðrÞdt2 þ
�
1� bðrÞ

r

��1
dr2 þ r2d�21

þ Xn�2

i¼2

Yi�1

j¼1

sin2�jd�
2
i ; (5)

where �ðrÞ and bðrÞ are the redshift function and shape
function, respectively. Although the metric coefficient grr
becomes divergent at the throat of the wormhole r ¼ r0,
where bðr0Þ ¼ r0, the proper radial distance

lðrÞ ¼
Z r

r0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=r

p

is required to be finite everywhere. The metric (5) repre-
sents a traversable wormhole provided the function �ðrÞ is
finite everywhere and the shape function bðrÞ satisfies the
following two conditions:

1Þ bðrÞ � r; (6)

2Þ rb0 < b; (7)

where the prime denotes the derivative with respect to r.
The first condition is due to the fact that the proper radial
distance should be real and finite for r > r0, and the second
condition comes from the flaring-out condition [1].
The mathematical analysis and the physical interpreta-

tion will be simplified using a set of orthonormal basis
vectors
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Using the orthonormal basis (8), the components of
energy-momentum tensor T�̂ �̂ carry a simple physical

interpretation, i.e.,

Tt̂ t̂ ¼ �; Tr̂ r̂ ¼ �	; Tî î ¼ p;

in which �ðrÞ is the energy density, 	ðrÞ is the radial
tension, and pðrÞ is the pressure measured in the tangential
directions orthogonal to the radial direction. The radial
tension 	ðrÞ ¼ �prðrÞ, where prðrÞ is the radial pressure.
Using a unit system with �2

n ¼ 1, and defining �2 � ðn�
3Þðn� 4Þ�0

2 and �3 � ðn� 3Þ . . . ðn� 6Þ�0
3 for simplic-

ity, the nonvanishing components of field Eq. (1) reduce to
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III. EXOTICITY OF THE MATTER

To gain some insight into the matter threading the worm-
hole, one should consider the sign of �, �� 	, and �þ p.
If the values of these functions are nonnegative, the weak
energy condition (T��u

�u� � 0, where u� is the timelike

velocity of the observer) is satisfied, and therefore the
matter is normal. In the case of negative �, �� 	 or �þ
p, the weak energy condition is violated and the matter is
exotic. We consider a specific class of particularly simple
solutions corresponding to the choice of �ðrÞ ¼ const,
which can be set equal to zero without loss of generality.
In this case, �� 	 and �þ p reduce to

�� 	 ¼ �ðn� 2Þ
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A. Positivity of � and �þ p

Here, we investigate the conditions of positivity of � and
�þ p for different choices of shape function bðrÞ.

1. Power law shape function

First, we consider the positivity of � and �þ p for the
power law shape function b ¼ rm0 =r

m�1 with positive m.

The positivity of m comes from the conditions (6) and (7).
The functions � and �þ p for the power law shape func-
tion are positive for r > r0 provided r0 > rc, where rc is
the largest positive real root of the following equations:

ðn� 3�mÞr4c þ ðn� 5� 2mÞ�2r
2
c

þ ðn� 7� 3mÞ�3 ¼ 0;

ð2n� 6�mÞr4c þ 2�2ð2n� 10� 3mÞr2c
þ 3�3ð2n� 14� 5mÞ ¼ 0: (13)

Of course if Eqs. (13) have no real root, then there is no
lower limit for r0 and � and �þ p are positive everywhere.

2. Logarithmic shape function

Next, we investigate the positivity of � and �þ p for
logarithmic shape function, bðrÞ ¼ r lnr0= lnr. In this case
the conditions (6) and (7) include r0 > 1. The functions �
and �þ p are positive for r > r0 provided r0 � rc, where
rc is the largest real root of the following equations:

½ðn� 3Þr4c þ �2ðn� 5Þr2c þ �3ðn� 7Þ� lnrc
� ðr4c þ 2�2r

2
c þ 3�3Þ ¼ 0;

2½ðn� 3Þr4c þ 2�2ðn� 5Þr2c þ 3�3ðn� 7Þ� lnrc
� ðr4c þ 6�2r

2
c þ 15�3Þ ¼ 0: (14)

If rc > 1, then � and �þ p are positive for r > r0 � rc,
but in the case that Eqs. (14) have no real positive root or
their real roots are less than 1, then the lower limit for r0 is
just 1, and � and �þ p are positive for r � r0 > 1

3. Hyperbolic solution

Finally, we consider the positivity of density � and �þ
p for the hyperbolic shape function, bðrÞ ¼
r0 tanhðrÞ= tanhðr0Þ with r0 > 0, which satisfies the con-
ditions (6) and (7). The functions � and �þ p will be
positive provided r0 > rc, where rc is the largest real root
of the following equations:

ðn� 4Þr4c þ �2ðn� 7Þr2c þ �3ðn� 10Þ

þ r5c þ 2�2r
3
c þ 3�3rc

sinhrc coshrc
¼ 0;

ð2n� 7Þr4c þ 2�2ð2n� 13Þr2c þ 3�3ð2n� 19Þ

þ r5c þ 6�2r
3
c þ 15�3rc

sinhrc coshrc
¼ 0: (15)

Again for the case that Eqs. (15) have no real root, the
functions � and �þ p are positive everywhere.

B. Positivity of �� �

Now, we investigate the conditions of the positivity of
�� 	. Since b� rb0 > 0, as one may see from Eq. (6), the
positivity of �� 	 reduces to

1þ 2�2b

r3
þ 3�3b

2

r6
< 0: (16)

One may note that when the Lovelock coefficients are
positive, the condition (16) does not satisfy. For the cases
that either of �2 and �3 or both of them are negative, the
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condition (16) is satisfied in the vicinity of the throat for
power law, logarithmic, and hyperbolic shape function
provided that the throat radius is chosen in the range r� <
r0 < rþ, where

r� ¼ ð��2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
2 � 3�3

q
Þ1=2;

rþ ¼ ð��2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
2 � 3�3

q
Þ1=2:

(17)

For the choices of Lovelock coefficients where rþ is not
real, then the condition (16) does not hold. For the cases
where r� is not real, then there is no lower limit for the
throat radius that satisfies the condition (16). Even for the
cases where rþ exists and r0 is chosen in the range r� <
r0 < rþ, the condition (16) will be satisfied in the region
rmin < r < rmax, where rmin and rmax are the positive real
roots of the following equation:

r6 þ 2�2r
3bðrÞ þ 3�3b

2ðrÞ ¼ 0: (18)

For negative �3, Eq. (18) has only one real root and the
condition (16) is satisfied in the range 0 � r < rmax. It is
worth noting that the value of rmax depends on the
Lovelock coefficients and the shape function. The value
of rmax for the power law shape function is

rmax ¼
�
rþ
r0

�
2=ðmþ2Þ

r0; (19)

which means that one cannot have a wormhole with normal
matter everywhere. It is worth noting that rþ > r0, and
therefore rmax > r0, as it should be.

C. Normal and exotic matter

Now, we are ready to give some comments on the
exoticity or normality of the matter. First, we investigate
the condition of having normal matter near the throat.
There exist two constraints on the value of r0 for the power
law, logarithmic, and hyperbolic shape functions, while for
the logarithmic shape function r0 should also be larger than
1. The first constraint comes from the positivity of � and
�þ p, which state that r0 should be larger or equal to rc,
where rc is the largest real root of Eqs. (13)–(15) for power
law, logarithmic, and hyperbolic shape functions, respec-
tively. Of course, if there exists no real root for these
equations, then there is no lower limit for r0. The second
constraint, which comes from the condition (16), states that
rþ should be real. For positive Lovelock coefficients, there
exists no real value for rþ, and therefore we consider the
cases where either of �2 and �3 or both of them are
negative. The condition (16) is satisfied near the throat
for the following two cases:

(1) �2 < 0 and 0<�3 � �2
2=3.

(2) �3 < 0.
The root r� is real for the first case, while it is not real for
the second case. In these two cases, one has normal matter
in the vicinity of the throat provided rc < rþ, and r0 is

chosen in the range r> � r0 < rþ, where r> is the largest
value of rc and r�. The above discussion shows that there
are some constraints on the Lovelock coefficients and the
parameters of shape function. In spite of these constraints,

max
r
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0.2 0.4 0.6 0.8 1

FIG. 1. �� 	 (solid line), �þ p (bold line) and � (dotted
line) vs r for power law shape function with n ¼ 8, m ¼ 2, r0 ¼
:1, �2 ¼ �:5, and �3 ¼ �:5.
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FIG. 3. �� 	 (solid line), �þ p (bold line) and � (dotted line)
vs r for logarithmic shape function with n ¼ 8, r0 ¼ 1:1, �2 ¼
�:5, and �3 ¼ �:5.
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FIG. 2. �� 	 (solid line), �þ p (bold line) and � (dotted line)
vs r for power law shape function with n ¼ 8,m ¼ 2, r0 ¼ rc ¼
:88, �2 ¼ �1, and �3 ¼ :2.
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one can choose the parameters suitable to havng normal
matter near the throat. Even if the conditions of having
normal matter near the throat are satisfied, there exists an
upper limit for the radius of region of normal matter given
in Eq. (18). Figures 1–4 are the diagrams of �, �þ p, and
�� 	 versus r for various shape functions. In Figs. 2 and 4,
the parameters have been chosen such that rc is real, while
rc is not real in Figs. 1 and 3 and therefore r0 has no lower
limit. Note that for logarithmic shape function r0 is larger
than 1. All of these figures show that one is able to choose
suitable values for the metric parameters in order to have
normal matter near the throat. Also, it is worth mentioning
that the radius of normal matter increases as �3 becomes
more negative, as one may note from Eq. (18) or Fig. 5.
That is, the third order Lovelock term with negative cou-
pling constant enlarges the region of normal matter.

Second, we consider the conditions where the matter is
exotic for r � r0 with positive � and �þ p. These func-
tions are positive for r > r0 provided r0 > rc, where rc is
the largest real root of Eqs. (13)–(15) for power law,
logarithmic, and hyperbolic solutions, respectively. Of
course, there is no lower limit on r0, when these equations

have no real root. On the other hand, the condition (16)
does not hold for r0 > rþ. Thus, if both of rc and rþ are
real, and one choose r0 � r>, where r> is the largest value
of rc and rþ, then the matter is exotic with positive � and
�þ p in the range r0 � r <1. If none of rc and rþ are
real, then there is no lower limit for r0, and one can have
wormhole with exotic matter everywhere.

IV. CLOSING REMARKS

For wormholes with small throat radius, the curvature
near the throat is very large, and therefore higher order
curvature corrections are invited to the investigation of the
wormholes. Thus, we presented the wormhole solutions of
third order Lovelock gravity. Here, it is worth comparing
the distinguishing features of wormholes of third order
Lovelock gravity with those of Gauss-Bonnet and
Einstein gravities. While the positivity of � and �þ p
does not impose any lower limit on r0 in Einstein gravity,
there may exist a lower limit on the throat radius in
Lovelock gravity, which is the largest real root of
Eqs. (13)–(15) for power law, logarithmic, and hyperbolic
shape functions, respectively. Although the existence of
normal matter near the throat is a common feature of the
wormholes of Gauss-Bonnet and third order Lovelock
gravity, but the radius of the region with normal matter
near the throat of third order Lovelock wormholes with
negative�3 is larger than that of Gauss-Bonnet wormholes.
That is, the third order Lovelock term with negative �3

enlarges the radius of the region of normal matter. Thus,
one may conclude that inviting higher order Lovelock term
with negative coupling constants into the gravitational field
equation, enlarges the region of normal matter near the
throat. For nth order Lovelock gravity with a suitable
definition of �p in terms of Lovelock coefficients, the

condition (16) may be generalized to

1þ X½n�1�=2

p¼2

p�p

�
b

r3

�
p�1

< 0;

which can be satisfied only up to a radius rmax <1. One
may conclude from the above equation that as more
Lovelock terms with negative Lovelock coefficients con-
tribute to the field equation, the value of rmax increases, but
one cannot have wormhole in Lovelock gravity with nor-
mal matter everywhere for the metric (5) with �ðrÞ ¼ 0.
The case of arbitrary �ðrÞ needs further investigation.
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r0 ¼ :1, �2 ¼ �:5, �3 ¼ 0 (solid line) and �3 ¼ �1 (dotted
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