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The periodic standing-wave method studies circular orbits of compact objects coupled to helically

symmetric standing-wave gravitational fields. From this solution an approximation is extracted for the

strong field, slowly inspiralling motion of binary black holes and binary neutron stars. Previous work on

this project has developed a method using a few multipoles of specially adapted coordinates well suited

both to the radiation and the source regions. This method had previously been applied to linear and

nonlinear scalar field models, to linearized gravity, and to a post-Minkowski approximation. Here we

present the culmination of this approach: the application of the method in full general relativity. The

fundamental equations had previously been developed and the challenge presented by this step is

primarily a computational one which was approached with an innovative technique. The numerical

results of these computations are compared with the corresponding results from linearized and post-

Minkowksi computations.
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I. BACKGROUND AND INTRODUCTION

Because of successes in numerical relativity, there is
now a good understanding of many features of the gravi-
tational waves from the inspiral and merger of comparable
mass black holes [1–18]. There are, however, areas that are
still best investigated with an approximation method for
the slow inspiral epoch. One area is the evolution and
gravitational waveform during the slow inspiral (but strong
field) epoch, since there are too many orbits for numerical
relativity to be feasible. Another area is the case of mass
ratios too large for numerical relativity, but not large
enough for particle perturbation methods. The slow inspi-
ral approximation can also allow a study of the relationship
between the wave boundary conditions and the near-source
fields and may lead to a better understanding of radiation
reaction.

The periodic standing-wave (PSW) project is meant to
provide such an approximation. This method seeks a nu-
merical solution for a pair of sources (black holes, neutron
stars) in nondecaying circular orbits with gravitational
fields that are rigidly rotating, that is, fields that are heli-
cally symmetric. Because the universality of gravitation
will not permit outgoing waves and nondecaying orbits, the
solution to be computed is that for standing waves. An
approximation for slowly decaying orbits with outgoing
radiation is then extracted from that numerical solution.
Although the requirement of helical symmetry precludes

studying eccentric orbits and spin that is not perpendicular
to the orbital plane, the potential simplicity of the approxi-
mation makes it attractive.
This work has progressed through several stages. In the

first stage [19–23], a nonlinear scalar field model was
investigated, and numerical methods were developed to
deal with the special mathematical features that would be
common to all standing-wave, helically symmetric com-
putations. These features include: (i) a mixed boundary
value problem (regions of the domain in which the equa-
tions are hyperbolic and other regions in which they are
elliptic); (ii) an iterative construction of nonlinear
standing-wave solutions; (iii) the extraction from the
standing-wave solution of an approximate outgoing wave
solution. Reference [23] introduced a new technique that
promised to reduce the computational burden: ‘‘adapted
coordinates’’ that were well suited to the geometry of the
problem both near the sources and far from them. In
Ref. [23] it was shown that with these coordinates good
results could be computed by keeping only a very small
number of multipoles, typically just the monopole and
quadrupole moments. That method was applied to linear-
ized general relativity in Ref. [24] and to the post-
Minkowski approximation to general relativity in
Ref. [25]. In the current paper we apply this method,
PSW in adapted coordinates, to full general relativity.
The mathematical infrastructure for this is rather in-

volved. It includes the definition of standing waves for
nonlinear fields; extraction of the outgoing solution; the
adapted spatial coordinates; the multipole decomposition
in adapted coordinates; the reduction to helical symmetry
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for tensorial fields; the full vacuum field equations; the
inner boundary conditions on surfaces outside black holes.
This infrastructure has been thoroughly documented in
earlier papers, and the complete infrastructure is presented
in Ref. [25]. Rather than give yet another lengthy presen-
tation of this infrastructure, here we will give only enough
of the mathematical background necessary in order to
explain the numerical results we are presenting and to
compare them with other numerical results.

The rest of the paper is organized as follows. Section II
develops the mathematical description of helically sym-
metric tensor fields in terms of ‘‘helical scalars,’’ quantities
that are functions only of corotating coordinates. The field
equations of general relativity and of its weak field approx-
imations are given for these helical scalars, along with
boundary conditions on these fields. Section III discusses
two important aspects of the numerical approach to our
computations: (i) ‘‘discrete spherical harmonics’’ on our
computational grid, and (ii) the use of the MAPLE

TM sym-
bolic manipulation language to handle the complexity of
the equations to be solved numerically. The numerical
results produced by these methods are presented in
Sec. IV and are discussed in Sec. V.

II. THE MATHEMATICAL PROBLEM

A. The field equations and coordinates

We start with the concept of a strong field source region
and a weak field source region. The strong field source
region is close to the inner computational boundary, sur-
faces with spherical topology around the black holes, and
close to them but far enough from the horizon for compu-
tations to be feasible. We invoke a set of coordinates
labeled t, x, y, z for which the spacetime metric g��

deviates only slightly from the flat metric ��� at large

coordinate distances from the binary sources.
We impose helical symmetry by requiring that in these

coordinates there be a Killing vector given by

� ¼ @t þ�ðx@y � y@xÞ; (1)

where � is a constant. It is convenient to define a rotating
coordinate system by

~t ¼ t; ~z ¼ z; ~x � x cos�tþ y sin�t;

~y � �x sin�tþ y cos�t;
(2)

and to introduce two cylindrical coordinate systems: r, z,�
in terms of x, y, z by the usual flat space formulas, and ~r, ~z,
~� in terms of ~x, ~y, ~z also by the usual flat space formulas.
We note that Eq. (1) is equivalent to

� ¼ @t þ�ð~x@~y � ~y@~xÞ ¼ @t þ�@’ ¼ @~t: (3)

We follow the formulation of Landau and Lifschitz
[26,27] for the Einstein equations, which encodes the
geometric information in the densitized metric

g �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j detgj

q
g��: (4)

To simplify the field equations, we choose to have our
coordinates obey the harmonic condition

g ��
;� ¼ 0; (5)

we define the inverse g�� of our basic field g�� by

g ��g�� ¼ 	�
�; (6)

and we define �hab by

g �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� det�
p ð��� � �h��Þ: (7)

The vacuum field equations then take the simple form

h �h�� � �
� �h��;
� ¼ S�������
�h�;�

�h��;� þ �h
� �h��;
�;

(8)

where

S������� ¼ �½	ð�

 	�Þ

� � 1
2g

��g
��½	

	�

�	
�
�	

�
�

� 2	


g��g��	

�
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�g��g
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� 1
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�g�g��g
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�g��ð2g�g��

� g�g��Þ�: (9)

Equation (8), along with the definition (7), are the equa-
tions to be solved for the unknown fields �h��.
Note that so far Eq. (8) is exact; there is no assumption

that the �h�� fields are perturbative. If we do treat these
fields as perturbative, the post-Minkowski approximation
follows by replacing g on the right by � to get

h �h�� � �
� �h��;
�

¼ �½	ð�

 	�Þ

� � 1
2�

���
��
� ½	


	�
�	

�
�	

�
� � 2	



������	

�
� þ 	



	�

�����
��

� 1
2�


�������
��

þ 1
4�


����ð2����� � �����Þ� �h�;�
�h��;�

þ �h
� �h��;
�: (10)

For linearized general relativity, the terms on the right can
be ignored and the field equations are simply

h �h�� ¼ 0: (11)

These can be solved in closed form as expansions in special
functions [24].
In the case of a scalar field model, helical symmetry

means that the scalar field � is a function only of corotat-

ing coordinates ~x, ~y, ~z, or ~r, ~�, ~z, and not of ~t. The
computations for the field then involve only three coordi-
nates. Complications arise when dealing with the compo-
nents of tensor fields, since computational fields must be
‘‘helical scalars,’’ i.e., functions only of the rotating coor-
dinates. The approach we employ is to define
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~� ðnnÞ ¼ �htt; (12)

~� ðn0Þ ¼ ffiffiffi
2

p
�htz; (13)

~� ðn1Þ ¼ ei�tð �htx � i �htyÞ � Uðn1Þ þ iVðn1Þ ¼ �ð ~�ðn;�1ÞÞ�;
(14)

�ð00Þ ¼ 1ffiffi
3

p ½ �hxx þ �hyy þ �hzz�; (15)

~� ð20Þ ¼ �1ffiffi
6

p ½ �hxx þ �hyy � 2 �hzz�; (16)

~� ð21Þ ¼ ei�tð� �hxz þ i �hyzÞ � Uð21Þ þ iVð21Þ

¼ �ð ~�ð2;�1ÞÞ�; (17)

~�ð22Þ ¼ e2i�tð12½ �hxx � �hyy� � i �hyxÞ � Uð22Þ þ iVð22Þ

¼
�
~�ð2;�2Þ

��
; (18)

in which ~�ðnnÞ, ~�ðn0Þ,Uðn1Þ, Vðn1Þ, ~�ð00Þ, ~�ð20Þ,Uð21Þ, Vð21Þ,
Uð22Þ, Vð22Þ, are 10 real, helical scalars that carry all the
information about the metric.

We denote any of 4 real and 3 complex helical scalars as
~�A, with A taking the value nn; n0; n1; . . . . In terms of
these helical scalars the field equations (8) take the form

h ~�A � 2i�ðAÞ�2@’ ~�A þ�ðAÞ2�2 ~�A ¼ QAð ~�BÞ;
(19)

where �ðAÞ has the value of 0 for A ¼ ðnnÞ, (n0), (00),
(20), has the value �1 for A ¼ ðn� 1Þ, (2� 1), and has
value �2 for A ¼ ð2� 2Þ.

In order to give the details of the source term we must
introduce a set of objects n, ex, ey, ez. These objects are

described in detail in Ref. [25] and can roughly be consid-
ered to be the basis vectors associated with coordinates t, x,
y, z. In terms of these, we define the objects

~t nn � nn; (20)

~t n0 � 1ffiffi
2

p ½nez þ ezn�; (21)

~t n;�1 � e�i�tð�1
2 Þ½nðex � ieyÞ þ ðex � ieyÞn�; (22)

~t 0;0 � 1ffiffi
3

p ½exex þ eyey þ ezez�; (23)

~t 2;0 � �1ffiffi
6

p ½exex þ eyey � 2ezez�; (24)

~t 2;�1 � e�i�tð�1
2Þ½exez þ ezex� � 1

2i½eyez þ ezey�;
(25)

~t 2;�2 � e�2i�t1
2½exex � eyey � iðeyex þ exeyÞ�; (26)

which are shown to be helical scalars in Ref. [25]. With this
notation the explicit form of the source is [28]

QAð ~�Þ ¼ ð~t��A Þ�S�������
�t�B �t��C ½ ~�B

;� � i�ðBÞ	t
�
~�B�

� ½ ~�C
;� � i�ðCÞ	t

�
~�C�

þ �t

�
B

~�B½ ~�A
;
� � i�ðAÞ�ð	t



~�A
;� þ 	t

�
~�A
;
Þ

��ðAÞ2�2	t

	

t
�
~�A�: (27)

Here the summation is not only over the tensorial indices,
but also over the indices, B, C which range over the 10
values (nn), (n0), (n� 1), (00), (20), (2� 1), (2� 2).

Rather than work with the complex fields ~�ðn1Þ, ~�ð21Þ,
~�ð22Þ, in practice wework with the real and imaginary parts
UA and VA, and for A ¼ ðn1Þ, (21), (22) Eq. (19) is
replaced by

hUA þ 2�ðAÞ�2@’V
A þ�ðAÞ2�2UA

¼ Real part of ðQAÞ; (28)

hVA � 2�ðAÞ�2@’U
A þ�ðAÞ2�2VA

¼ Imaginary part of ðQAÞ: (29)

The h operator here, as in Eq. (19), is ���@�@�, and the

helically symmetric time derivatives are implemented
through the replacement @t ! ��ðx@y � y@xÞ ¼ ��@’,

so that

h ¼ @2~x þ @2~y þ @2~z ��2@2’: (30)

The mathematical problem of finding the fields in full
general relativity then consists of solving the partial dif-
ferential equations (19), (28), and (29). The post-
Minkowskian and linear approximations to general relativ-
ity follow from making the appropriate simplifications of
QA.
Computational solutions of the field equations are car-

ried out in an ‘‘adapted’’ corotating coordinate system �,
�,� illustrated in Fig. 1. These coordinates are two-center
bipolar coordinates, defined in terms of the corotating
coordinates ~x, ~y, ~z. The two ‘‘centers’’ are the coordinate
points ~x ¼ �a, ~y ¼ ~z ¼ 0, points that roughly represent
the locations of the black hole sources. At large values of
�=a, the adapted coordinates approach ordinary spherical
coordinates with � the radial coordinate. At small values of
�=a, the adapted coordinates become a reparametrization
of spherical coordinates centered on the bipolar points,

with the � coordinate approaching
ffiffiffiffiffiffiffiffiffiffiffi
2aR

p
where R is

the (corotating) coordinate distance from one of the bipolar
centers, and with 2� approaching the angle with respect to
the ~x axis. These coordinates are discussed in detail in
Ref. [23].
Each of the helical scalar fields is expanded in the form

� ¼ X
‘m

aðAÞ‘mð�ÞY‘mð�;�Þ: (31)
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Because of the nature of the coordinates only a few multi-
poles need to be kept. The argument for this ‘‘multipole
filtering’’ is given in Ref. [23], along with numerical results
demonstrating its validity.

B. The boundary conditions

The standing-wave condition is a procedure rather than a
constraint, like Dirichlet, Neuman, or Sommerfeld condi-
tions. This procedure is applied in the weak wave zone at
some value �max of � that is many times larger than a, and
much larger than a wavelength (1=�). In this weak wave
zone the fields can be treated as perturbations of flat space-
time, and outgoing/ingoing conditions on the perturbations
can be imposed. The standing-wave procedure for full
general relativity starts with the system of equations (4)–
(8). An approximate solution for �h�� is put into the right-
hand side of Eq. (8), both for the explicit appearance of the
�h�� terms and through the dependence of the g�� terms on
�h��. The right-hand side is then treated as known, and
Eq. (8) is considered to be a linear equation for �h��. In
Ref. [23] it was shown that in adapted coordinates outgoing
(þ ) and ingoing (� ) conditions on any of the helical
scalars are

1

�

@

@�
ð� ~�Þ ¼ ��

�
cos�

@ ~�

@�
� cos�

sin�
sin�

@ ~�

@�

�
: (32)

These conditions are used to compute both outgoing and
ingoing solutions to the linear equations for each of the

helical scalars ~�. The ingoing and outgoing solutions are
then averaged, the result is taken as an improved approxi-
mation for the field, and the process is iterated.

The convergent result, which we call the standing-wave
solution, is an exact (numerical) solution of the nonlinear
field equations with no net flow of energy inward or out-
ward. The field equations could also be solved for a non-
linear outgoing solution or a nonlinear ingoing solution. In
principle, for nonlinear equations, the standing-wave solu-
tion is not the average of the ingoing and outgoing solu-
tions. In practice, however, it is an excellent approximation

for the following reason, which we call ‘‘effective linear-
ity.’’ The ingoing and outgoing solution in the strong field
region is negligibly affected by the boundary conditions in
the strong field zone, so that the average of the ingoing and
outgoing solution there must be the same as the standing-
wave solution. In the weak wave zone, the solution is
completely different for different radiation conditions,
but in the weak wave zone the problem is effectively linear,
and again the average and the standing-wave solutions are
very nearly the same. (For a further discussion of effective
linearity see Ref. [22].) Effective linearity means that we
can treat the standing-wave solution as if it were the
average, and we can decompose it into approximate in-
going and outgoing solutions. We take the outgoing solu-
tion to be our approximation to the solution to the physical
problem.
The inner boundary is imposed on quasispherical sur-

faces, around the bipolar centers, at some small value �min

of �. The choice of the numerical value of �min is a
compromise. The choice of a small value means that the
conditions at �min will be dominated by the presence of the
black hole it surrounds, and the other hole in the binary pair
can be considered to have a weak influence. But a small
value of �min means that the computational regime �min �
� � �max includes fields strong enough to cause problems
in the convergence of the computational method.
An important point about the inner boundary conditions

is made in all previous papers on this method: the details of
the inner boundary conditions are equivalent to the details
of the sources they represent inside the � ¼ �min surface.
But the details have almost no effect on the fields in the
wave zone and even in the intermediate � 	 a zone. We
can, therefore, impose conditions at � ¼ �min that repre-
sent some reasonable source, and defer the task of adjust-
ing the details. The wave fields, the computed outgoing
energy, etc. will be negligibly affected.
Our choice is taken to be the conditions for a single

Schwarzschild hole comoving with harmonic coordinates.
This reasonable choice was used in our post-Minkowksi
computations, and hence that choice facilitates compari-

FIG. 1. Two-center bipolar adapted coordinates. On the left is shown curves of coordinates � and � in the � ¼ 0 orbital plane. On
the right are surfaces of constant �,�, and�. At large �=a the adapted coordinates�,� are spherical polar angles with respect to the
corotating coordinates ~X, ~Y, ~Z, a permutation of the coordinates ~x, ~y, ~z, discussed in the text.
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sons with previous work. The actual form of the boundary
conditions have been previously reported [25] and are
included here for completeness:

~� nn ¼
�
4M

R
þ 7M2

R2

�
�2 � M2

R2

v2�4

R2

�4

4a2
sin2ð2�Þcos2�;

(33)

~� n0 ¼ �M2

R2

v�2

R2

�4

4a2
sin2ð2�Þ sin� cos�; (34)

Uðn1Þ ¼ M2

R2

v�2

R2

�4

4a2
sinð2�Þ cos2� cos�; (35)

Vðn1Þ ¼
�
�
�
4M

R
þ 7M2

R2

�
v�2 þ M2

R2

v�4

R2

� �4

4a2
sin2ð2�Þcos2�

�
sgn½cos��; (36)

~�00 ¼
�
4M

R
þ 7M2

R2

�
v2�2ffiffiffi

3
p � M2ffiffiffi

3
p

R4

�4

4a2

� ð1þ ð�4 � 1Þsin22�cos22�Þ; (37)

~�20 ¼ �
�
4M

R
þ 7M2

R2

�
v2�2ffiffiffi

6
p þ M2ffiffiffi

6
p

R4

�4

4a2

� ðcos22�þ �4sin22�cos2�� 2sin22�sin2�Þ;
(38)

Uð21Þ ¼ M2

R4

�4

4a2
sin2�cos2� sin�sgn½cos��; (39)

Vð21Þ ¼ �M2

R4

�4�2

4a2
sin22� sin� cos�; (40)

Uð22Þ ¼ �
�
4M

R
þ 7M2

R2

�
v2�2

2
� M2

2R4

�4

4a2

� ðcos22�� �4sin22�cos2�Þ; (41)

Vð22Þ ¼ M2

R4

�4�2

4a2
cos2� sin2�cos�sgn½cos��: (42)

Here R, in terms of adapted coordinates, is given by

R 2 � �4

4a2
½1þ �2v2sin22�cos2��; (43)

where v ¼ a� is the coordinate speed of the sources and �

is the corresponding Lorentz factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
. The sym-

bolR is the coordinate distance from a source ‘‘point’’ in a
frame comoving with the source; its form in adapted
coordinates is derived in Ref. [25]. The � in Eq. (31)
distinguishes between the condition (þ ) for the source

point at � ¼ 0 and the condition (� ) for the source point
at � ¼ �.

C. Numerical implementation

In practice one of the issues that requires considerable
care in numerically implementing the PSW method is
treatment of the boundary conditions. Consider first the
outer boundary conditions. For the most part, numerical
implementation of boundary conditions (32) consistent
with expansion (31) is straightforward. However, special

care must be taken with the nonradiative parts of ~�ðnnÞ,
~�ð20Þ, and ~�ð00Þ, as both the analytical and numerical
solutions of these fields are dominated by nonradiative
modes. In Ref. [24] the general form of the analytical
solution for the fields in linearized theory is reported to be

�A ¼ �2K
X

‘¼0;2;...

1

2‘þ 1
Y�
‘0ð�=2; 0ÞY‘0ð�; 0Þ r

‘
<

r‘>

þ 4K�
X

‘¼2;4;...

X
m¼2;4;...

mj‘ðm�r<ÞY�
‘mð�=2; 0Þ

� Y‘mð�; 0Þ Im½hð1Þ‘ ðm�r>Þeim’�: (44)

Here K is a constant that depends on whether A is (nn),
(20), or (00); j‘ðxÞ is the spherical Bessel function of order
‘; hð1Þ‘ is the spherical Hankel function of order ‘; r< ¼
minðr; aÞ, and r> ¼ maxðr; aÞ.
Expression (44) shows that series solutions for ~�ðn;nÞ,

~�ð2;0Þ, and ~�ð0;0Þ are dominated by the ‘ ¼ 0,m ¼ 0mode,
which decays as 1=r for large r values. Since the radiative
part also decays as 1=r it is necessary to separate numeri-
cally the radiative and nonradiative parts of the solution at
large radius. This is accomplished by setting the following
boundary condition for the monopole a00 (i.e., the ‘ ¼ 0,
m ¼ 0 mode amplitude) of these fields

@

@�
a00 ¼ � a00

�
: (45)

This is just a mathematical statement that at large distances
the dominant part of a00 falls off as 1=r.
The numerical implementation of the inner boundary

conditions must also be treated with care. It turns out that
some of the conditions in Eqs. (33)–(42) are not to be
considered as explicit values to be set at the inner bound-
ary, but rather as regularity conditions on certain of the
fields. (It should be understood that not all the fields need to
have data imposed to give them a scale. Because of the
coupling of fields in the field equations some of the fields
are given scale by the coupling to other fields, not by their
own boundary data. In practice we do this by replacing
Eqs. (35), (39), (40), and (42) with

@

@�
Uðn1Þ ¼ 0; (46)
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@

@�
Uð21Þ ¼ 0; (47)

@

@�
Vð21Þ ¼ 0; (48)

@

@�
Vð22Þ ¼ 0; (49)

since this choice has already been used in Refs. [24,25].

III. NUMERICAL METHOD

A. Discrete spherical harmonics

Discrete spherical harmonics were introduced first in
Ref. [24] as an integral part of the eigenspectral method.
In a straightforward approach to their use, spherical har-
monics of analytic theory would be evaluated at discrete
grid points. We have found that this leads to unacceptable
failures of orthogonality, so instead we have used ‘‘discrete
spherical harmonics’’ which are orthogonal to the level of
machine precision.

To understand these, consider a two dimensional com-
putational grid with N � n� � n� points. The discrete

spherical harmonics YðkÞ
ij are N-dimensional vectors which

are conveniently represented by the two indices 1 � i �
n� and 1 � j � n�. Let the matrix Lab;ij be the operator

equivalent to the angular Laplace operator evaluated at �a

and �b. This operator is therefore defined by

½sin�r2
angfð�;�Þ�ab 	 X

ij

Lab;ijfij; (50)

where fð�;�Þ is an arbitrary function and where fij ¼
fð�i;�jÞ. The approximation symbol in the relationship is

due to the truncation error induced by the finite difference
representation of the derivatives on the left.

The discrete spherical harmonics YðkÞ
ij are defined to be

the solutions of the generalized eigenvector problemX
ij

Lab;ijY
ðkÞ
ij ¼ ��sin�aY

ðkÞ
ab ; (51)

together with the normalization conditionX
i

X
j

YðkÞ
ij Y

ðk0Þ
ij ���� ¼ 	kk0 : (52)

Details of the construction of the matrix operator Lab;ij and

of the computation and properties of the eigenvectors can
be found in Refs. [24,28].

B. The use of symbolic manipulation

It is clear that most aspects of the computation of fully
relativistic fields with the eigenspectral method (i.e., with
adapted coordinates, multipole filtering, and discrete
spherical harmonics) are not conceptually difficult, but

are technically difficult to implement. The advantages of
the eigenspectral method, explained in detail in
Refs. [24,25], are offset by an increased complexity in
the form of the equations that must ultimately be solved.
The several stages required by a typical algorithmic solu-
tion to a problem within the eigenspectral method are
illustrated in Fig. 2(a). During the early development of
the PSW program most of the work at these stages was
carried out by a human being, with the computer used only
for the final numerical solution of the equations.
The fact that most of the stages depicted in Fig. 2(a) are

algorithmic in nature suggested the idea of developing a
computational framework to deal with the different aspects
of the computation. The framework was designed to ease
the numerical implementation of any level of approxima-
tion within the PSW model (i.e., linear, PM, or fully
relativistic) as reflected in the workflow of Fig. 2(a). This
framework included the implementation of several sets of
tools for the PSW project within MAPLE

TM, a general-
purpose computer algebra system (CAS) software pack-
age. Three different sets of tools were developed for the
PSW project, each set having a direct correspondence with
each of the stages depicted in Fig. 2(a). The first set
corresponds to the conversion of an equation in
Minkowski coordinates t, ~x, ~y, ~z into adapted coordinates.
The role of a second set of tools was to perform the
conversion to finite difference form starting with a set of
partial differential equations. Finally, a third set corre-
sponds to tools implemented to convert MAPLE expressions
into C functions. This final set includes tools that are able
to create all the different C functions related to the projec-
tions over spherical harmonics and the construction of the
matrix system that has to be solved at each iteration either
in a perturbative or exact scheme as described in Ref. [25].
The code generated by these tools was later embedded into
a bigger infrastructure developed in C. The C infrastructure
essentially takes care of runtime issues, such as the allo-
cation of memory and the interface of advanced numerical
routines in LAPACK for matrix inversion and eigenvector
computation for the routines generated by MAPLE. The
implementation process for a given model within the
PSW-eigenspectral method (namely, linear gravity, post-
Minkowski, or full general relativity) is streamlined
through these tools. First the differential equations have
to be provided in completely explicit form. The first set of
tools is then applied to these equations, rendering the
equations in adapted coordinates. The output is later passed
through the second set of tools, which cast them into finite
difference form. Finally, the third set of tools is applied in
order to obtain the final C code that will perform the
projection of the equations over different angular modes
as well as the generation and solution of the linear system
for each Newton-Raphson iteration. The net effect of the
use of these tools ‘‘raises the bar’’ for the implementation
of numerical models with the eigenspectral method, in
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that most of the process is performed by the computer, as
Fig. 2(b) illustrates. We emphasize that the use of symbolic
manipulation was indispensable to the last phase of the
PSW-eigenspectral program. This leads us to suggest that a
similar eclectic use of algebraic manipulation software and
numerical programming is a powerful approach not only
for our problem but for other problems in which code must
be generated for complex and lengthy mathematical ex-
pressions for which human coding is prone to error.

Such an approach has, in fact, been previously used in
the context of relativistic gravity problems. Recently Husa
et al. [29] reported great success with Kranc, a
MATHEMATICA package to generate evolution code for

tensorial equations. Like the MAPLE code generated for
the PSW project, Kranc is designed to generate C=Cþ
þ code that will solve systems of equations associated with
gravitational evolution. There are important differences
between Kranc and our package. Kranc was designed to
generate code not for a stand-alone application, but for
thorns to be embedded in the Cactus framework [30], or a
similar infrastructure. More importantly, Kranc was spe-
cifically designed to work with evolution simulations com-
patible with the method of lines [29], essentially an explicit
evolution technique (i.e., a method for which the value of
each field over the numerical grid can be computed at each
time step as an explicit combination of the field values of
neighboring points at the previous time step). In contrast,
the PSW code is tailored to generate a stand-alone program
that is able to deal with the mixed problem resulting from
the imposition of helical symmetry through the implicit
numerical method described in this series of papers. It is
worth noting that neither MAPLE nor any other computer
algebra system is able, by itself, directly to generate the
appropriate C expressions required for this kind of project.
Modern CAS typically provides a basic translation of
native functions into a target language, such as C or Java.
The translation is provided through an internal parsing
mechanism. A parser is essentially an algorithm used to

analyze expressions both lexically and syntactically. In
other words, a parser is an algorithm used to analyze
formal languages. Typically a parser algorithm consists
of two different stages: during the first one the expression
is analyzed lexically, verifying that each of the elements of
which it is formed are part of the language. After the
lexical analysis is finished the parser builds an internal
representation of the syntactical structure of the expres-
sion. This internal representation then is used to generate a
translation of the original expression into a new language.
Although simple in principle, the process just described

is plagued with subtleties. Some of these subtleties include
type safety as well as signature and prototyping of func-
tions. Type safety refers to the requirement in some lan-
guages to specify the type of each variable at the moment
the variable is declared. While Fortran and C are type-safe
languages, MAPLE and MATHEMATICA are not. This fact
induces a natural indeterminacy during the translation of
a MAPLE expression to C code. Similar considerations exist
for the prototyping of signatures required for C and Cþþ
code, namely, the explicit specification of types both for
the return value and arguments of a function. The basic
algorithm provided by a computer algebra system is not
always tuned properly for the resolution of these subtleties.
For the present work it became necessary to modify the
native parser of MAPLE in order to deal with the issues
mentioned above. In particular the syntactical definition of
the MAPLE parser was enlarged in order to include some
mathematical functions while the parsing algorithm itself
was modified in order to ensure the correct signature for
the functions defined during the automated process. In
addition some fine-tuning was performed in the parser
algorithm in order to avoid incorrect or unnecessary op-
erations in the translated code, such as some type casts or
incorrect array indexing. Finally, note that the MAPLE

parser is by itself just a translating tool, unable to generate
any kind of programming logic by itself. Effort must be
made to create the programming logic before the trans-

FIG. 2. The process of implementing numerical modeling has been modified by the use of MAPLE. The aid of a computer algebra
system has allowed the computer to handle a great deal of the ‘‘analytic’’ work, significantly simplifying the role of the programmer in
the development of numerical code.
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lation takes place. For the PSW project most of the logic
itself resides in the construction of the matrix system that
must be solved for each iterative step. The construction of
the matrix involves calling all the functions generated by
the MAPLE tools for the projection of the equations over
every field mode. For the fully relativistic problem over a
thousand functions were generated by MAPLE, all called
during the construction of the linear system. The automa-
tion involved on the generation of this function was one of
the biggest challenges in the development of the
framework.

IV. NUMERICAL RESULTS

The ultimate unknowns for which we actually solve are

the coefficients aA‘mð�Þ of the expansion of the fields ~�A in

Eq. (31). The equations for these unknown aA‘mð�Þ are the
field equations (19), along with the appropriate inner and
outer boundary conditions. In the source term QA for the
field equations, the dependence on aA‘mð�Þ occurs both in

the explicit quadratic appearance of ~�A on the right in
Eq. (27), and through the very complicated dependence of

S������� on ~�A encoded in the Eqs. (6), (7), and (12)–(18). In

our work on the post-Minkowski approximation [25] only
the first dependence was kept, since inclusion of the de-

pendence through S������� would have gone beyond the

order of the approximation. But in the present work, for
the full equations of general relativity, we cannot ignore
this deeper nonlinearity. In fact, it is precisely this depen-
dence that, in our formalism, distinguishes full general
relativity from the second-order post-Minkowski approxi-
mation. The complexity of this nonlinearity, however,
leads to a practical problem.

In our work, here and previously, with nonlinear equa-
tions, the mathematical problem to be solved was cast into
the form LðyÞ ¼ FðyÞ in which L is a linear operator on the
unknown function, or set of functions y. A solution could
be sought in two ways. A direct iteration could be used in
which an approximate solution yn is substituted into FðyÞ
and the linear equation Lðynþ1Þ ¼ FðynÞ for a new ap-
proximation ynþ1 is solved, with appropriate boundary
conditions. Alternatively, Newton-Raphson iteration can
be used. In this method a linear equation is found by
expanding the y dependence of FðyÞ about FðynÞ, with a
Jacobian playing the role of the derivative of F with respect
to the fields y. Newton-Raphson iteration is expected to
have better convergence properties than direct iteration,
and this was indeed found to be the case in previous work.

In principle, then, it is a Newton-Raphson scheme that is
to be sought. But due to the complicated dependence of

S������� on aA‘mð�Þ this does not turn out to be feasible. With

MAPLE generated code the evaluation of the Jacobian

needed in the Newton-Raphson method becomes unrea-
sonably long. The main reason for this is that the code
generated by MAPLE is optimized for execution time by

unrolling lengthy evaluations explicitly in several steps
using several temporary variables. As a consequence this
highly optimized code is extremely lengthy in terms of the
number of code lines. As the number of terms given to
MAPLE increases so does the code that must be compiled. If

the number of terms is high enough the raw code generated
with the MAPLE tools becomes so lengthy that it is impos-
sible to compile. Alternative approaches such as automatic
(i.e., numerical) differentiation were tried and found im-
practical due not to the problem of compilation time but
that of run time, since the evaluation of the required
number of numerical derivatives required increased the
running time by a factor of 30 over a direct iteration
scheme.
We have found that the use of direct iteration does not

seem to be a major problem. In particular, models with
parameters that allowed convergence for post-Minkowski
models with Newton-Raphson iteration have been found to
converge in full general relativity with direct iteration. One
reason for this is that we have limited our application of the
full general relativity models to those for which the post-
Minkowski approximation is valid. As explained in
Ref. [25], this means that �min must not be chosen very
small, to avoid very strong nonlinearities. This in turn leads
to the constraint on model parameters [25]

2
ffiffiffi
2

p
a� 
 �min=a 
 ffiffiffi

2
p

: (53)

With this restriction on field strengths convergence has
been found to be very good.
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FIG. 3 (color online). Typical convergence of fully relativistic
~�ð2;0Þ using direct iteration. The field is shown as a function of
coordinate radius along a line in the orbital plane approximately
through the source points (i.e., at � ¼ ��). The simulation
parameters here are � ¼ 0:15, n� � n� � n� ¼ 1750� 16�
32, with �min=a ¼ 0:50. The computation includes all multi-
poles up to ‘ ¼ 3 (monopole and quadrupole terms kept)
although the monopole term a00 is not included in the results
displayed.
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FIG. 4 (color online). Comparison of results for direct iteration of relativistic computations as function of �min for� ¼ 0:15. Fields
are shown in the orbital plane along a line approximately through the source points. These results reveal that the location of the inner
boundary is less important in fully relativistic models than in post-Minkowski models described in [25], especially for ~�ðn;nÞ.
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FIG. 5 (color online). Comparison between linearized, post-Minkowski, and fully relativistic computations with � ¼ 0:075. The
computations used a numerical grid of n� � n� � n� ¼ 1750� 16� 32, with �min ¼ 0:40a and �max ¼ 100a.
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This successful convergence is illustrated in Fig. 3 for
~�ð2;0Þ. These results show that convergence is attained after
three to four iterations for angular velocity � ¼ 0:15=a;
similar or faster convergence is found for all smaller values
of�=a. We usually consider� ¼ 0:15=a to be the limit of
the angular velocity for which the PSW method gives a
good approximation to the outgoing solution.

A very important consideration for the success of the
computations, and of the PSW approach, is the value of
�min, since this parameter determines the maximum field
strength encountered in the computation. Moreover, results
that are sensitive to the choice of �min raise questions about
the underlying assumption in the PSW approach that the
details of the inner boundary condition are not important to
the fields except very near the inner boundary. Figures 4
show the results for all fields, for a model with � ¼ 0:15.

These results show somewhat mixed results for the
insensitivity to the value of �min. For the ‘‘coulombic’’

field ~�ðn;nÞ the computed result is particularly insensitive to
�min. Several of the fields show significant differences in
the results for the three values of �min. One would expect
that the results for the largest value of �min should have
errors in representing the boundary conditions appropriate
for a point particle, since �min=a ¼ 0:6 is not really justi-
fied as a ‘‘near-source’’ surface. One might expect better
agreement between the two smaller values of �min, since
both inner boundaries are reasonably close to the source
‘‘points.’’ The results tend to confirm this, though with

exceptions. Of particular interest are the results for Uð2;2Þ,
Vð2;2Þ, since these fields carry the information about gravi-
tational waves in the weak wave zone. For these fields the
results for �min=a ¼ 0:45 and �min=a ¼ 0:3 agree moder-
ately well in phase but have amplitude differences as large
as a factor of 2. A study of the origin of this difference will
help clarify the nature of the correct boundary conditions.
It should be noted that the computations of the fields within
full general relativity have turned out to be less sensitive to
the choice of �min=a than are the post-Minkowski compu-
tations. In some way, the inclusion of the dependence of

S������� on the fields moderates the sensitivity of the results

to �min=a.
Another type of comparison is presented in Figs. 5, the

comparison of computations based on linearized, post-
Minkowski, and fully relativistic models for � ¼ 0:075
and �min=a ¼ 0:4. The monopole term a00 is not included

in the results shown for ~�ð0;0Þ, ~�ð2;0Þ, and ~�ðn;nÞ. The
results show that ~�ðn;nÞ and ~�ðn;1Þ are very well approxi-
mated within the post-Minkowski model. All other fields
differ in more or less a significant way with respect to the
post-Minkowski results, showing that the fully relativistic
contributions are of significance, even for the moderate
field strengths of these computations. In this connection it

should be noted that the field ~�ðn;nÞ is very well approxi-
mated by lower order approximations. It is only this field
that was used in the source term for the iterations in

Ref. [25]. Thus, it is not the imperfections in ~�ðn;nÞ that
are the basis of the inaccuracies, but rather the suppressed
dependences on additional fields.

V. DISCUSSION AND CONCLUSIONS

The results presented in the previous section for the fully
relativistic case show the same convergence rate as was
found for the directly iterated post-Minkowski approxima-
tion and show similar limitations in field strength as the
Newton-Raphson method for the post-Minkowski approxi-
mation. The results also reveal that the nonlinearities
present in the fully relativistic model produce important
changes in the numerical solutions for most of the fields.
For the most important field of the post-Minkowski ap-

proximation ~�ðn;nÞ, it is comforting to note that there is
excellent agreement of the post-Minkowski and fully rela-

tivistic results. The fact that ~�ðn;1Þ is also well represented
by the post-Minkowski computation is also a good sign.
These good agreements are expected qualitatively since the
post-Minkowski approximation is correct up to second

order in the small parameter M=R while ~�ðn;nÞ and
~�ðn;1Þ are of order 1 and 1.5, respectively, in the same
parameter. In this sense the relativistic results confirm the
validity of the post-Minkowski approximation.
It is important to mention not only the strengths of the

method but also its shortcomings. First, the use of adapted
coordinates gives a solution on an irregular computational
grid on the Minkowski background of the problem. As a
consequence the results obtained from the computations
require a difficult interpolation if they are to be compared
with other results or used as initial data for evolution codes.
Second, the method is inherently limited in its accuracy.
Higher accuracy would ultimately require more multi-
poles, and an increase in the number of multipoles adds
to the size of the equation set to be generated by MAPLE,
and to the compilation problem. Higher accuracy can more
easily be achieved with a different numerical approach. In
particular, a multidomain spectral method is being devel-
oped [31] for the helically symmetric problem and shows
indications that it can give answers near machine precision.
The current accuracy, however, is sufficient for us to see in
the results presented in the previous section that there is
sensitivity of the computed fields to the location of the
inner boundary �max. The inner boundary conditions used
for the computations are those for a spherically symmetric
mass point, or Schwarzschild hole, boosted so that it is
instantaneously comoving with the rotating coordinates.
(For a detailed discussion see Ref. [25].) This is, of course,
an approximation that ignores the tidal effects of the two
source points on each other and the fact that the sources are
not moving in straight lines of a Minkowksi background.
That approximation would be adequate at sufficiently
small �, but—the results suggest—not at � ¼ 0:15=a.
Improved inner boundary conditions are an important

application of the PSWmethod, since this is part of the use
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of the method to study radiation reaction. But the issue of
the inner boundary condition may not be separable from
the issue of the gauge condition, which might explain the
sensitivity of the results to �max even for the relatively
small angular rotation rate � ¼ 0:15=a. The ‘‘gauge is-
sue’’ is the fact that we have used a specific gauge, that of
Eq. (5), but we have not enforced or checked that gauge in
the solution. If the problem is well posed then there should
be a solution which can be transformed to this gauge. The
question of well-posedness directs attention to the inner
boundary condition, and the multipoles at the inner bound-
ary. The coarsest parameter in those boundary conditions is
simply the mass that we ascribe to the source, a mass that
we have linked to the angular velocity � through the
nonrelativistic Kepler law. One would certainly expect
relativistic corrections to that relationship, so in a sense
our solution of the fully general relativistic problem has
omitted an important source of nonlinearity.

With the adapted coordinate method we have demon-
strated that the PSW computations can be brought to a level
of accuracy adequate for studying features of the strong
fields and inner boundary conditions. It is therefore ca-
pable, in principle, of giving useful insights about radiation
reaction contained in the details of the near fields. The
method can also be used in the future to provide a quasi-
stationary sequence of simulation parameters (i.e., mass,
orbital radius, and angular velocity). Such a sequence will
represent more than adequately the slow inspiral process of
the binary. The main challenge for this approach is that it is
important to show that we are comparing the ‘‘same’’
system at different radii (i.e., that some physical quantities
are conserved although energy is lost during the process).
For binary neutron stars the baryon number must be un-
changed. In the case of black holes the issue is more

difficult, since the total mass of the system decreases as
energy is emitted. We are considering several different
schemes for constructing quasistationary sequences.
The current work has solved the problem with the accu-

racy that was sought, and a broader lesson might lie in that
success. The success was achieved through the combina-
tion of a computer algebra system such as MAPLE and
numerical programming. This combination can be a
powerful approach to some problems that requires not
only fast and sophisticated numerical algorithms but also
a fast and sophisticated implementation process. The les-
son in the PSW program is that the use of a highly ana-
lytical approach to the problem (adapted coordinates and
multipole filtering) translated into an increased complexity
in the algebraic form of the equation. While humans are
prone to errors when manipulating lengthy expressions,
computers are not. Leaving the details of the manipulation
and coding to an algebraic manipulation language is a
natural choice for this sort of problems. Of course such
an approach involves the development of tools adapted to
the needs of a particular project within MAPLE or any
similar development platform, which can be quite chal-
lenging. However, once the tools are developed and bench-
marked the correctness of the numerical implementation is
guaranteed, which is a highly desirable feature for projects
involving complex numerical implementations.
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