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In previous work, q-theory was introduced to describe the gravitating macroscopic behavior of a

conserved microscopic variable q. In this article, the gluon condensate of quantum chromodynamics is

considered in terms of q-theory. The remnant vacuum energy density (i.e., cosmological constant) of an

expanding universe is estimated as K3
QCD=E

2
Planck, with string tension KQCD � ð102MeVÞ2 and gravita-

tional scale EPlanck � 1019GeV. The only input for this estimate is general relativity, quantum chromo-

dynamics, and the Hubble expansion of the present Universe.
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I. INTRODUCTION

In a recent series of articles [1–3], we explored a new
approach to the gravitational effects of vacuum energy
density. This approach starts from a conserved microscopic
variable q, whose statics and dynamics are studied on
macroscopic scales.

The precise nature of q is uncertain for the moment, but
we have presented at least one concrete example in terms
of a four-form field F. This F field could be a part of the
(unknown) fundamental theory of elementary particle
physics with an energy scale given by EPlanck � 1019GeV.

In this article, we do not contemplate ultrahigh energies
but propose an explicit realization of q from well-
established physics, namely, quantum chromodynamics
(QCD) with an energy scale of the order of 1 GeV. That
is, we find that q can be identified as a particular gluon
condensate in the nonperturbative QCD vacuum.
Neglecting QCD effects, an F-type field [2] may still be
required to reduce the macroscopic vacuum energy density
from a natural value of the order of ðEPlanckÞ4 to a value
which is essentially zero.

With our general understanding of q-theory, we can then
investigate the gravitational effects of the QCD vacuum.
Most importantly, we find that the dynamics of this gluon
condensate in the nonequilibrium context of the expanding
Universe may result in a nonzero limiting value of the
vacuum energy density. This remnant vacuum energy den-
sity may correspond to the inferred cosmological constant
responsible for the observed ‘‘cosmic acceleration’’
(cf. Ref. [4] and other references therein).

In order to be clear about the terminology, we consider a
time-dependent gravitating vacuum energy density �vacðtÞ
in an expanding Friedmann-Robertson-Walker (FRW) uni-

verse [typically, �vacðtÞ decreases with cosmic time t] and
define the cosmological constant� as the remnant vacuum
energy density in the limit of large cosmic times, � �
limt!1�vacðtÞ. This also implies that, while the vacuum
energy density �vac may have changed with time, the
equation-of-state parameter wvac � Pvac=�vac has kept
the value �1, at least for the type of theories considered
here. The possibility of having time-dependent �vacðtÞ and
constant wvac ¼ �1 may be an important lesson for ob-
servational cosmology.
Throughout this article, natural units are used with c ¼

@ ¼ 1 and Newton’s gravitational constant GN is shown
explicitly.

II. GLUON CONDENSATE

The underlying theory of the strong interactions is nowa-
days believed to be given by a particular non-Abelian
gauge field theory called quantum chromodynamics; see,
e.g., Ref. [5] and other references therein. The non-Abelian
gauge group is SUðNcÞ and the perturbative particle con-
tent of QCD is given byNf flavors of quarks and N

2
c � 1 ¼

8 types of gluons, for Nc ¼ 3 colors of each quark flavor.
The nonperturbative particle content of QCD is given by
the genuine asymptotic states, that is, the baryons, the
mesons, and possibly the glueballs.
The crucial object for our discussion is the Yang-Mills

field strength, defined as

Ga
��ðxÞ ¼ @�A

a
�ðxÞ � @�A

a
�ðxÞ þ fabcAb

�ðxÞAc
�ðxÞ;
(2.1)

with spacetime indices �, � ranging over 0 to 3, Lie-
algebra indices a, b, c taking values from 1 to N2

c � 1,
repeated Lie-algebra indices b, c being summed over, and
structure constants fabc corresponding to the Lie algebra
suðNcÞ. Note that the gauge coupling constant g has been
absorbed in the gauge potential, so that Aa

� ¼ Oðg0Þ for an
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instanton configuration and Aa
� ¼ Oðg1Þ for a perturba-

tive configuration with a few gluons.
Consider, now, the QCD gluon condensate (see Ref. [6]

and other references therein). It follows directly from
gauge invariance that

h0jGa
��ðxÞj0i ¼ 0; (2.2)

where the vacuum expectation value can, for example, be
obtained from a Euclidean path integral. Equation (2.2) for
the vacuum expectation value of a Yang-Mills field of local
support is a special case of Elitzur’s theorem [7], which
relies on the gauge noninvariance of the Yang-Mills field
strength and the gauge invariance of the path integral and
the vacuum state. As a further clarification of (2.2), we
state our explicit assumption that the so-called Savvidy
vacuum [8] is not realized, i.e., that the vacuum expectation
value of the average color magnetic field is zero.

The vacuum expectation value of the quadratic expres-
sion can, however, be nonzero:

h0j 1

4�2
Ga

��ðxÞGa
��ðxÞj0i ¼ 1

12
qðxÞðg��ðxÞg��ðxÞ

� g��ðxÞg��ðxÞÞ;
(2.3)

again with an implicit sum over the repeated Lie-algebra
index a. The explicit realization of the vacuum variable q
from Ref. [1] is then

qðxÞ ¼ h0j 1

4�2
Ga��ðxÞGa

��ðxÞj0i; (2.4)

which, with the chosen numerical factor, is precisely equal
to the Shifman-Vainshtein-Zakharov condensate as deter-
mined from charmonium data (q � 10�2 GeV4). On the
theoretical side, note that the vacuum expectation value
(2.4) is a properly renormalized quantity, which can, for
example, be obtained from a Euclidean path integral cal-
culated in the dilute-instanton-gas approximation (see
Sec. 6.7 of Ref. [6(a)] and other references therein).

The experimental value for q is positive, even though
expression (2.4) is not positive definite for a Lorentzian
spacetime metric. However, q is manifestly positive defi-
nite for a Euclidean spacetime metric, which is anyway
needed to make sense of the path integrals for instanton-
type calculations. Henceforth, we consider the vacuum
variable q to be non-negative.

Before we start our discussion of the gravitational effects
of the gluon condensate, we can already mention a side
product of our investigation, namely, that the gluon con-
densate has a new characteristic, the compressibility �.
This will be mentioned briefly in Secs. V and VI and
Appendix A, while the general discussion of vacuum com-
pressibility has been presented in Ref. [1].

III. COSMOLOGICAL TERM FOR GRAVITY

The goal of the present article is to explore certain
gravitational effects of the QCD gluon condensate over
spacetime volumes very much larger than those corre-
sponding to the typical scales of QCD, ‘QCD ¼ c�QCD �
1 fm � 10�15 m � @c=ð200 MeVÞ. In the spirit of
Ref. [1], we consider the following coarse-grained effec-
tive action:

Seff½g; q� ¼ Sgrav½g� þ Svac½g; q�

¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�GN

R½g� þ �ðqÞ
�
; (3.1)

where the pure-gravity action Sgrav is given by the standard

Einstein-Hilbert term with the Ricci curvature scalar R ¼
R½g� and the vacuum-energy-density action Svac is deter-
mined by a general function �ðqÞ of the vacuum variable q.
Here, q is realized as the vacuum expectation value (2.4)
but now averaged over a (Euclidean) spacetime volume of
the order of ð1 fmÞ4.
The energy-momentum tensor obtained by variation

over g�� is then given by

T�� ¼ � 2ffiffiffiffiffiffiffi�g
p 	Svac

	g�� ¼ �ðqÞg�� � 2
d�ðqÞ
dq

	q

	g�� : (3.2)

Using (2.3) and (2.4), one obtains

	q

	g�� ¼ 2

�
1

4�2
Ga

��G
a
��

�
g�� ¼ 1

2
qg��; (3.3)

where the brackets of the expression in the middle denote
both the vacuum expectation value and an average over a
(Euclidean) spacetime volume of the order of ð1 fmÞ4 [the
same expression can also be written in terms of the effec-
tive fields (4.1) introduced below]. As a result, (3.2) pro-
duces a cosmological-constant-type energy-momentum
tensor for the Einstein field equation,

T��ðqÞ ¼ �vacðqÞg��; (3.4a)

�vacðqÞ ¼ �ðqÞ � q
d�ðqÞ
dq

; (3.4b)

where the expression for �vacðqÞ has precisely the structure
argued on thermodynamical grounds in Ref. [1]. The term
(3.4a) in a cosmological context corresponds to a cosmic
fluid with equation-of-state parameter wvac ¼ �1.
At this moment, it may be instructive to comment on the

difference between our approach and the one of nonlinear
electrodynamics as discussed in, e.g., Refs. [9,10]. In our
approach, the average energies of the magnetic and electric
field fluctuations in the vacuum are related by hjBj2i ¼
�hjEj2i ¼ q=4, as follows from (2.3). (The negative value
of the average energy of the electric field is obtained after
renormalization of the divergent energy of the quantum
fluctuations.) But, in the approach of Refs. [9,10], both
quantities are non-negative, hjBj2i � 0 and hjEj2i � 0, so
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that generically the energy-momentum tensor from the
electromagnetic field does not correspond to a
cosmological-constant-type term (3.4a).

IV. EQUATION FOR q

The equation of motion for q can be obtained by aver-
aging the effective Yang-Mills equation. We proceed by the
introduction of a ‘‘master gauge field’’ (denoted by a bar),
with the following properties:

q ¼ 1=ð4�2Þ �Ga�� �Ga
��; (4.1a)

�Ga
�� ¼ @� �Aa

� � @� �A
a
� þ fabc �Ab

�
�Ac

�: (4.1b)

Physically, the idea is that the classical master field de-
scribes the gluon condensate and allows for variations over
spatial and temporal scales, which are large compared to
the microscopic scales of QCD. Theoretically, such a
master field is known to exist in the large-Nc limit;
cf. Ref. [11]. In a follow-up article, the gradient-expansion
method will be used, which allows us to get more explicit
results [in this method, the vacuum order parameter qðxÞ is
considered to be a slow (hydrodynamic) variable with a
length scale of inhomogeneities large compared to the
QCD length scale].

Now, start from the variation of (3.1) with respect to
�A�ðxÞ � �Aa

�ðxÞTa, where the Ta are the anti-Hermitian

generators of the Lie algebra suðNcÞ. The variational prin-
ciple then gives the following field equation:

�D�

�
d�ðqÞ
dq

�Ga��Ta

�
¼ 0; (4.2)

where q appearing in the function �0ðqÞ � d�=dq stands
for the �G2 expression (4.1a) and �D� denotes the covariant

derivative with respect to general coordinate transforma-
tions [using the standard affine connection �


��ðxÞ] and

non-Abelian gauge transformations [using the master
gauge field �Aa

�ðxÞ].
Next, contract (4.2) with �G�� � �Ga

��T
a, multiply by

1=ð4�2Þ, and take the trace (with normalization factor�2):

� 2 tr

�
1

4�2
�G��

�D�

�
d�ðqÞ
dq

�G��

��
¼ 0: (4.3)

Using

� 2 tr½ �G��
�G��� � �Ga

��
�Ga�� ¼ q�2	�

�; (4.4)

one obtains

q �D�

�
d�ðqÞ
dq

�
¼ 4

d�ðqÞ
dq

2 tr

�
1

4�2
�G��

�D�
�G��

�
: (4.5)

At this moment, we can proceed in two directions. The
first direction assumes that the physical situation is such
that the master field satisfies the standard Yang-Mills
equation, �D�

�G�� ¼ 0. Then, the following result holds:

tr ½ �G��
�D�

�G��� ¼ 0; (4.6)

which nullifies the right-hand side of (4.5).
Equation (4.6) for the case of Minkowski spacetime can

also be argued as follows: Take for granted that the non-
perturbative QCD vacuum overMinkowski spacetime does
not break spacetime translation invariance and also does
not break any of the discrete symmetries of charge con-
jugation (C), parity reflection (P), or time reversal (T).
(The implicit assumption is that the so-called � parameter
vanishes; cf. Ref. [5].) Then, it follows that the � ¼ 0
component and the � ¼ 1, 2, 3 components of the left-
hand side of (4.6) vanish by, respectively, the T and P
invariance of the Minkowski-spacetime QCD vacuum.
As q is a gauge-invariant scalar, the covariant derivative

�D� on the left-hand side of (4.5) equals the standard
gradient @� and the solution of (4.5) using (4.6) is simply

d�ðqÞ
dq

¼ �; (4.7)

where � is an integration constant. [It will be shown in a
forthcoming publication that (4.7) also follows from the
gradient expansion up to the first-order (linear) term in
@�q.] Result (4.7) demonstrates that the density q of the
gluon condensate is a conserved quantity and that � from
(4.7) plays the role of the corresponding chemical poten-
tial. The physical situation corresponds, therefore, to that
of an equilibrium state of the vacuum.
The second direction considers a physical situation with

additional higher-derivative terms contributing to the equa-
tion of motion for the master field, so that �D�

�G�� need not

vanish in general. The equation of motion (4.5) can then be
rewritten as

@� �� ¼ �4 ��
ð�2 tr½1=ð4�2Þ �G��

�D�
�G���Þ

ð�2 tr½1=ð4�2Þ �G��
�G���Þ ; (4.8a)

�� � d�ðqÞ
dq

; (4.8b)

where ��ðxÞ is an effective gauge-invariant scalar field and
the denominator on the right-hand side of (4.8a) is pre-
cisely equal to q according to (4.4) with its spacetime
indices contracted. The dynamical Eq. (4.8a) will be used
in Sec. VI and Appendix A to estimate the remnant vacuum
energy density for the present (T-noninvariant) Universe.

V. EFFECTIVE POTENTIAL FOR q

In the simplest approach, the effective potential for q is
determined by asymptotic freedom [12] and the conformal
anomaly [13] evaluated at one loop:

�ðqÞ ¼ �0 þ b1q ln
q

qc
; (5.1a)

b1 ¼ 1

32

�
11

3
Nc � 2

3
Nf

�
; (5.1b)
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with number of colors Nc ¼ 3 and number of light-quark
flavors Nf ¼ 2 for QCD at low energies [recall that q as
defined by (2.4) contains an explicit factor 1=ð4�2Þ].

With this choice for the effective potential �ðqÞ, (4.7)
gives the following expressions for the gluon-condensate
charge q, the macroscopic vacuum energy density �vac, and
the energy-momentum-tensor trace T�

� as a function of the

chemical potential �:

qð�Þ ¼ qc expð�=b1 � 1Þ; (5.2a)

�vacð�Þ ¼ �ðqð�ÞÞ ��qð�Þ ¼ �0 � b1qð�Þ; (5.2b)

T�
�ð�Þ ¼ 4�0 � 4b1qð�Þ: (5.2c)

The second term on the right-hand side of (5.2c) corre-
sponds to the conformal anomaly, as discussed in, e.g.,
Ref. [14], where� is the chemical potential of baryons and
reflects the conservation of baryonic charge.

Here, � is the chemical potential that characterizes the
vacuum state and reflects conservation of the vacuum
charge q. Moreover, � becomes a ‘‘running coupling
constant,’’

� ¼ b1ð1þ lnðq=qcÞÞ; (5.3)

as follows from (5.2a). The gluonic vacuum is stable, since
the vacuum compressibility [1] is positive for b1 > 0 and
q > 0:

� ¼
�
q2

d2�

dq2

��1 ¼ ðb1qÞ�1; (5.4)

as will be discussed further in the next section.

VI. � FROM A SELF-SUSTAINED GLUONIC
VACUUM

Given that q from (2.4) and b1 from (5.1b) are non-
negative for low-energy QCD, the vacuum energy density
�vacð�Þ in (5.2b) can be nullified if �0 > 0. In this case, the
self-sustained vacuum is given by

�0 ¼ b1ð1� lnb1 þ lnð�0=qcÞÞ; (6.1a)

qð�0Þ � q0 ¼ �0=b1; (6.1b)

�vacð�0Þ ¼ �Pvacð�0Þ ¼ 0; (6.1c)

T�
�ð�0Þ ¼ 0; (6.1d)

where the result for the vacuum pressure in (6.1c) follows
from the general energy-momentum tensor (3.4a). Recall
that a self-sustained vacuum [1] can exist as an equilibrium
state at zero external pressure Pext, with pressure equilib-
rium giving Pvac ¼ Pext ¼ 0. The particular gluon-
condensate vacuum discussed here has a vacuum com-
pressibility (5.4) given by �0 � �ðq0Þ ¼ 1=�0 > 0, ac-
cording to (6.1b).

For the case �0 < 0 and with q > 0, the energy density
(5.2b) can only be nullified if b1 < 0, which holds for an
Abelian gauge field theory such as QED. The vacuum
would, however, be unstable, since the vacuum compressi-

bility (5.4) would be negative for negative b1. In addition, it
is far from obvious that a nonzero vacuum expectation
value (2.4) for q can arise in an Abelian gauge field theory.
In short, a stable self-sustained vacuum can be realized by
a non-Abelian gauge field theory with �0 > 0 but not by an
Abelian gauge field theory.1

The quantities qð�0Þ and qc are determined by the
characteristic QCD energy scale �QCD from the

asymptotic-freedom behavior [12] of the SUð3Þ gauge
coupling constant,

qð�0Þ � qc ��4
QCD � ð200 MeVÞ4; (6.2)

with �0 � b1�
4
QCD from (6.1b). Still, the macroscopic en-

ergy density of the self-sustained vacuum that enters the
Einstein equation as a cosmological constant is not given
by �ðq0Þ � �0 ¼ Oð1033 eV4Þ but is strictly zero, � ¼
�vacð�0Þ ¼ 0, according to (3.4), (4.7), and (6.1c).
A nonzero value of � ¼ �vacð�Þ may appear for a

perturbed vacuum with � � �0. Specifically, the vacuum
energy density induced by the expansion of the Universe
can be expected to be nonzero (cf. Sec. IV). Based on the
heuristic discussion in Appendix A, we suggest the follow-
ing behavior:

�vac � fjHj�3
QCD; (6.3)

with Hubble parameterH � ðda=dtÞ=a > 0 for an expand-
ing universe and a numerical factor f � 0. It has indeed
been argued [15] on general grounds that the linear H term
of (6.3) may arise from the nonperturbative QCD interac-
tions that anomalously break the scale invariance of the
massless classical theory. The potential importance of the
QCD vacuum for cosmological horizons has also been
emphasized in Ref. [16].
According to our present understanding (see, e.g.,

Ref. [4]), the Universe evolved from an early radiation/
matter-dominated phase [HðtÞ � 1=t] to a late vacuum-
dominated phase [HðtÞ � const]. The crossover will be
discussed further in the next section, but, here, only the
asymptotic behavior (t ! 1) will be considered.
For a stationary de Sitter universe, result (6.3) can be

written as

� ¼ fHdeS�
3
QCD; (6.4)

with HdeS > 0 the Hubble constant (time-independent
Hubble parameter) of de Sitter spacetime and neglecting
higher-order terms such as H2

deS�
2
QCD. In addition, the

standard Friedmann equation gives for a de Sitter universe

1The quantity �0 may, in principle, come as the response of (or
reaction from) the deep vacuum at the Planck-energy scale,
which is slightly adjusted to compensate the energy of the gluon
condensate, as discussed in Sec. II of Ref. [1] for the case of a
scalar condensate. For the present discussion, �0 is simply
assumed to be positive. As mentioned above, �0 then corre-
sponds to the inverse vacuum compressibility.
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H2
deS ¼ ð8�=3Þ�=E2

Planck; (6.5)

with EPlanck �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c5=GN

p � 1:22� 1028 eV. Eliminating
HdeS from the last two equations, one obtains the following
estimate of the cosmological constant (remnant vacuum
energy density):

� ¼ ð8�=3Þf2�6
QCD=E

2
Planck; (6.6)

where the numerical constant f2 remains to be determined.
As the QCD scale parameter �QCD of the SUð3Þ gauge

coupling constant is renormalization-scheme dependent, it
may be more appropriate, conceptually, to give the cosmo-
logical constant in terms of a directly measurable quantity.
Specifically, we take the string tension KQCD �
1=ð2�0Þ � ð400 MeVÞ2 from the measured Regge slope
0 of meson resonances [5] or from numerical calculations
of lattice gauge theory [17] combined with other experi-
mental data to fix the absolute length scale. Setting
�2

QCD � KQCD=4 and f2 � ð24=�Þk� in (6.6), the final

expression for the cosmological constant reads

� ¼ k�K
3
QCD=E

2
Planck

� ð3� 10�3 eVÞ4
�

k�
2� 10�6

��
KQCD

ð400 MeVÞ2
�
3
; (6.7)

where the numerical constant k� remains to be determined
(the experimental results to be discussed shortly suggest a
value of the order of 10�6). Result (6.7) can also be written
as �� ðGN=c

5ÞK3
QCD=@, in order to emphasize that the

result relies only on classical general relativity and quan-
tum chromodynamics (the string tension KQCD has the

dimension of energy over length).
The suggestion, then, is that the vacuum of the presently

observed Universe is not relaxing to the absolute equilib-
rium state (6.1) but to the de Sitter equilibrium state with
nonzero cosmological constant (6.6) or equivalently (6.7).

Since the proton mass mp � 938 MeV is now known to

come mostly from the gluon dynamics, mp ��QCD, esti-

mate (6.6) corresponds to Zeldovich’s original suggestion
[18] for the cosmological constant in terms of the proton
mass,�Zeldovich �m6

p=E
2
Planck. Numerically, one hasm6

p �
�6

QCD and Zeldovich’s expression gives a value for �

several orders of magnitude larger than (6.6), which is
closer to the observed value but still somewhat too large
for f ¼ 1.

The numerical agreement between the theoretical esti-
mate (6.6) or (6.7) and the experimental value [4,19,20] of
approximately ð2 meVÞ4 is improved by having a reduc-
tion factor k� ¼ Oð10�6Þ in (6.7). The corresponding fac-
tor f ¼ Oð10�3Þ in (6.6) traces back to (6.3) and depends
on the evolution of the gluon condensate as the Universe
cools from T � 200 MeV to the present temperature T �
3K; see Appendix A for further details.

VII. OTHER COSMOLOGICAL CONSTANT
PROBLEMS

In the previous section, we have made an attempt to use
QCD for the following three cosmological constant prob-
lems (cf. Refs. [1–4] and other references therein):
(i) why is the cosmological constant � not catastrophi-

cally large?
(ii) why does not � vanish exactly?
(iii) what physical mechanism sets the scale of �?
From the q-theory approach to QCD, we have found that
the Universe asymptotically approaches a stationary
de Sitter phase with a cosmological constant � given by
(6.6) or equivalently (6.7), which suggests a partial solution
to the above three problems.2

However, not all cosmological constant problems have
been addressed, let alone solved completely. There remain,
for example, the following two questions:
(iv) at which moment in time, t ¼ tcross, does the vacuum

energy density start to dominate over the cold-dark-matter
energy density?
(v) why do galaxies and stars exist at times relatively

close to tcross?
Question (iv) perhaps has a simple answer in our ap-

proach. The crossover from the cold-dark-matter-
dominated Universe to the gluon-condensate-dominated
Universe occurs when the cold-dark-matter energy density
drops below the vacuum energy density. For a flat matter-
dominated FRW universe with Hubble expansion parame-
ter H � ð2=3Þ1=t, the cold-dark-matter energy density
evolves as �CDMðtÞ � ð3=8�Þð4=9ÞE2

Planck=t
2, with numeri-

cal factors of order unity displayed.3 Asymptotically (t �
tcross), the constant vacuum energy density is given by
(6.6). The resulting crossover time can, therefore, be esti-
mated as

tcross � ð4�Þ�1f�1E2
Planck=�

3
QCD: (7.1)

In terms of the string tension KQCD � 4�2
QCD and the

numerical constant k� � ð�=24Þf2, the crossover time
(7.1) becomes

tcross � ð6�k�Þ�1=2E2
PlanckK

�3=2
QCD

� 2� 1017 s

�
2� 10�6

k�

�
1=2

�ð400 MeVÞ2
KQCD

�
3=2

;

(7.2)

2As mentioned in Sec. I, non-QCD contributions to the vac-
uum energy density are perhaps canceled by the self-adjustment
of another q-type field such as the 4-form field F considered in
Ref. [2] or by an entirely different mechanism.

3In first approximation, the energy transfer from vacuum to
cold-dark matter can be neglected for t 	 tcross, as long as the
vacuum energy density is given by (6.3) also for a time-
dependent Hubble parameter H. The question remains as to
the precise nature of the energy exchange between vacuum
and matter [21].
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where a value for k� of the order of 10�6 is indicated by the
comparison of (6.7) with the measured vacuum energy
density, as discussed in Sec. VI.

The value for tcross from (7.2) is of the order of and even
just under the observed value for the age of the present
Universe, t0 � 14 Gyr � 4� 1017 s, as determined from
the data compiled in Refs. [19,20]. The corresponding
redshift zcross ¼ Oð1Þ agrees with the results indicated by
deep supernovae observations, such as those reported in
Ref. [22].4

Question (v) remains unanswered for the moment, but
the answer could also be related to QCD, possibly via the
mass and baryon number of the proton.5

VIII. CONCLUSION

In this article, we have described the nonperturbative
QCD vacuum in terms of q-theory, where q is identified
with the particular gluon condensate (2.4). A crucial role is
played by the QCD trace anomaly [13], whose potential
relevance to the cosmological constant problem has pre-
viously been emphasized in, e.g., Ref. [15] (see also
Ref. [25] for a discussion in the context of QED).

The static equilibrium q-theory gives a gravitating vac-
uum energy density which is exactly zero, �vac ¼ 0, ac-
cording to (6.1). But in a nonstatic situation (e.g., that of
the expanding Universe), the gluon condensate is perturbed
and a nonzero gravitating vacuum energy density results,
�vac � 0. The theoretical value for the remnant vacuum
energy density (cosmological constant) is estimated to be
given by (6.7) and appears to be of the order of the
experimental value [4,19,20].

However, a reliable calculation of the present vacuum
energy density �vac will require a detailed study of the
gluon-condensate dynamics in an expanding universe.
Even though that study has barely started and many ques-
tions remain, it is remarkable and encouraging that an
explanation of the so-called ‘‘dark energy’’ can perhaps
be found in known physics, classical general relativity and
quantum chromodynamics.
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APPENDIX: REMNANT VACUUM ENERGY
DENSITY FROM QCD

In this appendix, we give a heuristic derivation of ex-
pression (6.3) for the remnant vacuum energy density from
the gluon condensate of quantum chromodynamics in an
expanding universe. The main idea is that nonanalytic
behavior of the gravitating vacuum energy density as a
function of the Hubble parameter HðtÞ � ðda=dtÞ=a may
come from the singularity of the gluon propagator in the
infrared.
In order to see how this may happen, it is convenient to

use the Gribov picture of confinement [26–28]. In the
Coulomb gauge, the effective gluon mass would then
depend on the three-momentum k and would increase in
the infrared limit k � jkj ! 0 as

mðkÞ ��2
QCD=k: (A1)

Such a momentum-dependent mass would come from the
instantaneous Coulomb interaction between the color
charges of the gluons, i.e., from the interaction potential
UðrÞ / 1=r in coordinate space or Uk / 1=k2 in momen-
tum space.
Here, we consider the possible effects from a more

singular behavior of mðkÞ at extremely small k.
Assuming a linear confinement potential between gluons
UðrÞ / �2

QCDr, with Fourier transform Uk / �5
QCD=k

4, we

have the following behavior of the effective gluon mass in
the extreme infrared region:

mðkÞ ��3
QCD=k

2: (A2)

Recall that, on the one hand, the Richardson potential [29]
with a 1=k2 behavior of the effective gluon mass gives a
reasonable description of heavy-quark systems and that, on
the other hand, a large-Nc master field has been suggested
[11], which gives this very same potential for color sources
in arbitrary nontrivial representations of SUðNcÞ. Current
lattice-gauge-theory simulations [28] appear to support the
behavior (A1), but are by necessity limited to rather small
volumes of the order of ð1 fmÞ3. The conjectured behavior
(A2) would hold over length scales L larger than 1 fm
(perhaps L * 10 fm) and may provide an incentive to push
the pure-gauge lattice simulations to their limit.
In the cosmological context, a natural infrared cutoff for

the divergent gluon mass is provided by the Hubble ex-
pansion,

mðk; HÞ ��3
QCD=ðk2 þH2Þ: (A3)

The contribution of the Hubble expansion to the vacuum
energy density can be estimated by using, for example, the
zero-point energy of the gluon field. For the FRW universe

4After the completion of an earlier version of the present
article, we became aware of recent work [23] on the evolution
of an expanding FRW universe with a hypothetical decaying
vacuum energy density proportional to the Hubble parameter.

5It is known [24] that the lifetime t? of a main-sequence star is,
to a large extent, determined by the proton mass and Newton’s
constant: t? � E2

Planck=m
3
p, with an additional numerical factor of

the order of 104 on the right-hand side for a solar-mass star. This
numerical factor contains, however, the fine-structure constant 
and the proton-electron mass ratio mp=me, so that non-QCD
physics enters the estimate. The estimate for t? is, therefore,
suggestive but inconclusive from our point of view.
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(or, more specifically, the de Sitter universe), the estimated
contribution of zero-point energies from (A3) is

�vacðHÞ � N2
c � 1

2

Z d3k

ð2�Þ3 ðmðk; HÞ �mðk; 0ÞÞ

� �N2
c � 1

8�
jHj�3

QCD; (A4)

where the factor N2
c � 1 counts the number of gluons in a

pure SUðNcÞ Yang-Mills theory. As argued in the main
text, the vanishing of the gravitating vacuum energy den-
sity �vac in Minkowski spacetime (H ¼ 0) would be due to
the self-adjustment of a q-type variable.

Even though (A4) has the wrong sign (cosmology
[19,20,22] suggests �vac ¼ �Pvac > 0), the important
point is to have found that a term of order jHj�3

QCD can

arise at all. The contributions of the fermionic quarks,
which have not been considered up till now, may, in
principle, reverse the overall sign of (A4). In any case,
the zero-point-energy estimates, which are applicable to
equilibrium vacua, have only heuristic value if the dynam-
ics of the nonequilibrium vacuum is considered: these
estimates may give the correct order of magnitude but
not the exact number or even the sign.

Turning to the dynamics, the infrared behavior of QCD
in (A2) induces nonanalytic higher-order derivative terms
in the gradient expansion mentioned in Sec. IV. The sin-
gular infrared behavior also leads to nonanalytic higher-
derivative terms in the master-field equation relevant to
right-hand side of (4.8a). This could, for example, give6

�G��
�D�

�G�� ¼ c1�QCD �D�ð �h �hÞ1=4ð �G��
�G��Þ þ 
 
 
 ;

(A5)

with a numerical coefficient c1, the microscopic time scale
�QCD � 1=�QCD, and the invariant d’Alembertian �h de-

fined in terms of the master gauge field �A�ðxÞ and the

standard affine connection �

��ðxÞ from the metric g��ðxÞ

and its inverse [4].
For a flat FRW universe with a time-dependent homo-

genous master field (4.1b) and corresponding scalar field
��ðtÞ from (4.8b), the differential Eq. (4.8a) can then be
approximated as

d ��ðtÞ
dt

� �4 ��ðtÞ ��ðtÞHðtÞ2�QCD þ OðH3�2QCDÞ; (A6)

with a factor jHj�QCD in the first term on the right-hand

side from the nonanalytic higher-derivative term in (A5)
and a dimensionless function ��ðtÞ from the full master-
field dynamics. For comparison, analytic higher-derivative

terms would give the much smaller factor H2�2QCD con-

tained in the second term on the right-hand side of (A6).
The present Universe at coordinate time t ¼ t0 > 0 (set-

ting the big bang coordinate time to zero, tBB ¼ 0) has a
Hubble constant H0 � Hðt0Þ � 1=t0 > 0 and may be con-
sidered to have a vacuum state near equilibrium, �� ¼
�0 þ 	�, for j	�=�0j 	 1 and �0 given by (6.1a). The
ordinary differential Eq. (A6) gives then approximately

	� � �4�0 ��ðt0ÞH2
0t0�QCD � ��0�0jH0j�QCD; (A7)

with all numerical factors absorbed in the constant �0 and
using the positivity of t0. The chemical-potential shift (A7)
results in the following nonzero vacuum energy density
(5.2b):

�vacð�Þ � �0 � b1qð�0Þ � b1ðdq=d�Þ	�
� �b1ðq20�0Þð	�Þ
� b1ð�4

QCD=b1Þð�0�0jH0j=�QCDÞ
� �0�0�

3
QCDjH0j

� �0b1�
3
QCDjH0j; (A8)

where the derivative of (4.8b) with respect to q has been
used in the second step, the combined results (5.4), (6.1c),
(6.2), and (A7) in the third step, and (6.1a) in the last step.
The final expression (A8), with positive �0b1 for a
de Sitter-like universe (HdeS � H0 > 0), is precisely of
the form (6.3) with f ¼ �0b1. Purely theoretically, the first
two steps in (A8) highlight the importance of the vacuum
compressibility �0 � �ðq0Þ for the dynamics of the vac-
uum energy density, which has also been noted, for a
different model, in Eq. (2.9) of Ref. [21].
Result (A8) or equivalently (6.3) corresponds to a non-

analytic jRj1=2 term in phenomenological ~fðRÞ modified-
gravity theories, where a tilde has been added to the
function fðRÞ in order to distinguish it from the numerical
factor f used elsewhere in this article (see Ref. [3] for
references on this type of modified-gravity theories).

Specifically, the ~fðRÞ gravity induced by QCD is given by

~fðRÞ ¼ �R�M
ffiffiffiffiffiffiffi
jRj

p
þ 
 
 
 ; (A9)

with M � 0 and the same conventions for the Ricci scalar

R as in Refs. [2–4]. The jRj1=2 term in (A9) stands for all

terms hnðjRj1=2R�nÞ with n 2 Z, while the ellipsis indi-
cates other higher-order terms in R. Note that the complete
gravitational action may also have particular terms involv-
ing the Ricci tensor and Riemann tensor, which, for the
de Sitter metric, give a vanishing contribution to the gen-
eralized Einstein field equation.

The modified-gravity model with ~fðRÞ from (A9) be-
longs to the class of chameleon-type models [30–32]. For
the case of the gluon-condensate vacuum, the correspond-
ing mass scale M in (A9) is given by

6The quartic root of the differential operator D � �h2 in (A5)
can be defined as D1=4 � lim�#0ð2

ffiffiffi
2

p
=�ÞDR1

� dkðk4 þDÞ�1.
Note that the eigenvalues of D are non-negative, also for a
spacetime metric with Lorentzian signature.
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M� f�3
QCD=E

2
Planck

� 2� 10�34 eV

�
f

0:004

��
�QCD

200 MeV

�
3
; (A10)

which, up to a factor 4�, corresponds to the inverse of

(7.1). At small curvatures, jRj & M2, the square-root term
in (A9) becomes significant and leads to a large-distance
modification of gravity due to the existence of a gluon
condensate. It will be of interest to work out the details of
the corresponding cosmological model.
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