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We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity

with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary

metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the

Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with

arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter,

and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS

spacetime, and an horizonless geometry of point masses under certain initial conditions. For pressureless

dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin.

However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type

equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked

singularity is possible under generic initial conditions. We conclude that in three dimensions angular

momentum does not in general guard against violation of cosmic censorship.
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I. INTRODUCTION

In three-dimensional Einstein gravity, there are no dy-
namical degrees of freedom, i.e., no gravitons that mediate
the interactions between massive objects in the vacuum [1],
with or without the cosmological constant, unless some
higher derivative terms, like the (gravitational) Chern-
Simons term, are introduced [2]. Although spacetime out-
side of matter is locally of constant curvature, some non-
trivial spacetime solutions to the field equations exist that
have either black hole [3] or cosmological event horizons
[4,5] when the cosmological constant is nonzero.1 Their
metrics have the general form

ðdsÞ2 ¼ �N2ðRÞdT2 þ dR2

N2ðRÞ þ R2ðd’þ N’ðRÞdTÞ2

(1.1)

with the lapse (squared) and shift functions

N2ðRÞ ¼ ð�oR
2 þ �oÞð�iR

2 þ �iÞ
‘2R2

;

N’ðRÞ ¼ � signð�o�iÞ ffiffiffiffiffiffiffiffiffiffi
�o�i

p
‘R2

(1.2)

respectively. Here, �o=i and �o=i are constant parameters

whose signs (and values) depend on whether we are con-
sidering the black hole solution in AdS space or the cos-
mological solution in dS space.
The ADM mass and angular momentum of this class of

spacetimes, with a cosmological constant � ¼ �1=‘2, are
given by

MBTZ ¼ R2
o þ R2

i

8G‘2
; JBTZ ¼ 2RoRi

8G‘
(1.3)

for the (BTZ) black hole solution (where �o ¼ �i ¼ þ1,
�o ¼ �R2

o, �i ¼ �R2
i ) [3] and

MKdS3 ¼
R2
o � R2

ðiÞ
8G‘2

; JKdS3 ¼
2RoRðiÞ
8G‘

(1.4)

for the (KdS3) cosmological solution (where �o ¼ þ1,
�i ¼ �1, �o ¼ þR2

o, �i ¼ þR2
ðiÞ) [4,5], respectively,2

where the three-dimensional Newton constant G is as-
sumed positive.3 For the black hole case of Eq. (1.3), we
have MBTZ � JBTZ=‘ � 0 in order that there is no naked
conical singularity and Ro=i denotes the outer/inner hori-

zon. On the other hand, for the cosmological solution, there
is no constraint on MKdS3 and JKdS3 in order that the

horizon exists, unless JKdS3 ¼ 0 is considered [5]: Even

MKdS3 < 0 is allowed also. In this case, Ro denotes the

(cosmological) event horizon [4] but RðiÞ does not signify

*rbmann@sciborg.uwaterloo.ca
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1In general cosmological horizons in dS space do not neces-

sarily imply the existence of black hole horizons in the associ-
ated AdS space. However, in three dimensions they are closely
related, i.e, there is one-to-one correspondence between the
‘‘event’’ horizons—cosmological horizons in dS and outer black
hole horizons in AdS—for overlapping ranges of ADMmass and
angular momentum. See Ref. [5] for the details of the mapping.

2Here, mass and angular momentum agree with the definitions
in Ref. [6] but differ in sign from Ref. [7].

3In three-dimensional gravity, there is no a priori reason to fix
the sign of Newton’s constant. For some recent discussion on the
sign choice, see Ref. [2].
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an inner horizon; the real parameter RðiÞ is introduced just

for convenience [5].
Over the years black hole and cosmological solutions in

three dimensions have fascinated theorists because of the
potential insights they afford into quantum gravity.
Amongst the most intriguing applications [8–11] have
been black hole formation and the associated issues of
gravitational collapse and the cosmic censorship conjec-
ture [12]. While there are numerous examples of initial
conditions that form a naked singularity in the context of
general relativity, none of them are generic as required by
the terms of cosmic censorship conjecture. However it has
been proposed that three dimensions might be an exception
[13,14]. A recent study of collapsing shells in three dimen-
sions with no angular momentum showed that a naked
singularity and a Cauchy horizon can form as the final
result of shell collapse for a broad variety of initial data
[9,14]. This feature is quite generic since the results are
independent of the types of collapsing shell matter such as
pressureless dust, polytropic matter, and a generalized
Chaplygin gas (GCG).

Furthermore, similar behavior also appeared in previous
studies of collapsing dust in three dimensions [8] and the
formation of topological black holes in four dimensions
[15]. (See Refs. [10,16] for higher-dimensional exten-
sions.) The formation of a naked singularity is of great
importance in association with the AdS/CFT correspon-
dence [13,17,18] since one might ask whether or not the
quantum correlation function at the AdS boundary is prop-
erly defined in the presence of a bulk singularity. This in
turn raises additional issues associated with the collapse to
a naked singularity, particularly the proper inclusion of
quantum (gravity) effects in the bulk [19].

Thus far the possible scenarios for the emergence of a
naked singularity have been explicitly analyzed for col-
lapse to final states (black holes or otherwise) with no
angular momentum [8–11,14–16]. Indeed, relatively little
is explicitly known about the gravitational collapse of
matter with nonzero angular momentum in any dimension.
It is therefore natural to take into account an extension of
gravitational collapse to exterior black holes with rotation
(or other possible configurations) and to investigate how
rotational effects alter previous results [8,14] concerning
cosmic censorship violation. While this problem is techni-
cally formidable in higher dimensions, a study of gravita-
tional collapse of shells in three dimensions is considerably
more tractable. So we shall consider this problem in our
paper.4

To this end, we introduce a corotating coordinate system
on the shell, which simplifies the matching procedure. The
angular momentum produces a potential barrier around the
origin, preventing the shell from contracting to zero size.
We analyze the possible collapse scenarios by investigating
the effective potential for all types of equation of state. For
a pressureless dust shell, we find that its angular momen-
tum prevents the creation of a singularity at the origin,
unlike the nonrotating case [14]. Previous work on rotating
dust shell collapse was carried out in the Hamiltonian
formalism, an alternative to the Darmois-Israel formalism
[22]. For a more restricted class of scenarios, they found
that singularities were also avoided. Our work goes beyond
this insofar as we consider shells with pressure. In this
case, curvature singularities of finite spatial extent are
formed before they meet the barrier, and the effective
potential and surface stress-energy tensor diverge.
Therefore under rather generic conditions it is possible
for a naked singularity to form, violating cosmic censor-
ship as in the nonrotating collapse scenario [14].
The outline of our paper is as follows. In Sec. II, we

present a setup for the two-dimensional hypersurfaces with
arbitrary rotations and a spherical symmetry. Considering a
corotating frame where the comoving observer on the shell
sees only the radial motion yields a simplified equation of
motion for the shell. In Sec. III, we consider the evolution
of a pressureless dust shell and compare it to the results for
nonrotating shell collapse [14]. In Sec. IV, we consider
shells with pressure whose equations of state are the poly-
trope type, which includes the perfect fluid and the GCG.
Finally, we shall summarize and discuss our results in
Sec. V.

II. SETUP: ROTATING SHELLS IN COROTATING
FRAME

In this section, we consider rotating shells in three-
dimensional Einstein gravity with a cosmological constant
�. The bulk Einstein equation is given by

G�� þ�g�� ¼ 8�GT�� (2.1)

with a bulk stress-tensor T��. If we introduce a two-

dimensional hypersurface with surface stress-energy tensor
denoted by Sij, then the three-dimensional manifold is

divided into three parts—the interior space V�, the exte-
rior space Vþ, and the thin-shell hypersurface �. The
metric away from the shell decomposes as g�� ¼
�ð�Þgþ�� þ�ð��Þg���, where � is a geodesic coordinate

and �ð�Þ is the Heaviside step function.5 We shall use the
coordinate system ðT; R;�Þ in the interior and exterior
spaces while we use the comoving coordinate system

4After completing this work, a paper [20] investigating a
rotating dust cloud appeared. Their ‘‘no singularity’’ result is
consistent with our result for dust shells in Sec. III. However, our
results for shells with pressure in Sec. IV imply that the naked
singularity would not be avoided even for rotating clouds with
pressure [21].

5�ð�Þ is equal toþ1 if �> 0, 0 if �< 0, and indeterminate if
� ¼ 0. It has the following properties : �2ð�Þ ¼ �ð�Þ,
�ð�Þ�ð��Þ ¼ 0, and d�ð�Þ=d� ¼ �ð�Þ, where �ð�Þ is the
Dirac delta function.
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ð	;�Þ on the shell. Then, the evolution of the shell is
obtained by the Darmois-Israel matching conditions be-
tween metrics and the corresponding extrinsic curvatures
in the interior and the exterior geometries [23],

½gij� ¼ 0; (2.2)

8�GSij ¼ �ð½Kij� � gij½K�Þ; (2.3)

where ½A� � lim�!0ðAþ � A�Þ with the subscripts ‘þ’
and ‘�’ denoting exterior and interior spacetimes, respec-
tively. Greek letters ð�; �; � � �Þ denote three-dimensional
spacetime indices, whereas Roman letters ði; j; � � �Þ denote
the two-dimensional indices on the shell. The combination
of the metric junction condition and the induced Einstein’s
equation on the shell will describe the effective motion of
the shell.

If we take a corotating frame on the shell by introducing

d’ ¼ d�þ 
 RoRi

‘R2ðTÞ dT, then the metric (1.1) becomes

ðdsÞ2 ¼ �N2dT2 þ dR2

N2
þ R2

�
d�þ 
RoRi

‘

�
�

1

R2ðTÞ �
1

R2

�
dT

�
2

(2.4)

and each metric in both regions is simply expressed as

ðdsÞ2
V�

¼ �N2�dT2 þ dR2

N2�
þ R2

�
d�� N�

�R2

�
�

1

R2ðTÞ �
1

R2

�
dT

�
2
; (2.5)

with

N2� ¼ ð��
o R

2 þ ��
o Þð��

i R
2 þ ��

i Þ
‘2R2

;

N�
� ¼ � 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
��
o �

�
i

q
‘R2

(2.6)

and 
� � signð��
o �

�
i Þ. Here ��

o=i and ��
o=i depend on the

choice of spacetime. The black hole and cosmological
solutions are, respectively, given by �o=i ¼ þ1, �o=i < 0
and �o ¼ ��i ¼ þ1, �o > 0, as explained in Sec. I. Note
that T is a time (space) -like coordinate and R is a space
(time) -like coordinate in the exterior (interior) of an outer
black hole horizon or interior (exterior) of a cosmological
horizon. Moreover, the horizonless geometry with point
masses, where T is timelike and R is spacelike always,
corresponds to setting �o=i > 0 with �o=i ¼ þ1 for AdS

space and �i ¼ 0, �o ¼ þ1 for flat space [24].
On the shell’s surface � with T ¼ T ð	Þ and R ¼

RðT ð	ÞÞ ¼ Rð	Þ, the metric reduces to6

ðdsÞ2� ¼ �N 2�dT 2ð	Þ þ dR2ð	Þ
N 2�

þR2d�2

¼ gijdx
idxj � �d	2 þ r20a

2ð	Þd�2; (2.7)

which yields (from the first junction condition in Eq. (2.2))

N 4�
�
dT
d	

�
2 ¼

�
dR
d	

�
2 þN 2�; R2 ¼ r20a

2ð	Þ:
(2.8)

The induced basis vectors and the normal vectors on � are

e
�
	 ¼

�
dT
d	

;
dR
d	

; 0

�
; e

�
� ¼ ð0; 0; 1Þ; (2.9)

and

n� ¼
�
�dR

d	
;
dT
d	

; 0

�
; (2.10)

respectively. Then, the nonvanishing components of the
extrinsic curvature defined by Kij ¼ �n�ð@je�i þ
��
��e

�
i e

�
j Þ are computed to be

K�
		 ¼ � d

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dR
d	

�
2 þN 2�

s
;

K�
	� ¼ signð��

o �
�
i Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
��
o �

�
i

q
‘R

;

K�
�� ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dR
d	

�
2 þN 2�

s
(2.11)

and its trace is

K � gijKij

¼ d

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dR
d	

�
2 þN 2�

s
þ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dR
d	

�
2 þN 2�

s
:

(2.12)

Note that K�
	� does not vanish even though there is no

ðT;�Þ component of the metric on the shell where R ¼
Rð	Þ, i.e., fðRÞ � �N�R2ð1=R2ð	Þ � 1=R2Þ ¼ 0. This is
basically because �R

	� has a term @RfðRÞ which does not

vanish on the shell.
We shall assume that the surface stress-energy tensor of

the shell is that of a perfect fluid

S ij ¼ ð�þ pÞuiuj þ pgij; (2.13)

where � is an energy density, p is a pressure, and ui is the
shell’s two-velocity. Then, from the second junction con-
dition (2.3), the surface stress-energy tensor with three-
velocity u� ¼ ð1; 0; 0Þ is straightforwardly evaluated to be

� � ¼ S	
	 ¼ 1

8�GR
ð�þ � ��Þ;

p ¼ S�
� ¼ d

8�GdR
ð�þ � ��Þ;

(2.14)

6Here we consider the same cosmological constant parameter
‘ for both interior and exterior spacetimes. For the different
parameters ‘�, the analysis is the same with the rescaled interior
and exterior coordinates ~R� ¼ R�‘=‘� ¼ Rð	Þ‘=‘�, without
changing the physical parameters �� and ��.
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where �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdR=d	Þ2 þN 2�

q
. In addition, we have

S	� ¼ ð�þ pÞu	u� ¼ 0 since u� vanishes on the shell

in the corotating frame. Hence ½K	�� ¼ 0, which gives

Kþ
	� ¼ signð�þ

o �
þ
i Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ
o �

þ
i

q
‘R

¼ signð��
o �

�
i Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
��
o �

�
i

p
‘R

¼ K�
	�; (2.15)

implying Jþ ¼ J� on the shell. Combining both equations
in (2.14) yields

�þ � �� þ 8�G�R ¼ 0; (2.16)

d

dR
ð�RÞ þ p ¼ 0: (2.17)

The first equation states that the (relativistic) energy of the
shell, 2��R is balanced by the respective difference of
energies ��=4G, as measured from the interior and exte-
rior spacetimes with given gravitational backgrounds. The
second equation occurs because the shell is a closed,
adiabatic system, with the loss of shell energy dð2��RÞ
under expansion occurring at the expense of the work
2�pdR done by the shell.

III. PRESSURELESS DUST SHELLS

For a pressureless (p ¼ 0) dust shell, Eq. (2.17) yields
� ¼ m0=2�R, where m0 is an initial rest mass of the shell
and is assumed to be a nonvanishing positive constant.
Inserting this into Eq. (2.16) gives the equation of motion
for the shellffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

dR
d	

�
2 þN 2þ

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dR
d	

�
2 þN 2�

s
þ 4Gm0 ¼ 0; (3.1)

or alternatively �
dR
d	

�
2 þ VeffðRÞ ¼ 0; (3.2)

where the effective potential is

VeffðRÞ ¼ � 1

4ð4Gm0Þ2
½ð4Gm0Þ4 � 2ðN 2þ þN 2�Þ

� ð4Gm0Þ2 þ ðN 2þ �N 2�Þ2�: (3.3)

Note that this equation describes the one-dimensional
Newtonian motion of a point particle with zero energy in
the potential VeffðRÞ insofar as surfaces of constant 	 are
spacelike.7 The behavior of the shell will depend on the
number of roots of the effective potential in R> 0 [14].

Now if we define the dimensionless parameters (‘�’ for
AdS and ‘þ’ for dS)

x � R=‘; t � 	=‘; ko=i � �o=i=‘
2 ¼ �ðxo=iÞ2;

(3.4)

with the overdot denoting @=@t, then Eq. (3.2) becomes

_x 2 þ VeffðxÞ ¼ 0; (3.5)

where the effective potential is

VeffðxÞ ¼ 1

m2
0x

2
ða8x6 þ a6x

4 þ a4x
2 þ a2Þ (3.6)

and we employ henceforth the convention 8G � 1 for
convenience, unless otherwise stated.8 The coefficients are

a8 ¼ �ð�þ
o �

þ
i � ��

o �
�
i Þ2;

a6 ¼ 2½ð�þ
o �

þ
i þ ��

o �
�
i Þm2

0=4� ð�þ
o �

þ
i � ��

o �
�
i Þ

� ð�þ
o k

þ
i þ �þ

i k
þ
o � ��

i k
�
o � ��

o k
�
i Þ�

a4 ¼ �½m2
0=4� ð�þ

o k
þ
i þ �þ

i k
þ
o þ ��

i k
�
o þ ��

o k
�
i Þ�2

þ 4ð�þ
o �

�
o k

þ
i k

�
i þ �þ

i �
�
i k

þ
o k

�
o þ �þ

o �
�
i k

þ
i k

�
o

þ ��
o �

þ
i k

þ
o k

�
i Þ;

a2 ¼ kþo kþi m2
0 ¼ k�o k�i m2

0

with the condition kþo kþi ¼ k�o k�i (Jþ ¼ J�) on the shell
from Eq. (2.15). Note that a nonvanishing coefficient a8
implies the interior and exterior geometries differ; for
example, exterior AdS and interior dS spacetimes.
The coefficient a2, which is positive, is peculiar to

geometries with rotation; if there is no rotation then a2
vanishes (k�i ¼ 0), and the effective potential agrees with
that for the nonrotating case [14].
The effective potential can be classified by the values of

its coefficients. For a nonvanishing a8 (different geome-
tries), the effective potential behaves as VeffðxÞ 	
a2=m

2
0x

2 ! þ1 as x ! 0 corresponding to a centrifugal

barrier around the origin at x ¼ 0. Hence the shell cannot
collapse to zero size. We also have the asymptotic behavior
VeffðxÞ 	 a8x

4=m2
0 ! �1 as x ! 1 since a8 < 0. The

shape of the effective potential is one of four types, de-
pending on the values of the parameters (as illustrated in
Fig. 1) and its numerator is a cubic polynomial in x2.
For vanishing a8, i.e., the same interior and exterior

geometries, the numerator of the effective potential re-
duces to a quadratic polynomial in x2. The coefficient of
the highest order term a6 can have both positive and
negative values, depending on the values of parameters,
and the shapes of the effective potential are depicted in
Fig. 2.
The crucial point concerning the different effective po-

tentials depicted in Figs. 1 and 2 is the centrifugal barrier
that appears around x ¼ 0. It is this barrier that prevents the

7In the opposite case, when surfaces of constant R are space-
like, the system corresponds to a nonconservative system with a
time-dependent potential VeffðRÞ�1, due to absence of a timelike
Killing vector. This situation is analogous to that of the S0-brane
geometry [25]. For a related analysis in a S0-brane geometry, see
Ref. [26]. 8This differs from that of Ref. [14] by �.
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shell from contracting toward zero size, in turn preventing
the formation of a curvature singularity at x ¼ 0 unlike the
nonrotating case [14].

We now turn to a discussion of exact solutions.

A. Exact solutions I: Different interior/exterior
geometries (a8 � 0)

We first consider the case of interior dS and exterior
AdS spaces by setting �þ

o=i ¼ þ1, ��
o ¼ ���

i ¼ þ1,

Veff

x m

0
x

(a) <0

00

0

xx

(b)  =0

x

 =0(d)(c)  >0

   
stable
solution

unstable
solution

Veff Veff

Veff

FIG. 1 (color online). Plots of the effective potential for a8 < 0 as a function of x. There are four cases: (a) a single root, (b) a
degenerate small root and a large root, (c) three distinct roots, and (d) a degenerate large root and a small root. The arrows denote the
possible trajectories of a shell with zero energy. The dotted lines denote the nonrotating cases (a2 ¼ 0), which exist only for �< 0
defined in Eq. (3.17), and there are two types, depending on the value of a4. Note that there is a stable equilibrium solution located at
the local minimum in (b), and an unstable equilibrium solution located at the local maximum in (d).

Veff

(a)

a6>0 a6<0

00

(b) (c)

0

a6=0

x xx

Veff Veff

FIG. 2 (color online). Plots of the effective potential as a function of x for a8 ¼ 0. The arrows denote the possible trajectories of a
shell. The dotted lines denote the nonrotating case (a2 ¼ 0) and there can be two types, depending on the value of a4.
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Mþ ¼ �ðkþo þ kþi Þ, M� ¼ k�o � k�i , J ¼ 2‘
ffiffiffiffiffiffiffiffiffiffiffiffi
k�o k�i

q
, then

we get

a8 ¼ �4; a6 ¼ 4ðMþ �M�Þ;
a4 ¼ �ð�2

0 þMþ þM�Þ2 þ 4MþM�;

a2 ¼ J2��2
0=‘

2:

(3.7)

We can also reverse the above case by setting ��
o=i ¼ þ1,

�þ
o ¼ ��þ

i ¼ þ1, M� ¼ �ðk�o þ k�i Þ, Mþ ¼ kþo � kþi ,

J ¼ 2‘
ffiffiffiffiffiffiffiffiffiffiffiffi
k�o k�i

q
, and easily find that the coefficients are

obtained by switching “þ ” $ “� ”, as expected due to
the corresponding symmetry in the configuration.

Next consider an interior dS and exterior flat space. This
corresponds to setting �þ

o ¼ þ1, �þ
i ¼ 0, ��

o ¼ ���
i ¼

þ1, mþ ¼ 2ð1�
ffiffiffiffiffiffi
kþi

q
Þ, jþ ¼ 2‘

ffiffiffiffiffiffi
kþo

p
, M� ¼ k�o � k�i ,

J� ¼ 2‘
ffiffiffiffiffiffiffiffiffiffiffiffi
k�o k�i

p
, which reduces the coefficients to

a8 ¼ �1; a6 ¼ �
�
m2

0

2
þ 1

2
ðmþ � 2Þ2 þ 2M�

�
;

a4 ¼ �
�
m2

0

4
� 1

4
ðmþ � 2Þ2 þM�

�
2 � ðmþ � 2Þ2M�;

a2 ¼ 1

16‘2
ðmþ � 2Þ2j2þm2

0 ¼
J2�m2

0

4‘2
: (3.8)

In the last line, we have used the junction condition
kþo kþi ¼ k�o k�i and this shows that it is not the angular
momentum jþ itself but the combination ð2�mþÞjþ=2
(with mþ the mass parameter of the exterior locally flat
space) that is continuous across the shell and matches with
the angular momentum J� of the interior dS space. Note
that the case of interior AdS and exterior flat spaces can be
similarly obtained by changing a6 ! �a6 in the above
formula with M� ¼ �ðk�o þ k�i Þ. Reversing the interior
and exterior spaces can be obtained by switching “þ ” $
“� ”.

Equation (3.5) is not a particularly convenient form for
obtaining an exact solution. Rather, by introducingX � x2,
we find that (3.5) can be rewritten as

_X 2 þ V̂effðXÞ ¼ 0; (3.9)

where

V̂ effðXÞ � 4XVeffðxÞ ¼ 4

m2
0

ða8X3 þ a6X
2 þ a4X þ a2Þ:

(3.10)

Since the effective potential can be rewritten in the form
(a > 0)

V̂ effðXÞ ¼ � 4

m2
0

aðX � bÞðX � cÞðX� dÞ; (3.11)

where a8 ¼ �a, a6 ¼ aðbþ cþ dÞ, a4 ¼ �aðbdþ
bcþ cdÞ, and a2 ¼ abcd, one finds that the differential

equation has an exact solution in terms of the Jacobi
elliptic function9

t� C ¼ � m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðd� bÞp Jacobi SN�1

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b

c� b

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c� b

d� b

s 3
5

¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðd� bÞp Elliptic F

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b

c� b

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c� b

d� b

s 3
5;

(3.12)

which can be rewritten as

xðtÞ ¼
2
4bþ ðc� bÞJacobi SN2

�
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðd� bÞp
m0

ðt� CÞ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c� b

d� b

s 9=
;
3
51=2

:

(3.13)

The integration constant C is

C ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðd� bÞp Jacobi SN�1

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 � b

c� b

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c� b

d� b

s 3
5

¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðd� bÞp Elliptic F

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 � b

c� b

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c� b

d� b

s 3
5 (3.14)

determined by setting x ¼ x0 at t ¼ 0.
The three roots b, c, d can be rewritten as

r0 ¼ sþ þ s� � a6
3a8

;

r� ¼ � 1

2
ðsþ þ s�Þ � a6

3a8
� i

ffiffiffi
3

p
2

ðsþ � s�Þ;
(3.15)

where s� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3 � r2

p3

q
with

r ¼ 9a8a6a4 � 27a28a2 � 2a36
54a38

; q ¼ �3a8a4 þ a26
9a28

(3.16)

and here the choice of identification of fr0; r�g with
fb; c; dg is arbitrary. For a8 � 0, the number of ‘‘real’’
roots depends on the discriminant

� � 108a48ðq3 � r2Þ
¼ �27a22a

2
8 þ 2a4ð9a6a2 � 2a24Þa8 þ a26ða24 � 4a6a2Þ:

(3.17)

If�> 0, there are three distinct real roots and if� ¼ 0, (at
least) two roots coincide, while if �< 0, there is only one

9The properties of the Jacobi elliptic functions are presented in
Refs. [14,27].
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real root with a pair of complex conjugate roots (Fig. 1).
Plugging Eq. (3.7) into Eq. (3.17) yields

� ¼ �27�12
0 � 162�10

0 z� 54�8
0ðy2 þ 6z2Þ

� 54�6
0ð4ðzy2 þ z3Þ � 9J2yÞ � 27�4

0ðy4 þ 8z2y2

þ 27J4 � 36J2zyÞ � 54�2
0ðzy4 � J2y3Þ

(3.18)

with �0 � m0=2, y � Mþ �M�, and z � Mþ þM�.
Thus we conclude that collapse scenarios with different

interior and exterior geometries (see Fig. 1) are described
by the exact solution of Eq. (3.13), with parameters appro-
priately chosen. Note that for the nonrotating case (J ¼ 0
and z > 0)�< 0 always [Fig. 1(a)]. The crucial difference
between the rotating case and the nonrotating case [14] is
the centrifugal barrier around the origin that prevents the
shell from collapsing to zero size, forbidding the formation
of a curvature singularity for the former. This is manifest in
Eq. (3.18), where we can see that the effect of rotation gives
positive contributions for y > 0, and so can render � non-
negative [Fig. 1(b)–1(d)].

B. Exact solutions II: Same interior/exterior geometries
(a8 ¼ 0)

For the same interior and exterior geometries we have
a8 ¼ 0. The solutions become simpler in that they can be
expressed by trigonometric or exponential functions. To
see this, we first consider AdS spaces in both regions by
setting ��

o=i ¼ þ1. Then we get

a8 ¼ 0; a6 ¼ m2
0;

a4 ¼ �½m2
0=4� ðkþo þ kþi þ k�o þ k�i Þ�2 þ 4ðkþo þ kþi Þ

� ðk�o þ k�i Þ;
a2 ¼ kþo kþi m2

0

(3.19)

with the condition kþo kþi ¼ k�o k�i . Alternatively, if we
define the mass and angular momentum parametersM� �
�ðk�o þ k�i Þ and J � 2‘

ffiffiffiffiffiffiffiffiffiffiffiffi
k�o k�i

q
, then the black hole and

the AdS point mass spacetimes can be described byM> 0
and M< 0, respectively, and one finds

VeffðxÞ ¼ m2
0x

4 � ~a4x
2 þm2

0J
2=4‘2

m2
0x

2
; (3.20)

where ~a4 � �a4 is positive definite when at least one of
the interior/exterior geometries is a black hole geometry.
For example for BTZ black holes in both regions (M� >
0), we have ~a4 ¼ m4

0=16þm2
0ðMþ þM�Þ=2þ ðMþ �

M�Þ2 > 0. Likewise for interior AdS point mass and ex-
terior BTZ black hole case (MþM� < 0) we have ~a4 ¼
ðm2

0=4þMþ þM�Þ2 � 4MþM� > 0. However for AdS
point masses in both regions, ~a4 cannot be positive always.

The shape of the effective potential is given in Fig. 2(a)
since a6 ¼ 4�2

0 > 0. So there are two positive roots at x ¼
xmin=max, where

xmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a24 �m4

0J
2=‘2

qr
ffiffiffi
2

p
m0

;

xmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a24 �m4

0J
2=‘2

qr
ffiffiffi
2

p
m0

:

(3.21)

and the shell moves between them as illustrated in Fig. 2(a)
. An exact solution can be found by a straightforward
computation:

t� C ¼ � 1

2
arctan

�
~a4 � 2m2

0x
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4

0x
4 þ ~a4m

2
0x

2 �m2
0J

2=‘2
q

�
:

(3.22)

Alternatively we can write

xðtÞ ¼ 1ffiffiffi
2

p
m0

�
~a4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a24 �m4

0J
2þ

q
j sin2ðt� CÞj

�
1=2

(3.23)

or

xðtÞ ¼ 1ffiffiffi
2

p ½ðx2max þ x2minÞ þ ðx2max � x2minÞj sin2ðt� CÞj�1=2;
(3.24)

where the integration constant C is determined by an initial
condition on the position of the shell x0 � xðt ¼ 0Þ,

C ¼ 1

2
arctan

�
~a4 � 2m2

0x
2
0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m4

0x
4
0 þ ~a4m

2
0x

2
0 �m2

0J
2=‘2

q
�
:

(3.25)

It is clear that a (real) solution exists only for ~a4 > 0: For
AdS point masses in both regions, i.e., M� < 0, we need
particular initial configurations satisfying m2

0=4>
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MþM�

p � ðMþ þM�Þ or m2
0=4<�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MþM�

p �
ðMþ þM�Þ in order to have real solutions.
Note that the minimum bound at x ¼ xmin arises due to

the angular momentum parameter J, which implies that the
shell will not shrink to zero size. The intrinsic Ricci scalar
on the shell computed from the induced metric (2.4),

R �
�½�� ¼ 2

xðtÞ
d2xðtÞ
dt2

¼ � 1

x

dVeff

dx
; (3.26)

has no singularity since the shell cannot reach the origin at
x ¼ 0 due to the angular momentum barrier. This implies
that rotational effects prevent the curvature singularity at
x ¼ 0 from being formed.
Formation of a BTZ black hole will take place if certain

initial conditions hold. First the inequalities xmax � x0 >
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xþH > xmin must hold, so that the shell’s initial location is
outside of the putative horizon xþH of the exterior space-
time, which in turn must be located between xmin and xmax.
A BTZ black hole can form for the exterior observer before
the shell moving inward either collapses onto the interior
point mass, collapses into a point mass if the interior is
pure AdS, or is absorbed into the outer horizon of an
interior BTZ black hole.10

To see this, consider Eq. (3.1), which can be written as

m0

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þ x2 þ J2

4‘2x2
�M�

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þ x2 þ J2

4‘x2
�Mþ

s
(3.27)

and note that everything in the square-root terms is the
same except for Mþ and M�.

If there is a black hole in the interior spacetime, i.e.,
M� > 0, then a black hole in the exterior spacetime, i.e.,
Mþ > 0, will always form for a positive m0, for any initial
point x0: The shell moving inward forms the (outer) black
hole horizon before being absorbed by the outer horizon of
the interior black hole, i.e., x�H < xþH which is equivalent to
M� <Mþ.

If the interior is pure AdS or has a point mass, i.e.,M� <
0, then a black hole in the exterior spacetime (Mþ > 0)
forms if

�m 0 <m0 (3.28)

with �m0=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x20 þN 2�ðx0Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x20 þN 2þðx0Þ þMþ

q
,

for any initial point x0.
For m0 < �m0 then Mþ < 0 and the shell collapses into

(or onto) a point mass, which is similar to the condition for
dust cloud collapse in the nonrotating case [8].
Furthermore, for 0<m0 < �m0 we have 0>Mþ >M�;
the deficit angle, which is defined by 2�ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�M�Þ

p
[24], of the point mass outside can not be smaller than
that of the point mass inside. Note that the physics govern-
ing the endstate of collapse is basically the same regardless
of the values of _x0 and J.

On the other hand, by squaring (3.1) one find that the
shell’s gravitational mass Mþ, which becomes the black
hole mass after its formation, is given by

Mþ ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þN 2�

q
� 2Gm2

0 þM�; (3.29)

(reinstating Newton’s constant G) where the first and sec-
ond terms correspond to the shell’s relativistic kinetic
energy and binding energy, respectively [28]. Note that
the binding energy is negative only for positive G, as in

the conventional higher dimensional black holes [29]11;
this is unique to AdS spacetimes and this could provide a
physical explanation of why the black hole solution can
exist only in this case, but not in dS or flat spacetimes.
Next we consider dS spaces in both regions by setting

��
o ¼ þ1 and ��

i ¼ �1. Then we get

a8 ¼ 0; a6 ¼ �m2
0;

a4 ¼ �½m2
0=4þ ðkþo � kþi þ k�o � k�i Þ�2 þ 4ðkþo � kþi Þ

� ðk�o � k�i Þ;
a2 ¼ kþo kþi m2

0

(3.30)

with the condition kþo kþi ¼ k�o k�i . The effective potential
is (~a4 � �a4 > 0)

VeffðxÞ ¼ �m2
0x

4 � ~a4x
2 þm2

0J
2=4‘2

m2
0x

2
: (3.31)

In this case, the shape of the effective potential is Fig. 2(b)
since a6 ¼ �m2

0 < 0 with a single root at x ¼ xmin, where

xmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�~a4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a24 þm4

0J
2=‘2

qr
ffiffiffi
2

p
m0

(3.32)

provided J ¼ 2‘
ffiffiffiffiffiffiffiffiffiffiffiffi
k�o k�i

q
� 0; for vanishing angular mo-

mentum (J ¼ 0), i.e., nonrotating dS spaces, there is no
xmin (the lower dotted line in Fig. 2(b)]. The solution for the
shell’s edge is

xðtÞ ¼ 1

2m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

‘2
m2

0J
2e2ðt�CÞ þ

�
m0e

�ðt�CÞ � ~a4
m0

eðt�CÞ
�
2

s
;

(3.33)

where the integration constant C is

C ¼�1

2

� ln

2
648m2

0x
2
0þ4~a4þ8m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0x
4
0þ ~a4x

2
0�m2

0J
2=4‘2

q
m2

0

3
75:

(3.34)

As with black hole spacetimes, when some appropriate
conditions are imposed, a (cosmological) event horizon
x�C can form from the perspective of the interior observer.

If the cosmological horizon x�C of the interior spacetime is

located larger than xmin and if the initial location of the dust
shell is in between xmin and x�C , the expanding (or collaps-

10The formation of a black hole would also occur for interior
flat or AdS point mass spacetime provided appropriate condi-
tions are met.

11Constant binding energy is peculiar to three dimensions; in
general there is distance dependence. In four dimensions, for
example, the gravitational mass of a spherically symmetric shell,

with a flat interior spacetime, is given by Mþ ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þ 1

p
�

G4m
2
0=2R with G4 the four-dimensional Newton’s constant.
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ing and later expanding) shell will form a cosmological
horizon for the interior (KdS3) observer.

To see this explicitly, we note that, as in the black hole
case, the cosmological horizons are located always larger

than xmin,
12 i.e., xmin 
 x�C ¼ ffiffiffiffiffiffi

k�o
p

, from ~a4 þm2
0M� ¼

ðm0=2Þ4 þm2
0ðM� þ 3M�Þ=2þ ðMþ �M�Þ2 � 0 for

any nonzero �0. Regardless of the sign of ðMþ þ 3M�Þ
this condition is trivially satisfied since there are no real
values of �0 satisfying ~a4 þm2

0M� < 0.
Consider again Eq. (3.1), which we write as

m0

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þM� þ J2

4‘2x2
� x2

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þMþ þ J2

4‘x2
� x2

s
: (3.35)

Note that the contributions of the mass terms M� are
opposite to those of the black hole spacetime due to our
definition of mass [5,6]. Then the expanding (or collapsing
and later expanding) shell will form a cosmological hori-
zon for the interior (KdS3) observer for a negative m0: If
m0 > 0, then x�C > xþC , which is equivalent to Mþ >M�,
and the shell will be absorbed by the cosmological horizon
of the exterior spacetime, before forming the cosmological
horizon in the interior spacetime.13

Finally we consider flat spaces in both regions by setting
��
i ¼ 0 and ��

o ¼ þ1. We have

a8 ¼ a6 ¼ 0;

a4 ¼ �½m2
0=4� ðkþi þ k�i Þ�2 þ 4kþi k�i ;

a2 ¼ kþo kþi m2
0

(3.36)

with the condition kþo kþi ¼ k�o k�i . If we define the mass
and angular momentum parametersm� and j� of the point
masses to be k�i ¼ ðm� � 2Þ2=4, k�o ¼ j2�=4‘2, then one
finds the effective potential becomes

VeffðxÞ ¼ �~a4x
2 þ ð16‘2Þ�1ðm� � 2Þ2j2�m2

0

m2
0x

2
; (3.37)

where ~a4 � �a4 ¼ ½m2
0=4� ðkþi þ k�i Þ�2 � 4kþi k�i . Its

shape is shown in Fig. 2(c), since a6 ¼ 0 with a single
root at x ¼ xmin, where

xmin ¼ jðm� � 2Þj�jm0

4‘
ffiffiffiffiffi
~a4

p : (3.38)

Here we note that the angular momenta j� are not sepa-
rately continuous across the shell, but only the combina-
tions ðm� � 2Þj� are. The exact solution is found to be

xðtÞ ¼ m0jðm� � 2Þj�j
4‘

ffiffiffiffiffi
~a4

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16~a24‘

2

ðm� � 2Þ2j2�m4
0

ðt� CÞ2
s

;

(3.39)

where the integration constant C is

C ¼ m0

2~a4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4~a4x

2
0 � ðm� � 2Þ2j2�m2

0=4‘
q

: (3.40)

To summarize this section, we find that rotating dust
shells can collapse, but only down to a minimal size xmin

(after which they expand) due to their angular momentum.
No curvature singularity is formed during the gravitational
collapse process, unlike the nonrotating case [14]. The
alternative collapse endpoint is a BTZ black hole or a
KdS3 spacetime.

IV. SHELLS WITH PRESSURE

In this section, we shall consider shells with pressure
determined by somewhat generalized equations of state.
The effect of pressure is to produce a varying shell energy
2�‘�x from Eq. (2.17), i.e., deviations from the inverse
radius dependence of � ¼ m0=2�‘x. Specifically we con-
sider shells with the polytropic-type equation of state

p ¼ !�

�

�
2�‘�

m0

�
1=n

; (4.1)

that encompasses many sorts of known fluids by choosing a
specific equation of state parameter! and polytropic index
n. For instance, we have constant energy density (n ¼ 0),
nonrelativistic degenerate fermions (n ¼ 1), nonrelativis-
tic matter or radiation pressure (n ¼ 2), and linear (perfect)
fluid (n ! 1), respectively [30]. Moreover, the equation of
state in Eq. (4.1) can describe a Chaplygin gas by choosing
n, !< 0.
Plugging the equation of state (4.1) into Eq. (2.17) yields

�ðxÞ ¼ m0

2�‘
ð�!þ�x1=nÞ�n; (4.2)

where� is an integration constant. Similarly, for the linear
fluid (n ! 1), we have

�ðxÞ ¼ m0

2�‘
x�ð!þ1Þ: (4.3)

From these we obtain the equationsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þN 2þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þN 2�

q
þ ðm0x=2Þ

ð�!þ ð1þ!Þx1=nÞn ¼ 0;

(4.4)

for finite n, andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þN 2þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þN 2�

q
þ ðm0=2Þ

x!
¼ 0; (4.5)

for the linear fluid, where� ¼ 1þ! so that � ¼ m0=2�‘
when x ¼ 1.

12This can be also understood from (3.2) which is always
satisfied when the shell’s location coincides with one of the
horizons, i.e., N þ ¼ 0 or N � ¼ 0.
13In the nonrotating case this scenario has been previously
noted in a higher-dimensional context [18].
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For finite n and the linear fluid, the equations of motion
can be expressed in the alternate form

_x 2 þ VeffðxÞ ¼ 0; (4.6)

where the effective potential is

VeffðxÞ ¼ 1

2
ðN 2þ þN 2�Þ � �2‘2

4
�2x2

� 1

4�2‘2�2x2
ðN 2þ �N 2�Þ2 (4.7)

with the junction condition kþo kþi ¼ k�o k�i . Note that the
only change to the effective potential compared to pressur-
eless dust shells in Eq. (3.3) is the replacement of m0 !
2�‘�x in Eq. (3.3).

Up to now, the preceding results are valid for any n. But
the behavior of the effective potential differs for n > 0 and
n < 0, which need separate consideration.

A. The ordinary polytropic shells: n, ! > 0

For ordinary fluids with finite and positive definite n and
!, the effective potential and the intrinsic Ricci scalar also
negatively diverge at x ¼ x! � !n=ð1þ!Þn, where the
density � also diverges. So the shell will not collapse to a
point but rather to a ring of finite size x ¼ x! in a finite
proper time. The shape of the effective potential is depicted
in Figs. 3 and 4.
On the other hand, for the linear fluid (n ! 1) there is

no ring singularity since � is finite for any finite x. Rather,
from the effective potential near x ¼ 0,
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FIG. 3 (color online). Plots of the effective potentials for the shell with a polytropic equation of state and the exterior AdS black hole
(�þ

o=i ¼ þ1, kþo ¼ �ðxþH Þ2 ¼ �1, kþi ¼ �1=4: LHS)/AdS point mass (�þ
o=i ¼ þ1, kþo ¼ þ1, kþi ¼ þ1=4: RHS). We choose an

interior AdS space with a point mass (��
i ¼ þ1), flat (��

i ¼ 0), and dS (��
i ¼ �1) by setting parameters ��

o ¼ þ1, ! ¼ þ2,
k�o=i ¼ þ1=2, m0 ¼ 4, n ¼ þ1.
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FIG. 4 (color online). Plots of the effective potentials for the shell with a polytropic equation of state and the exterior flat space
(�þ

o ¼ 0, �þ
i ¼ þ1, kþo ¼ þ1, kþi ¼ þ1=4: LHS)/dS space (�þ

o ¼ þ1, ��
i ¼ �1, kþo ¼ ðxþC Þ2 ¼ þ1, kþi ¼ þ1=4: RHS). We

choose an interior AdS space with a point mass (��
i ¼ þ1), flat (��

i ¼ 0), and dS (��
i ¼ �1) by setting parameters ��

o ¼ þ1,
! ¼ þ2, k�o=i ¼ þ1=2, m0 ¼ 2, n ¼ þ1.
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Veff 	 J2

4‘2x2
� m2

0

16x2!
þ 1

2
ð�þ

i k
þ
o þ �þ

o k
þ
i þ ��

i k
�
o

þ ��
o k

�
i Þ �

x2!

m2
0

ð�þ
i k

þ
o þ �þ

o k
þ
i

� ��
i k

�
o � ��

o k
�
i Þ2; (4.8)

due to �ðxÞ ¼ ðm0=2�‘Þx�ð!þ1Þ, a shell with !> 1 will
collapse to zero size,14 regardless of the initial values ofm0

and k�o k�i � J2=4‘2, in a finite proper time where the
effective potential and the energy density (or pressure)
diverge (Figs. 5 and 6).
Provided the exterior geometry has no black hole (event)

horizon such as the KdS3 space or the AdS/flat spaces with
point masses, there is nothing to prevent the collapsing
shell from developing a curvature singularity. The resultant
singularity is naked and we have a violation of the cosmic
censorship for ‘‘generic’’ initial data. These are qualita-
tively the same behaviors as those of nonrotating shell
collapse [14], which implies that their angular momentum
is not large enough to overcome forming the curvature
singularity for most fluids whose equations of state are of
the form (4.1). The centrifugal barrier that prevents col-
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FIG. 5 (color online). Plots of the effective potentials for the shell with a linear fluid and the exterior AdS black hole (kþo ¼
�ðxþHÞ2 ¼ �1, kþi ¼ �1=4: LHS)/AdS point mass (kþo ¼ þ1, kþi ¼ þ1=4: RHS). We choose an interior AdS space with a point mass
(��

i ¼ þ1), flat (��
i ¼ 0), and dS (��

i ¼ �1) by setting parameters ��
o ¼ þ1, ! ¼ þ2, k�o=i ¼ þ1=2, m0 ¼ 4.
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FIG. 6 (color online). Plots of the effective potentials for the shell with a linear fluid and the exterior flat space (�þ
o ¼ 0, �þ

i ¼ þ1,
kþo ¼ þ1, kþi ¼ þ1=4: LHS)/dS space (�þ

o=i ¼ þ1, kþo ¼ ðxþC Þ2 ¼ þ1, kþi ¼ þ1=4: RHS). We choose an interior AdS space with a

point mass (��
i ¼ þ1), flat (��

i ¼ 0), and dS (��
i ¼ �1) by setting parameters, ��

o ¼ þ1, ! ¼ þ2, k�o=i ¼ þ1=2, m0 ¼ 4.

14The case !<�1 shows similar behavior for the effective
potential and ! ¼ �1 is a marginal case. We shall not consider
these possibilities, i.e., !< 0 with the usual values of n > 0,
since their physical relevance is not quite clear.

ROLE OF ANGULAR MOMENTUM AND COSMIC . . . PHYSICAL REVIEW D 79, 064005 (2009)

064005-11



lapse in the pressureless dust case still occurs at x ¼ 0, but
is always dominated by the negatively divergent effective
potential at the finite value of x.

However, for the linear fluid with !< 1, angular mo-
mentum effects again dominate, ensuring that cosmic cen-
sorship is upheld regardless of the relative values ofm0 and
J (Figs. 7 and 8). Note that this is the case where there is a
similarity with the pressureless dust shells in Sec. III:
Actually, Figs. 7 and 8 (and Fig. 10 as well) show all the
possible cases in Figs. 1 and 2.

The case! ¼ 1 is a marginal case that crucially depends
on the initial data: One has an infinite well for m2

0 > 4J2

(Fig. 9) but an infinite barrier for m2
0 < 4J2 (Fig. 10); for

m2
0 ¼ 4J2, the point x ¼ 0 is naked when ð�þ

i k
þ
o þ

�þ
o k

þ
i þ ��

i k
�
o þ ��

o k
�
i Þ< 0 (Fig. 11).

B. Chaplygin-gas shells: n, ! < 0

For the Chaplygin-type gas shells (n, !< 0), by setting
n ¼ �1=ðþ 1Þ one can conveniently rewrite the equa-

tion of state15 as p ¼ �Â=�� ¼ �Aðm0=2�
2‘Þ�

ðm0=2�‘�Þ and ! ¼ �Âðm0=2�‘Þ1=n ¼ �A, in agree-
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FIG. 8 (color online). Plots of the effective potentials for the shell with a linear fluid and the exterior flat space (�þ
o ¼ 0, �þ

i ¼ þ1,
kþo ¼ þ1, kþi ¼ þ1=4: LHS)/dS space (�þ

o=i ¼ þ1, kþo ¼ ðxþC Þ2 ¼ þ1, kþi ¼ þ1=4: RHS). We choose an interior AdS space with a

point mass (��
i ¼ þ1), flat (��

i ¼ 0), and dS (��
i ¼ �1) by setting parameters, ��

o ¼ þ2, ! ¼ þ1=2, k�o=i ¼ þ1=2, m0 ¼ 4.
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FIG. 7 (color online). Plots of the effective potentials for the shell with a linear fluid and the exterior AdS black hole (kþo ¼
�ðxþHÞ2 ¼ �1, kþi ¼ �1=4: LHS)/AdS point mass (kþo ¼ þ1, kþi ¼ þ1=4: RHS). We choose an interior AdS space with a point mass
(��

i ¼ þ1), flat (��
i ¼ 0), and dS (��

i ¼ �1) by setting parameters ��
o ¼ þ1,! ¼ þ1=2, k�o=i ¼ þ1=2,m0 ¼ 4. The event horizon

for the exterior observer is located at x ¼ 1:0 in the left diagram. However a fluid collapsing through this surface will not bounce from
the interior barrier.

15For a close connection to D-branes, see Ref. [31].
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ment with more standard conventions [32]. Then, for finite
n, i.e.,  � �1 one finds

�ðxÞ ¼ m0

2�‘
½Aþ ð1� AÞx�ðþ1Þ�1=ðþ1Þ; (4.9)

from Eq. (4.2).
The shape of the effective potential depends on several

parameters A, ��
o=i, and k

�
o=i, as shown in Fig. 12. Near x ¼

0, the effective potential behaves as

VeffðxÞ 	 1

4

J2=‘2

x2
�m2

0ð1� AÞ2
16

� ð�þ
i k

þ
o þ �þ

o k
þ
i � ��

i k
�
o � ��

o k
�
i Þ2

m2
0ð1� AÞ2 (4.10)

due to �ðxÞ 	 ðm0=2�‘Þð1� AÞ for A � 1, from Eq. (4.9).
Again there is a centrifugal barrier near the origin. The
asymptotic behavior as x ! 1 is given by

VeffðxÞ	1

2

�
ð�þ

o �
þ
i þ��

o �
�
i Þ�

1

16
m2

0A
2=ðþ1Þ

�
x2 (4.11)

and this depends on the values of A and ��
o=i, similarly to

Fig. 2. In addition, as can be seen from a consideration of
the effective potential (4.7), it will not diverge for any finite
value of x when A < 1, while it will negatively diverge due

to the vanishing energy density, i.e., � ! 0 at x ¼ xA �
½ðA� 1Þ=A�1=ðþ1Þ when A > 1 for all  >�1.
On the other hand, for A ¼ 1, we have a uniform density

�ðxÞ ¼ m0=2�‘ from Eq. (4.9) also and the (full) effective
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FIG. 10 (color online). Plots of the effective potentials for the shell with a linear fluid and the exterior flat space (�þ
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kþo ¼ þ1, kþi ¼ þ1=4: LHS)/dS space (�þ

o=i ¼ þ1, kþo ¼ ðxþC Þ2 ¼ þ1, kþi ¼ þ1=4: RHS). We choose an interior AdS space with a

point mass (��
i ¼ þ1), flat (��

i ¼ 0), and dS (��
i ¼ �1) by setting parameters, ��

o ¼ þ1, ! ¼ þ1, k�o=i ¼ þ1=2, m0 ¼ 1.
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FIG. 9 (color online). Plots of the effective potentials for the shell with a linear fluid and the exterior AdS black hole (kþo ¼
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(��

i ¼ þ1), flat (��
i ¼ 0), and dS (��

i ¼ �1) by setting parameters ��
o ¼ þ1, ! ¼ þ1, k�o=i ¼ þ1=2, m0 ¼ 4.
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potential is given by

VeffðxÞ ¼ 1

2
ðN 2þ þN 2�Þ � 1

16
m2

0x
2

� 1

m2
0x

2
ðN 2þ �N 2�Þ2: (4.12)

Near x ¼ 0, this behaves as

VeffðxÞ 	 1

4

J2=‘2

x2
� ð�þ

i k
þ
o þ �þ

o k
þ
i � ��

i k
�
o � ��

o k
�
i Þ2

m2
0x

2

�m2
0

16
(4.13)

and it depends on initial data: One has an infinite well for
J2 < 4‘2ð�þ

i k
þ
o þ �þ

o k
þ
i � ��

i k
�
o � ��

o k
�
i Þ2=m2

0 (this is

what has been plotted in Fig. 12), and an infinite barrier

for J2 > 4‘2ð�þ
i k

þ
o þ �þ

o k
þ
i � ��

i k
�
o � ��

o k
�
i Þ2=m2

0. The

case J2 ¼ 4‘2ð�þ
i k

þ
o þ �þ

o k
þ
i � ��

i k
�
o � ��

o k
�
i Þ2=m2

0 is

a marginal case that has a finite well and a finite intrinsic
curvature; the intrinsic curvature is finite even at the point
x ¼ 0, from Eq. (3.26),16 and so x ¼ 0 is a bounce point.
As x ! 1, the effective potential behaves as

VeffðxÞ 	
�
1

2
ð�þ

o �
þ
i þ ��

o �
�
i Þ �

m2
0

16

� 1

m2
0

ð�þ
o �

þ
i � ��

o �
�
i Þ2

�
x2 (4.14)

which depends on the initial data also.
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FIG. 11 (color online). Plots of the effective potentials for the shell with a linear fluid and the exterior flat space (�þ
o ¼ 0, �þ

i ¼ þ1,
kþo ¼ þ1, kþi ¼ þ1=4: LHS)/dS space (�þ

o=i ¼ þ1, kþo ¼ ðxþC Þ2 ¼ þ1, kþi ¼ þ1=4: RHS). We choose an interior AdS space with a

point mass (��
i ¼ þ1), flat (��

i ¼ 0), and dS (��
i ¼ �1) by setting parameters, ��

o ¼ þ1, ! ¼ þ1, k�o=i ¼ þ1=2, m0 ¼ 4.
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16The only relevant term is the x2 term (omitted in (4.13)),
which cancels the 1=x factor in Eq. (3.26).
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As an explicit example, we consider  ¼ 1, describing a conventional Chaplygin-gas shell [32]. Then the effective
potential becomes

VeffðxÞ ¼ 1

m2
0ðAx2 þ 1� AÞx2 ða8x

6 þ a6x
4 þ a4x

2 þ a2Þ; (4.15)

where

a8 ¼ �½m4
0A

2=16� ð�þ
o �

þ
i þ ��

o �
�
i Þðm0=2Þ4A=2þ ð�þ

o �
þ
i � ��

o �
�
i Þ2�;

a6 ¼ �m4
0Að1� AÞ=8þ ½ð�þ

o k
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i k
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0=2

� 2ð�þ
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o �
�
i Þðkþi �þ

o þ �þ
i k

þ
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i k
�
o � ��

o k
�
i Þ;

a4 ¼ �m4
0ð1� AÞ2=16þ ½ð�þ

o k
þ
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i k
þ
o þ ��

o k
�
i þ ��

i k
�
o Þð1� AÞ þ 2k�o k�i A�m2

0=2
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�
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o �
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�
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o �
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i k

þ
o k

�
i Þ;

a2 ¼ m2
0k

�
o k

�
i ð1� AÞ:

For a black hole spacetime outside the shell, the collapsing
shell may form a black hole within a finite time for A 
 1.
But this is not always the case for A > 1 since there exists a
singular point at x ¼ xA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðA� 1Þ=Ap

. If the horizon xH
is located at xH > xA, then it will form a black hole, while
if xH < xA, it will form a finite-sized ring singularity unless
the numerator vanishes at the point xA, a8x

6
A þ a6x

4
A þ

a4x
2
A þ a2 ¼ 0. Apart from a contrivance of very restric-

tive conditions on the parametersm0, �
�
o=i, k

�
o=i, and A, this

is still a somewhat singular configuration: even though the
intrinsic Ricci scalar of the shell is finite and its energy
density vanishes, the pressure diverges at the point xA. This
suggests a bounce solution.

Comparing to the nonrotating case [14], we again find
that angular momenta does not in general prevent the
emergence of a naked ring singularity at a finite position
of x ¼ xA. Violation of cosmic censorship occurs from the
gravitational shell collapse, regardless of the rotation and
initial data.

V. DISCUSSION

Our investigation of the gravitational collapse of rotating
shells in three dimensions has uncovered a number of
interesting features. We have studied whether or not angu-
lar momentum can significantly change the collapse sce-
nario and its resulting cosmic censorship violations in the
nonrotating cases in the literature.

For asymptotically AdS boundary conditions, we find
that the rotating shell collapses to either a black hole or a
minimum value and then expands out to infinity. For shells
composed of pressureless dust these are the only scenarios;
the centrifugal barrier forbids a naked singularity from
forming. However for shells with pressure we have another
scenario in which a naked singular ring can form, violating
cosmic censorship. When the exterior spacetime is taken to
be a geometry with a point mass, one might expect that the
collapsing shell could form a curvature singularity within
finite time, since there is no event horizon as with the

nonrotating system in Ref. [14]. However we have shown
that a naked singularity never forms in the collapse of a
rotating dust shell due to a centrifugal barrier in the effec-
tive potential experienced by the shell. Collapse scenarios
for shells with pressure show that a naked ring singularity
of finite size can be formed, where the effective potential
and the surface stress-energy tensor diverge. For asymp-
totically dS boundary conditions a collapsing shell with
pressure can form a naked singularity, also. If the interior
spacetime is (K)dS, then a cosmological horizon can form
from an expanding shell. Which of these scenarios occurs
depends on the choice of parameters and initial conditions.
For asymptotically flat boundary conditions the qualita-

tive behaviors are similar, i.e., a rotating collapsing dust
shell does not form a naked singularity, but a shell with
pressure can form a naked singularity. For a polytropic
shell this will be a naked singular ring of finite size. The
qualitative behavior is more or less intermediate between
the asymptotically AdS and dS cases as implied by the
choice of ��

o=i and illustrated in Figs. 4 and 7, though there

are some anomalous regions that do not reveal this simple
trend.
The most intriguing lesson of this paper is that the

centrifugal barrier in the effective potential governing the
time evolution of a rotating dust shell can prevent forma-
tion of a naked singularity. However if the shell has pres-
sure, a ring singularity may form for a typical class of
equations of state, i.e., !> 1, where the pressure domi-
nates the angular momentum, with quite general initial
data. So if the exterior spacetime is assumed to be a
geometry without a (covered) black hole event horizon,
then the singularity may be naked and the violation of
cosmic censorship is possible.
We have found that a collapsing shell can form either a

black hole/cosmological horizon or a naked singularity or
bounce to infinity, depending on the initial data. This
suggests a set of phase transitions [9] along with accom-
panying critical phenomena, similar to that discovered for
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scalar matter [33]. It would be of great interest to study
these phenomena explicitly as they could reveal universal
features of the critical exponents in three dimensions.

Since we have confined our study to three dimensions
(where there is no gravitational radiation), some caution is
warranted in applying our results to higher dimensions. We
have found that the angular momentum does not in general
prevent violation of cosmic censorship in three dimen-
sions, where local gravitational interactions vanish outside
of matter. An interesting extension of our work would be to
include higher derivative terms, whose effect is to produce
such interactions. Another interesting extension is the in-
clusion of quantum effects, since they might be expected to
prevent singularity formation, thereby sidestepping the
cosmic censorship issue. What impact these modifications
have on our results remains to be investigated.
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