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We show that the thermodynamics of a system of strings at high energy densities under the ideal gas

approximation has a formulation in terms of the Hamilton-Jacobi theory. The two parameters of the

system, which have dimensions of energy density and number density, respectively, define a family of

hypersurfaces of a codimension one, which can be described by the vanishing of a function F that plays

the role of a Hamiltonian.
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I. INTRODUCTION

The similarity between the structure of classical me-
chanics and geometric optics was known to the 19th cen-
tury mathematicians Hamilton and Jacobi. The eikonal
equation in geometric optics and the Hamilton-Jacobi
equation in classical mechanics serve the same purpose:
they are both approximations to wave theories in the limit
of short wavelength. Classical thermodynamics too has a
geometrical meaning. It was first realized by Gibbs [1]
when he combined the first and second laws of thermody-
namics and later it was developed using the theory of
differential forms by Pfaff, Carathéodory, and others.
(See Ref. [2] for a very detailed description of the geomet-
rical formulation.)

The physical variables in classical thermodynamics, like
in classical mechanics, occur in conjugate pairs. But the
phase space of classical thermodynamics, unlike the phase
space of classical mechanics, is odd dimensional. It is a
contact manifold. Classical thermodynamics can be for-
mulated in terms of contact geometry [3,4]. A substance
which has n degrees of freedom lives in a 2nþ 1 dimen-
sional thermodynamic phase space. The oneform with
‘‘coordinates’’ qi and ‘‘conjugate momenta’’ pi,

� � dq0 � pidq
i; (1)

defines a contact structure on the thermodynamic phase
space.

There are many coordinate systems in which the contact
form given in Eq. (1) preserves the same structure.
Transformations from one coordinate system to another
that preserve the above contact form are called Legendre
transformations. Infinitesimal Legendre transformations
are determined by a single function F called the generating
function or Hamiltonian. The function F plays a crucial
role in the context of the dynamics of thermodynamics.
From the generating function we can have a set of ordinary

differential equations that are analogues of Hamilton’s
equations in classical mechanics

dqi

dt
¼ @F

@pi

;
dpi

dt
¼ � @F

@qi
� pi

dF

dq0
;

dq0

dt
¼ pi

@F

@pi

� F:

(2)

The solutions of these equations are called the character-
istic curves of the generating function F. These curves
define a dynamical system on every hypersurface

Fðq0; q1; � � � ; qn; p1; � � � ; pnÞ ¼ 0; (3)

on a contact manifold.
The hypersurface given in Eq. (3) defines the dynamics

on the thermodynamic phase space. It is the Hamilton-
Jacobi equation for the thermodynamic system.
As in the case of a system of point particles, a system of

strings can also be described on a thermodynamic phase
space. In this paper we discuss the Hamilton-Jacobi for-
malism of classical thermodynamics for an ideal gas of
strings at high energy densities. In [4], Hamilton-Jacobi
equations are derived for the cases of a system of
van der Waals gases, Curie-Weiss magnets, and a
Schwarzschild–anti-de Sitter family of black holes.
Recently, there has been much progress in the area of string
gas cosmology [5–9], a scenario of the very early universe
based on the new degrees of freedom and new symmetries
inspired by string theory (see [10] for a brief review and
[11] for an extensive critical review), and its most recent
incarnation as a Hagedorn bounce [12,13]. Hamilton-
Jacobi formalism of classical thermodynamics leads to a
route to quantum thermodynamics [3,14]. Although quan-
tum thermodynamics is not the main focus of this paper, it
would be interesting to study the effects of quantum ther-
modynamic fluctuations in the hot string gas phase of the
very early universe.
A string gas displays many interesting features com-

pared to a system of point particles. They are due to the
fact that the number of string degrees of freedom grows
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exponentially with energy [15,16], and there is an organ-
ized geometric interaction among strings [17]. At high
energies, in the case of strings, the Boltzmann factor
e��H exactly compensates the leading linear behavior of
entropy, while in the case of point particles, the Boltzmann
factor dominates over entropy.

For the Hamilton-Jacobi formulation, we consider two
cases of an ideal string gas based on the topology of the
universe in which the string gas lives. In the first case, the
string gas lives in a space where at least three spatial
dimensions are noncompact and the remaining dimensions

are very small (of the order of
ffiffiffiffiffi
�0p
, where �0 is the slope

parameter) with toroidal geometry. In the second case, the
string gas lives in a compactified universe, where at least
three of the compactified dimensions are large and expand-
ing. We discuss the Hamilton-Jacobi equation for the two
cases. The second case is more interesting in the context of
the cosmology of the very early universe, where the size of
the universe was very small and energy density was very
high.

II. A PRIMER OF PAST WORK

In this section, we summarize the pertinent aspects of
the previous work on Hamilton-Jacobi formalism for ther-
modynamics [3,4].

The mathematical structure that captures the essence of
thermodynamics must necessarily be odd dimensional. On
a manifold with dimension 2nþ 1, a contact structure in a
coordinate patch (q0; q1; � � � ; qn; p1; � � � ; pn) is given by
the oneform

� � dq0 �Xn
i¼1

pidq
i: (4)

The vanishing of the infinitesimal variations in this one-
form defines a contact structure. This means that even if we
multiply � by a nonzero function f, the contact structure is
preserved. A contact manifold is a union of coordinate
patches. Though all the coordinate patches give equivalent
descriptions of the same system, one coordinate patch
might give a more simple description than the others.
The transformations among coordinate patches can also
be defined. They are called Legendre transformations [4].

An infinitesimal Legendre transformation with a small
parameter "

q0 ! q0 þ "V0; qi ! qi þ "Vi; pi ! pi þ "Vi

(5)

defines a vector field

V ¼ V0

@

@q0
þ Vi @

@qi
þ Vi

@

@pi

(6)

whose components can be expressed in terms of a single
function

F ¼ pjV
j � V0: (7)

The components of the vector field V are

Vi ¼ @F

@pj

; Vi ¼ �
�
@F

@qi
þ pi

@F

@q0

�
;

V0 ¼ pi

@F

@pi

� F:

(8)

The function F that determines infinitesimal Legendre
transformations is called its generating function. It can be
shown that the infinitesimal transformation of the contact
form given in Eq. (4) is unchanged under this vector field
[4].
A thermodynamic substance which has n degrees of

freedom lives in a 2nþ 1 dimensional thermodynamic
phase space. The first law of thermodynamics describes a
contact structure on the thermodynamic phase space

� � dq0 �Xn
i¼1

pidq
i ¼ 0; (9)

where the coordinates qi and conjugate momenta pi can be
thought of as extensive and intensive variables, respec-
tively. (This is not always the case, a Legendre transfor-
mation can mix this up [4].)
When we impose the condition that any infinitesimal

change in the state of the substance must satisfy the first
law, we get equations of state of the substance. Equations
of state describe an n-dimensional submanifold called the
Lagrangian submanifold and there are nþ 1 of them in a
2nþ 1 dimensional phase space.
Once we have the equation of state called the ‘‘funda-

mental relation’’

q0 ¼ �ðq1; � � � ; qnÞ; (10)

the remaining n equations of state can be obtained from
this by differentiation. For example, in the case of an ideal
gas of point particles in three space dimensions, in the
picture where entropy S is the thermodynamical potential,
we have the fundamental relation S as a function of internal
energy E and volume V,

S ¼ ln½E3=2V� (11)

up to a constant. The other two equations of state follow
from this by differentiation

1

T
¼

�
@S

@E

�
V
; (12)

P

T
¼

�
@S

@V

�
E
: (13)

Equations (11)–(13) describe the three Lagrangian subma-
nifolds for the ideal gas of point particles.
We can think of a family of substances, where each

member of the family is specified by the set of parameters,
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say, (a1; � � � ; an). The simplest example is the family of the
van der Waals gases where each member of the family is
characterized by the parameters a1 (measure of the long
range attraction between the gas particles) and a2 (measure
of the short range repulsion between the gas particles).

For the case of a family of substances, the fundamental
relation takes the form

q0 ¼ �ðq1; � � � ; qnja1; � � � ; anÞ: (14)

The remaining equations of state follow from the deriva-
tives of the fundamental relation. They are

pi ¼ �iðq1; � � � ; qnja1; � � � ; anÞ; �i ¼ @�

@qi
: (15)

The function � defining such a family must satisfy a
nondegeneracy condition

det
@2�

@q@a
� 0: (16)

Given that the nondegeneracy condition is satisfied, from
the nþ 1 equations of state we can get a single function
Fðq0; q1; � � � ; qn; p1; � � � ; pnÞ relating all the thermody-
namic variables. This is the same function F given in
Eq. (7), in the context of infinitesimal Legendre
transformations.

Once we eliminate the parameters (a1; � � � ; an) from
nþ 1 equations of state, we have a single relation

Fðq0; q1; � � � ; qn; p1; � � � ; pnÞ ¼ 0: (17)

The function Fðq; pÞ defines a dynamics on the hypersur-
face of thermodynamic phase space. We encounter a simi-
lar function in classical mechanics and there we call it the
Hamiltonian or generating function of the mechanical
system. Here also we call this function the Hamiltonian
of a family of substances.

Thus the thermodynamics of a family of substances with
n degrees of freedom is described by a contact manifold of
2nþ 1 dimensions with a contact structure � and a family
of hypersurfaces Fðq; pÞ ¼ 0 of codimension one on the
manifold.

Once the Hamiltonian F of a family of substances is
given, the equations of state of each member of the family
can be obtained by solving the Hamilton-Jacobi equation

F

�
q0; q1; � � � ; qn; @�

@q1
; � � � ; @�

@qn

�
¼ 0: (18)

The choices of the parameters (a1; a2; � � � ; an) will give
different equations of state describing each member of the
family.

The ordinary differential equations associated with the
generating function F

dqi

dt
¼ @F

@pi

;
dpi

dt
¼ � @F

@qi
� pi

dF

dq0
;

dq0

dt
¼ pi

@F

@pi

� F

(19)

give solutions that are called the characteristic curves of F.
These equations are the analogues of Hamilton’s equations
in classical mechanics.
The parameters (a1; a2; � � � ; an) characterizing a par-

ticular member of the family are given by the initial con-
ditions of this dynamics. The complete integral of the
Hamilton-Jacobi equation can be obtained once we elimi-
nate the ‘‘time’’ variable t from the above equations. This
in turn gives the equations of state that are characterized by
the choice of parameters (a1; a2; � � � ; an). It should be
noted that the time variable of this dynamics is related to
entropy [4].

III. HAMILTON-JACOBI FORMALISM FOR
STRING GAS THERMODYNAMICS

We closely follow the approach of Deo, Jain, and Tan
[17–20] for the thermodynamics of string gas. The string
gas was treated under the ideal gas approximation. That is,
the interaction between strings is so weak that the spectrum
of the theory is the same as that of the free string. The
following discussion can be applied to the case of closed
bosonic, heterotic, and type-II superstrings. (For closed
bosonic strings we have to worry about the presence of a
tachyon and the infinite cosmological constant. The results
are valid for the bosonic case also if the divergences
originating from these are ignored.)
At temperatures close to the Hagedorn temperature the

canonical partition function is ill defined and thus it is not
useful to deduce the thermodynamic properties of the
string gas. Thus one should start from the more fundamen-
tal microcanonical ensemble description of statistical me-
chanics [21–24]. The system is in equilibrium and it has a
fixed total energy E. Since there are no conserved quanti-
ties other than the energy, an isolated system in equilib-
rium, with total energy E samples all its eigenstates at that
energy with equal probability. Assuming that this funda-
mental postulate of statistical mechanics is valid, the mi-
crocanonical distribution function or the total density of
states�ðE; VÞ gives the consistent definition of the entropy
of the system

SðE;VÞ � ln�ðE; VÞ: (20)

The first law of thermodynamics says that infinitesimal
changes in the thermodynamical quantities, volume V,
pressure P, temperature T, entropy S, and total energy E,
must satisfy the contact form

� � dE� TdSþ PdV ¼ 0: (21)

It also implies that only two out of the five variables are
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independent. The remaining variables are given by the
equations of state.

When the fundamental relation is known, that is the
thermodynamical potential S is given as a function of the
coordinates E and V, the remaining two equations of state
are

1

T
�

�
@S

@E

�
V
;

P

T
�

�
@S

@V

�
E
: (22)

A. Ideal gas of strings in a noncompact universe

We assume that at least three Euclidean dimensions are
noncompact. The remaining dimensions are very small and
compactified on circles of radii Ri; i ¼ 1; 2; � � � ; D� d,
where D is the total number of spatial dimensions (D ¼
9 for heterotic and type-II, D ¼ 25 for bosonic.) and d is
the number of noncompact Euclidean dimensions. Also we
assume that the strings can wind around the compact
dimensions but not the noncompact ones. We consider
the case in which the total energy E is the only conserved
quantity in the system. (We do not consider the case where
we also have other conserved charges like momenta in the
noncompact spatial directions and discrete momenta and
windings in the compact directions.)

Assuming that � � �0, where � is the energy of a single
string state and �0 is the cutoff energy, from [17,18] we
have the microcanonical distribution for the case when d �
0

�ðE; VÞ ¼ CV
�E�

e�HEþ�0V

�
1þO

�
1
�E

�
þO

�
V
�E�

��
; (23)

where �E � E� �0V; the parameters �0 and �0 have di-
mensions of energy density and number density, respec-
tively; � is the smaller of d2 or 2;�H is the inverse Hagedorn

temperature [15,16] given by

�H ¼ ð2�2�0Þ1=2ð ffiffiffiffiffiffi
!l

p þ ffiffiffiffiffiffi
!r

p Þ; (24)

where ð!l;!rÞ is (2, 2), (2, 1) and (1, 1), respectively, for
the closed bosonic string, heterotic string, and type-II

superstring, � ¼ d
2 þ 1; and C ¼ ð2�2�0�HÞ�ðd=2Þ �

ð!l!rÞd=4.
It should be noted that �H is a universal constant inde-

pendent of open and closed sectors, the size of the system,
and other details of compactification [25,26], but depends
only on the type of string theory. The parameters �0 and �0

are dependent on the sector, the cutoff energy �0, and the
details of compactification within a given type of string
theory, both dimensionally and numerically [17,27]. In the
thermodynamic limit (E and V are large such that � ¼
E=V is finite), for the case d � 3, the correction term in
Eq. (23) is very small [17,18]. We discuss only the case for
which d � 3.

The entropy of the string gas system is given in terms of
the other two extensive variables E and V

SðE; VÞ ¼ �HEþ �0V � � ln
�E

V
(25)

up to a constant.
From this fundamental relation, the other two equations

of state follow immediately

1

T
¼ �H � �

1

ð�� �0ÞV ; (26)

P

T
¼ �0 þ �

�0

ð�� �0ÞV þ 1

V
: (27)

From Eq. (26), it is clear that the temperature T is always
just slightly above the Hagedorn temperature TH. How-
ever it approaches TH in the thermodynamic limit.
Equation (27) can be written in the form PV ¼ �NT, where

�N ¼ �0V þ �
�0

�� �0

þ 1: (28)

Equation (28) shows that at high energy densities (� �
�0) the string gas acquires an essentially constant number
density �0.
We see that the thermodynamic potential S satisfies the

nondegeneracy condition,

��������
@2S

@E@�0

@2S
@E@�0

@2S
@V@�0

@2S
@V@�0

��������¼ � �V

ðE� �0VÞ2
� 0: (29)

This nondegeneracy condition indicates the existence of a
family of thermodynamic hypersurfaces of codimension
one. The choices of two parameters �0 and �0 pick out
each member of the family.

FIG. 1 (color online). Thermodynamic hypersurface of a het-
erotic string gas at fixed S in a universe with three noncompact
spatial dimensions. The variables E, R, and T are expressed in

string units 2�2
ffiffiffiffiffi
�0p
. This hypersurface exists only for tempera-

ture, T > TH ¼ ð1þ ffiffiffi
2

p Þ�1.
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From the three equations of state, Eqs. (25)–(27), the
two parameters �0 and �0 can be eliminated to obtain an
equation relating the thermodynamic variables:

PV

T
þ E

T
� � ln

�
�

V

�
1

TH

� 1

T

��1
�
� Sþ �� 1 ¼ 0:

(30)

This is the hypersurface FðS; E; V; @S@E ; @S@VÞ ¼ 0 in the ther-

modynamic phase space describing the whole family of
string gases characterized by the different choices of the
parameters (�0, �0) for very high energy densities (� �
�0). It should be noted that TH in Eq. (30) is a universal
constant for a given type of string theory and thus it is the
same for all the members of the family given by that
hypersurface. The thermodynamic hypersurface corre-
sponding to a heterotic string gas at fixed Sis shown in
Fig. 1 for the case of a universe with three noncompact
spatial dimensions.

From the above expression for thermodynamic hyper-
surface one can obtain the characteristic curves defining
the dynamics of the system. It is also interesting to study
the form of the variable (or variables) that play the role of
time in the dynamics of this thermodynamic system.

The ideal gas of strings satisfies the nondegeneracy
condition and exhibits a hypersurface connecting all the
thermodynamic variables. But for the case of ideal gas of
relativistic point particles such a hypersurface, and thus a
family of hypersurfaces does not exist. [It is easy to check
that from the microcanonical distribution function for an
ideal gas of relativistic point particles in a large volume V

in d spatial dimensions: �ðE; VÞ ¼ bV�1=2��	ecV�
�
,

where � � E=V is the energy density, � ¼ d=ðdþ 1Þ,
	 ¼ ðdþ 2Þ=ð2dþ 2Þ, and b, c are dimensionless parame-
ters.] The strange behavior of the ideal string gas can be
traced back to the most fundamental property of string
theory, namely, its relation to two-dimensional conformal
field theory [17,18].

The Hamilton-Jacobi equation of the thermodynamics
of string gas can be obtained from Eq. (30). For the case in
which S is the thermodynamic potential and E, V are
coordinates, we have the conjugate momenta,

pE �
�
@S

@E

�
V
¼ 1

T
; pV �

�
@S

@V

�
E
¼ P

T
: (31)

The Hamilton-Jacobi equation is given by the vanishing of
the function FðS; E; V; pE; pVÞ:

VpV þ EpE � � ln

�
�

V
ð�H � pEÞ�1

�
� Sþ �� 1 ¼ 0:

(32)

The complete integral [28] of this equation will have two
parameters, �0 and �0.

At this point we should address the question of how
realistic this noncompact string gas system is. We have
assumed from the outset that winding modes are absent in

noncompact directions. In fact the winding modes can get
excited at high energies giving rise to large-radius correc-
tions that in turn can modify �ðE; VÞ [19]. The tempera-
ture of the system shows an unphysical behavior too. It
approaches the Hagedorn temperature from above as the
energy density � ! 1. The Hamilton-Jacobi equation
given in Eq. (32) becomes ill defined once the temperature
of the system falls below the Hagedorn temperature. In that
case the thermodynamic hypersurface Fðq; pÞ ¼ 0 and
thus the family of string gas does not exist.

B. String gas in a compact and expanding universe

It is interesting to know whether a thermodynamic hy-
persurface of codimension one exists when the string gas
lives in a compact universe. String gas thermodynamics
during the quasiequilibrium expansion of a string universe
is addressed in [19]. All the D spatial dimensions are
compact with toroidal geometry and d of them expand in
circles of radii Ri, i ¼ 1; � � � ; d. The remaining D� d

spatial dimensions are small and of the order of
ffiffiffiffiffi
�0p
.

From [19] we have the density of states in the thermo-
dynamic limit (space is compact but large and energy
density is finite)

�ðE;VÞ ’ �He
�HEþa0V

�
1� ð�HEÞ�

�!
e�BðE�
0VÞ

�
; (33)

where a0 ¼ �0 þ a�0�d=2; 
0 ¼ �0 þ 25=2b��1
H �0�d=2, a

and b are positive numbers depending only on d; V ¼
ð2�RÞd; � ¼ ð2d� 1Þ; and B � �H � �1. For the case
of heterotic superstring with all Ri equal, the singularities
associated with the partition function in the complex �
plane is given by [19,20]

�n ¼ ð2�2�0Þ1=2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2�2�0n2

V2=d

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2�2�0n2

V2=d

s �
;

(34)

where n is an integer. Also note that �1 is real and �1 <
�0 � �H. Thus we have

B ¼ ð2�2�0Þ1=2
�
1þ ffiffiffi

2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2�0

V2=d

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2�2�0

V2=d

s �
:

(35)

In Eq. (33) we have assumed that the energy density
E=V > 
0 and d � 3 such that

��ð1Þ � ð�HEÞ�
�!

e�BðE�
0VÞ � 1: (36)

From Eq. (33) we find that the entropy is given by

SðE; VÞ ’ �HEþ a0V � ��ð1Þ (37)

up to a constant.
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The other two equations of state are�
@S

@E

�
V
’ �H � ½ð2d� 1ÞE�1 � B���ð1Þ; (38)

�
@S

@V

�
E
’ a0 þ ½B0ðE� 
0VÞ � 
0B���ð1Þ; (39)

where B0 ¼ @B=@V.
Entropy given in Eq. (37) obeys the nondegeneracy

condition

��������
@2S

@E@
0

@2S
@E@a0

@2S
@V@
0

@2S
@V@a0

��������¼ BVð�E�1 � BÞ��ð1Þ � 0; (40)

for all finite V and �=E � B. In that case a family of
hypersurfaces exists in the thermodynamic phase space.

The two parameters a0 and 
0 can be eliminated from
the three equations of state to get a hypersurface connect-
ing all the thermodynamic variables�
1

TH

� 1

T

��
EV

��EB

��
1

V
þEB0 �

�
B0

B
þ 1

V

��
ln

��
1

TH

� 1

T

�

� �!

ð��EBÞð�HÞ�E��1

�
þEB

��
�PV

T
��HEþS¼ 0:

(41)

It should be noted that the compact string universe exhibits
a realistic behavior in temperature as long as the energy
density is sufficiently high. In other words, if energy E is
held fixed, the radii should be allowed to vary only within

the range ðc ffiffiffiffiffi
�0p
EÞ�1 < ðR= ffiffiffiffiffi

�0p Þd < c
ffiffiffiffiffi
�0p
E, where c is a

dimensionless number of order unity [19]. The total energy
becomes insufficient to support momentum (winding)
modes once the radii are too small (large).

For the thermodynamic hypersurface given in Eq. (41) to
be well defined we should have T < TH and E> �=B. For
the coordinates S, E, V and the conjugate momenta pE, pV

the thermodynamic hypersurface takes the form

½�H�pE�
�

EV

��EB

��
1

V
þEB0 �

�
B0

B
þ 1

V

��
ln

�
½�H�pE�

� �!

ð��EBÞð�HÞ�E��1

�
þEB

��
�VpV��HEþS¼0:

(42)

This is the Hamilton-Jacobi equation describing the
family of string gases where each member is identified
by the choice of parameters a0 and 
0. Again, �H is a
universal constant for each family. The thermodynamic
hypersurface corresponding to a heterotic string gas at
fixed S is shown in Fig. 2 for the case of a compact universe
with three large space dimensions.

The dynamics of thermodynamics is again on the hyper-
surface Fðq; pÞ ¼ 0. The characteristic curves can be ob-
tained from Eq. (19). The parameters, a0 and 
0,

characterizing each family member are given by the initial
conditions of this dynamics. The time variable of this
dynamics should be related to the entropy of the system
[4].
The above hypersurface is given for the case of large E

and large radius R � ffiffiffiffiffi
�0p
. It is interesting to know what

happens in the dual theory, that is, when R � ffiffiffiffiffi
�0p
. The

spectrum of the theory exhibits duality and thus the density
of states also should exhibit the same [19]. That is,

�ðE; VÞ ¼ �ðE; ~VÞ; (43)

where ~V ¼ ð2� ~RÞd, ~R being the dual radius. The right-
hand side of Eq. (33) is given by the same expression but
now V is replaced by ~V. The fundamental equation in-
volves SðE; ~VÞ. The other two equations of state follow
from ð@S=@EÞ ~V and ð@S=@ ~VÞE with B0 ¼ @B=@ ~V. It is easy
to see that a thermodynamic hypersurface similar to
Eq. (41) exists in the dual case also.
The shortest route from classical mechanics to quantum

mechanics is given by the Hamilton-Jacobi formulation.
Similarly, in classical thermodynamics also a Hamilton-
Jacobi formulation hints towards the possibility of quan-
tum thermodynamics [3]. Upon quantization, the generat-

ing function F becomes an operator F̂. It is interesting to
study the quantum version of the string gas thermodynam-
ics and the nature of quantum thermodynamic fluctuations
in the string gas system. If we assume that the very early
universe was filled with a hot gas of strings [5], the imprints
of quantum thermodynamic fluctuations in this gas might
be encoded in the cosmic microwave background radiation
and in the distribution of large scale structure in the
Universe. It would be interesting to investigate the quan-

FIG. 2 (color online). Thermodynamic hypersurface of a het-
erotic string gas at fixed S in a compact universe with three large
space dimensions. The variables E, V, and T are expressed in

string units 2�2
ffiffiffiffiffi
�0p
. This hypersurface exists when temperature,

T < TH ¼ ð1þ ffiffiffi
2

p Þ�1 and radius R is within the allowed energy
range.
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tum nature of the string thermodynamic system in this
scenario and thus the possibility of observing its effects.

IV. CONCLUSIONS

In this paper we have derived the Hamilton-Jacobi equa-
tions for the thermodynamics of an ideal gas of strings at
high energy densities when the topology of space is both
noncompact and compact. It is shown that for these two
cases there exist a family of hypersurfaces for the string gas
system, characterized by the vanishing of a function F.
Each member of the family is represented by the chosen
values of the two parameters of the system, which have
dimensions of number density and energy density. It is also
shown that for the noncompact case the family of hyper-
surfaces exists only for temperatures above Hagedorn tem-
perature revealing the unphysical nature of the system.
When the universe is compact, the family of hypersurfaces
is well defined when the temperature is below the
Hagedorn temperature and the size of the universe is within
a given bound determined by the energy content of the
universe. It is clearly of interest to study the case of string
thermodynamics when other conserved charges are also

present. We have not discussed the dynamics of string gas
thermodynamics on the hypersurface Fðq; pÞ ¼ 0. It
would be interesting to proceed in this direction as well.
Hamilton-Jacobi formulation of classical thermodynam-

ics leads to the route to quantum thermodynamics. It is also
interesting to investigate the effects of quantum thermody-
namic fluctuations of a system of hot string gas in the
context of the cosmology of the very early universe and
the possibility of observing its imprints on cosmic micro-
wave background radiation and the distribution of large
scale structure in the universe.
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