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Generation of circular polarization of the cosmic microwave background
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The standard cosmological model, which includes only Compton scattering photon interactions at
energy scales near recombination, results in zero primordial circular polarization of the cosmic microwave
background. In this paper we consider a particular renormalizable and gauge-invariant standard model
extension coupling photons to an external vector field via a Chern-Simons term, which arises as a radiative
correction if gravitational torsion couples to fermions. We compute the transport equations for polarized
photons from a Boltzmann-like equation, showing that such a coupling will source circular polarization of
the microwave background. For the particular coupling considered here, the circular polarization effect is
always negligible compared to the rotation of the linear polarization orientation, also derived using the
same formalism. We note the possibility that limits on microwave background circular polarization may
probe other photon interactions and related fundamental effects such as violations of Lorentz invariance.
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I. INTRODUCTION

One of the great successes of the standard cosmology is
the prediction and measurement of the temperature anisot-
ropies in the cosmic microwave background radiation.
Most of these photons have freely propagated since the
epoch of last scattering roughly 14 X 10° years ago and
encode the initial conditions for structure formation.
Measurements are now consistent to high precision with
the simplest cosmological models with an initial power-
law spectrum of adiabatic perturbations. Linear polariza-
tion of the microwave background fluctuations is also a
generic result of these models; recent detections of the
linear polarization power spectrum and of the cross-
correlation between linear polarization and temperature
are also consistent with the same cosmological models.

In general, radiation can have linear polarization, with 2
degrees of freedom (a polarization amplitude and orienta-
tion) as well as circular polarization, with a single degree
of freedom. It is well-known that if an initially unpolarized
photon field evolves solely via Compton scattering from
free electrons plus free streaming, the resulting radiation
field can have linear but not circular polarization. In the
tight-coupling regime prior to last scattering when
Compton scattering is rapid compared to the cosmological
expansion time scale, the cosmic radiation field will be
unpolarized. As the universe cools and the free electrons
become bound into neutral hydrogen, a small linear polar-
ization is generated from the balance of free-streaming and
Compton scattering during this recombination process, but
the resulting microwave background radiation today has
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circular polarization which is identically zero. In this pa-
per, we consider a generic class of interactions between
photons and an external field which can produce circular
polarization. The interactions have been considered in
other contexts and are general enough to be expected in
broad classes of theories beyond the standard model of
particle physics. The same interaction can also arise if
nonzero spacetime torsion impacts the microwave back-
ground radiation. The goal of this paper is two-fold. First,
we provide an explicit calculation showing how circular
polarization can be generically sourced in the microwave
background, with the relevant evolution equations. Second,
we demonstrate what the underlying microphysics might
look like.

Consider the following extension of the photon sector of
quantum electrodynamics:

L= Lyaxwer + Ly

1
_ZFWFW + ge’“’“ﬁAMT,,FaB, (1)

where L is CPT odd and violates Lorentz invariance and
g is the coupling constant of the interaction. Several au-
thors have investigated such a Lorentz-invariance violating
extension of QED for a constant 4-vector T# (see e.g. [1-3]
and references therein). These so-called Standard Model
Extensions have been shown to be renormalizable while
maintaining gauge invariance [4]. We consider here only
the flat-spacetime interaction term L for simplicity; this
will be a good approximation in any cosmological context
(see Refs. [5,6] and for the curved spacetime generaliza-
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tion, which includes an extra factor of the square root of the
metric determinant). If 7, is fixed as a constant, the
Lagrangian density in Eq. (1) is U(1) gauge invariant apart
from a boundary term; therefore in these cases the action is
gauge invariant.

It is well-known that such an extension should result in
optical activity in the propagation of electromagnetic ra-
diation [7-10]; specifically, a modification to the disper-
sion relations of free electromagnetic radiation results in a
rotation of the plane of linear polarization during propa-
gation. We make no explicit assumption about whether T,
is spacelike or timelike, although the timelike case appears
pathological since it leads to a violation of causality and
unitarity [11]. The magnitude of optical activity of elec-
tromagnetic radiation has been constrained by analysis of
observational data from cosmological sources and from the
microwave background radiation [7,12-20]. Such a term
may arise as a radiative correction following the coupling
of gravitational torsion with fermionic matter [21,22]. The
same term has also been associated with the cancellation of
gauge anomalies in QED when the background field 7', is
allowed to couple to the axial current (see e.g. [23]).

In this paper, we show that in addition to the well-known
polarization rotation, such a term may also generate circu-
lar polarization, although for the specific case of Eq. (1) the
circular polarization is always negligible compared to the
polarization rotation. The generation of circular polariza-
tion following the optical activity produced by 7', parallels
the Faraday conversion and Faraday rotation effects for
propagation in magnetized plasmas; for a discussion in the
context of the microwave background, see [24]. The ob-
servation of circularly polarized microwave background
radiation could be evidence of Lorentz-invariance viola-
tion and thus physics beyond the standard model; con-
versely, limits on circular polarization may constrain a
certain class of standard model extensions. For a related
analysis using an axionlike pseudoscalar coupling to the
electromagnetic field, see Ref. [25], who also find a non-
zero circular polarization and rotation of linear
polarization.

In Sec. II, we review the usual description of polarized
electromagnetic radiation in terms of Stokes parameters;
linear polarization is described by the Q and U parameters,
while circular polarization is described by a nonzero V
parameter. Section III reviews the construction of the
Boltzmann-type equation for the photon number density,
starting from the quantum-mechanical evolution of the
photon density matrix. In Secs. IV and V, we calculate
the evolution of the Stokes parameters to first and second
order, respectively, in the interaction term L, deriving the
evolution equation for the V polarization, which is gener-
ated from linear polarization due to the interaction term.
We conclude in Sec. IV with estimates of the size of the V
polarization in the microwave background for given inter-
actions along with the magnitude of linear polarization
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rotation. The mathematical details of evaluating the first
and second-order interaction terms are relegated to
Appendices A and B, while Appendix C addresses the
issue of gauge invariance.

II. STOKES PARAMETERS

The polarization state of light is most easily described by
making use of the Stokes parameters. For a complete
review see, e.g., Refs. [26-28] or any optics text. Here
we review the basic construction of the Stokes parameters
in the classical and quantum mechanical contexts in order
to motivate the quantum field theoretical construction.
Consider a classical electromagnetic plane wave with elec-
tric field given by the components

El(t) = a Sin((l)t - 61) and Ez(t) =dap Sin((l)t - 62),
2

where we assume, for simplicity, that the wave is nearly
monochromatic with frequency w, such that a,, a,, €, and
€, only vary on time scales long compared to w~'. The
Stokes parameters in the linear polarization basis are then
defined as

I={(ay)* + (a)?), 3)
0 =((ay)* — (@), “4)
U = (2a,a, cosd), (5)
V = (2a,a, sind), (6)

where 6 = €, — €, and the brackets signify a time average
over a time long compared to @~ '. The I parameter
measures the intensity of the radiation, while the parame-
ters Q, U, and V each carry information about the polar-
ization of the radiation. Unpolarized radiation is described
by Q = U = V = 0. The linear polarization of the radia-
tion is encoded in Q and U, while the parameter V is a
measure of elliptical polarization with the special case of
circular polarization ocurring when a; = a, and 6 =
+47/2. From here on we will simply refer to V as the
measure of circular polarization, which is technically cor-
rect if O = 0. Note that while / and V are coordinate
independent, Q and U depend on the orientation of the
coordinate system used on the plane orthogonal to the
direction of propagation. Under a rotation of the coordinate
system by an angle ¢, the parameters Q and U transform
according to

Q' = Qcos(2¢) + Usin(2¢),

U' = —Qsin(2¢) + Ucos(2¢),
while the angle defined by

= % arctan(%)
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goes to @ — ¢ following a rotation by the angle ¢.
Therefore, Q and U only define an orientation and not a
particular direction in the plane: after a rotation by 7 they
are left unchanged. Physically, this is simply a manifesta-
tion of the oscillatory behavior of the electric field. These
properties indicate that Q and U are part of a second-rank
symmetric trace-free tensor P, i.e. a spin-2 field in the
plane orthogonal to the direction of propagation. Such a
tensor can be represented as

P;; = (g _OP), N

in an orthonormal eigenbasis, where P = (Q* + U?)'/% is
often called the magnitude of linear polarization.

In quantum mechanics we can express the state of a
photon A as

|A) = aile), (8)

where |€;) (i = 1, 2) span the polarization state space and
a; are in general complex. The projection operators

I=leXell + lex)el, ©
0 = leXel — lex)el, (10)
U = leXel + lex)el, (11)
V =ile)el — ileXel (12)

have expectation values in single photon states which give
the classical Stokes parameters, Eqgs. (3)-(6). In a general
mixed state, the density matrix p on the polarization state
space encodes the intensity and polarization of the photon
ensemble. For example,

@=L (2 )5 )]
_pipx

— ulp)

Similar relations hold for the other ‘““Stokes operators”
such that the density matrix can be represented as

_t(p)(1+Q U-—iV
p_—(UJriV l—Q)’

2 (13)
where QO = (Q), U = (0), and V = (V).

III. THE PHOTON BOLTZMANN EQUATION

We now review the construction of the evolution equa-
tion for the photon number operator under the influence of
some perturbation to a free theory. The following formal-
ism was developed to study neutrino mixing and damping
[29,30]. It has also been applied to describe the generation
of linear polarization in the microwave background due to
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Compton scattering during recombination [31], generaliz-
ing an earlier kinetic equation treatment of microwave
background temperature fluctuations [32].

Consider an ensemble of free photons. We will assume
that the interaction L is slowly “turned on” and that the
interactions of the photons with the external field 7', are
localized such that the photons can be considered free
(with respect to the interaction L) both before and after
each point interaction. That is, we make the usual assump-
tions of scattering theory. We will not consider any pos-
sible interference effects which might occur between L
and any other interaction.

The free photon field in the Coulomb (radiation) gauge
can be expressed as

N &k —ike
A0 = [ Gl be, we
+ al (e, (ke ] (14)

where €,, (k) are the photon polarization 4-vectors and s,
which takes the values 1 and 2, indexes the orthogonal
transverse polarizations. The free creation and annihilation
operators satisfy the canonical commutation relation

[a,(k), al (k)] = 2m)*2k°68,;6(k — k'), (15)

where £ = |K]|.

We will be interested in the evolution of the polarization
state of a photon ensemble, which is completely charac-
terized by the density matrix p;; defined via

(af (a;(k) = 2m)*2k060 (k — K)p;(k).  (16)

The number operator i),- (k) = &j(k)& ;(k), according to
(16), is related to p;;(k) as

(D;(k)) = 2m)32k°8P(0)p,(K). (17)

The infinite factor 83 (0) is a remnant of the infinite
quantization volume. As we show explicitly below, it can-
cels from all final expressions. Motivated by the construc-
tion in the quantum-mechanical system above, we can
project out quantities analogous to the classical Stokes
parameters:

tr (cop(k)) — I o (Ho(K)), (18)
tr(o.p(k) = 0 = (D} (k) —(Dyp(k)), (19
tr (o p(k)) = U = (D(k)) + (Dy(K)),  (20)

tr(oyp(K) = iV < (D (k) — (Dy(K)), (1)

where o is the 2 X 2 identity matrix, o; are the Pauli
matrices and the trace is over polarization indices. FH (k)
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is the free energy density operator of the mode with wave
number k.

We ignore any correlations such as (4;(k)a;(k’)) and
<€zj(k)€z;-r(k’ )) which might be generated via the interaction
L. In essence we are assuming that the background field
T, varies slowly enough in time so that physical two-
photon states are neither created nor destroyed by the
interaction L. If we define wy as a characteristic energy
scale of the background field T, and w as the frequency of
a particular mode associated with free oscillations of the
creation and annihilation operators, then we are requiring
that w; < dw/w < w [33]. Note that Sw/w is the order
at which mixing occurs between @; and &;r, and such a
mixing will result in a variation &(a;(k)a;(k’)) =
(bw/ a))(fzj(k)&j(k’)), which again we neglect. Naively,
we then expect the following formalism to fail for low-
frequency photon modes, although at precisely what scale
the approximation breaks down depends on the character-
istic scale of the background field 7',,.

The evolution of the number operator D, (k) can be
computed using a perturbative expansion in the interaction
strength. The following reviews the construction detailed
in [30]. Recall that the time evolution of any Heisenberg
picture operator is given by

da s

If the full Hamiltonian can be split into a free and interact-
ing part, H = Hj. + Hiy then (22) becomes.

d 4 JPRS - S
—D;; = i[Hpree» Dij] + i[Hin Dl (23)
dt
A first-order perturbative approximation for the evolution
of the number operator is given by replacing all operators
on the right hand side of Eq. (23) by their free-theory
counterparts, e.g.

d ~ . A ~
(E Dij> ~ (A}, DD, (24)
where ©° corresponds to the operator O evaluated in terms
of the operators of the free theory. The above assumes that

[AY... D°] = 0. We will refer to the term on the right hand
side of (24) as the refractive term, or the forward scattering
term. To determine a second-order perturbative approxi-
mation, we will use the fact that we can expand any

operator to first order in interactions as
A A t A A
o= 80+ i [ arie-0.820) e
0

with the initial conditions £(0) = £°(0). The expansion
Eq. (25) can be verified by explicitly taking the time
derivative of both sides and seeing that one recovers the
Heisenberg equation to first order in interactions. We now

expand [H,,, D] as in (25), insert the result into (23), and
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upon the evaluation of all operators in terms of the free-
theory operators arrive at

d - DN ~
(4D )0 = 8 (0. DD
- f " A0, — o), TR, (0, D). (26)
0

The second term in (26) will be referred to as the damping
term or the nonforward scattering term. In terms of p, the
evolution equation reads

d
(27)*6°(0)24° Epij(o’ qQ)
= (A%, D@~ 5 [ art ),

[A?,(0), DY (@)]]), 27)

where, as mentioned above, all factors of 83(0) will cancel
from the final expressions. In going from (26) to (27), we
have assumed the time step ¢ in Eq. (26) is both small
relative to the characteristic time scale of the evolution of p
and large relative to the duration of a single interaction.
This allows us to take ¢t — oo and set p(f) = p(0) [30].
We have then replaced the integral ( f§°dr) with
(% [% dp), the difference being a principle part integral
which is a second order correction to the refractive term.
Equation (27) can be viewed as a Generalized Boltzmann
Equation for the phase space function p. In this approxi-
mation, we have a set of differential equations for the
components p;; at £ = 0; if the interactions are “forgotten”
between intermediate collisions (an assumption known as
molecular chaos in the derivation of the standard
Boltzmann equation), then the differential equations will
be valid for all times over which the interaction is relevant.
The Liouville terms on the left side will incorporate any
effects which result from a departure of the spacetime
metric from a flat metric, including any weak inhomoge-
neities due to the presence of gravitational perturbations
about a homogeneous cosmology. The case H;,(r) =
fdxz_ﬁyf’“AM ¢ as in full QED, where ¢ is a spinor field
associated with the electron, recovers the radiative transfer
equations of Chandrasekhar [34] in the appropriate limits
(see [31] for more details).

As we will see below, this construction allows lineariz-
ing the right side of Eq. (27) in p. We can expand the
photon density matrix about a uniform unpolarized distri-
bution (ignoring any small inhomogeneities) as

where p(ﬁ) = p(zoz) and p(lg) = p(zol) = 0. As a consistency
check, the right side of Eq. (27) should vanish when
evaluated in terms of p© so that in, for example, an
FRW background of zero spatial curvature with scale

factor a(r) we have [31]
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0
d (o>:aP(n) @, 9Py

T o T d ek

(0)

=0, (29)

the solution of which is p'%(z, k) = p'? (ka), recovering
the uniform redshift due to cosmological expansion.

In order to make contact with the measurable Stokes
parameters, we define the normalized brightness perturba-
tions [31]

0)
_ qapn(fI)] ! ORI
= +
A [4 g P11 P2 ), (30)
A = [q opl] )(q)] (P — p0) 31)
0)
_ 14 3!’11(‘])] (1) (1)
Ay = + 2
o= [§EEE] G o) e

©)
_ Tqipi(q)
Ay = [ PAEE -ot) 6

where ¢ = ka is the comoving photon momentum and we
have expanded the density matrix p in a linear polarization
basis.

IV. THE FIRST-ORDER INTERACTION TERM

We now evaluate the right side of the Generalized
Boltzmann Eq. (27) for an interaction Hamiltonian which
is linear in the Hamiltonian density

H = —ge/"’“B:AMT,,I:"aB:, (34)

where A# for the free theory is given by Eq. (14) and

F wr = za[#Ay] is the free electromagnetic field strength
operator. We will treat 7', as a classical background field,
the dynamics of which are not influenced by the electro-
magnetic interaction Eq. (34) and are assumed to be ex-
ternally prescribed. The symbol :---: denotes normal
ordering of the enclosed operator products.

Following a local U(1) gauge transformation 65A,,

d,A of A, the resulting change in the Hamiltonian density
Eq. (34) is given by
ScHr = —gerB(9,MT,F,p
= gekvab M, T)Fop — ge“”“ﬁaﬂ(/\T,,FaB),

(35)

where the square brackets denote antisymmetrization and
we have used dp, Fop = 0. If 9, T,) = 0 then the inter-
action Hamiltonian is gauge invariant apart from a bound-
ary term. We assume that the external field 7, (x) does
indeed satisfy this condition allowing us to maintain gauge
invariance, which is detailed in the second-order calcula-
tion in Appendix C. Furthermore, we assume that 7', (x) is
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a pseudovector: under a parity transformation the external
field transforms as

n =20
nw=1273

—T,(t, x),

rae =0 =700 (36)

and under time reversal the external field transforms as

+7T,#x), =0
_ — Iz
Tu(=1,x) { —T,(tx), wu=123. 37)
We will find it useful to consider the Fourier transform of
T
M’

Tﬂ(p) = j-d“xTM(x)e_ip'X. (38)

In momentum space the gauge invariance restrictions can
be expressed by the condition

In order to determine whether circular polarization can be
sourced at some order of (35), we will not need to impose
any further restrictions on TM(x) aside from those listed
above. Specifically, our calculations do not assume that
T,(x) is either timelike or spacelike. As indicated by the
investigation in [11], violations of causality and unstable
solutions may arise for the case of timelike 7', (x), and the
results here must be interpreted with care in this case.

In Appendix A below we detail the calculation of the
first-order interaction Hamiltonian which is linear in the
Hamiltonian density Eq. (34), as well as the refractive and
damping terms of Eq. (27) due to first-order processes.
Quoting the results of Appendix A, the interaction
Hamiltonian for first-order processes is given by

T (p)ei(ko+170—|k+l)|)l

~ T ~
1 ) — _n9: v AT A~
A1) = —2ig f dpdi Pl (04, ()
e:, (k) (e P(k| + |k + pl)

The refractive term of Eq. (27) for this first-order interac-
tion Hamiltonian is given by

i[" A3, (0), D, (@)]) = 4g4°27)° 53(0)€, . (@)(8,,p,(q)
6vspur(q))ﬂ'uﬁ(q) Er,B ((I),

(41)
where A#P is defined via
(2m)353(0) A#P(q) = (2m)353(0) Al+Fl(q)
_[_dr 383(_ )T
[t e SR
X et B(2q, + Po), (42)

and we have for convenience defined p = (Ag, p), Ag =
lg + pl —lql.
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As detailed in Appendix A the damping term of Eq. (27)
due to first-order processes is given by

Duv fj; dﬂ([lﬁim(ﬂ)’ [ll:lint(o): j)uv(q)]:b

. dp T (= TAPKT
_(Zlg)zemkesy, IWTA(p)qu Ap Tv(p)

X (26] + i))aG'uVa'Bgnagrﬁ((snrauspmu(q)
+ arn(svvpum(q) - 6u‘v5mvprn(q + p)
= 8umOsuPur(q + D)), (43)

where we have defined €,, = €,,(q) and €,, = €, ,(q + p).

Once the density matrix is expanded as given in Eq. (28),
it is straightforward to see that the refractive term, Eq. (41),
vanishes when evaluated in terms of p@(|q|). For the
damping term, Eq. (43), we must perform an expansion
of pO(lq + pl) = p@(|k]), in the p integral of Eq. (43),
about |q]:

<°>(|k|>—p<°>(|q|>+(o( <|q|>) (44)

dlk|
which is a suitable approximation as long as 7(p°, p) has
support solely over |p| < |q|, where |q| is the energy of
the scattering photons. Then to lowest order in p© the
damping term vanishes and we have

d dp©(|ql)
4 <o>=o+co( 27).
P & dlql

45
7 45)

Dy + Dy =
+ (GZKEI/L + EIKGZM)[P(Q)(‘I) + P(l)(Q)]] -
+(@pear + e ol + )+ ol P} + Os
. d
Dy — Dy = _(zlg)2[2|7f
(1) (1)
+ (E2K61p. 61KE2/.L)[p (q) + P21 (Q)]]
+(Epes + Epei)lola +p) + pa I + Oe
. d -
Dy, + Dy = _(2lg)2/2|—pT

+ p)(@)] + 2€1c€2, 01 (@) + 2661, 05 (@)] —

+ 2€2ﬁé2a'p(212)(q +p) + (€&, + '?1052/3)[/01 /(g +p) + P(l)(q +p)ll+ (9<8

TA(f’)‘]pfﬂpKTu(P)(zq + ﬁ)a{(élaglﬁ + é:20'é2ﬁ)|:261Kel,u.p(lll)(q) -

(Elkel,u, -
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In terms of the Stokes brightness perturbations defined
in Egs. (30)—(33), to first order in g the evolution of the
polarization of the photon ensemble becomes

7A =0, 46
TR (46)
A, = —galg)A (47)

i 0 ga\q)Ay,
94 py = galg)A (48)

di v = 8aq)Ag,
fA =0, 49
i (49)

where we have defined the quantity

a(q) = 4€,,(q) A*F(q)ex5(q). (50)

For processes which are first order in the Hamiltonian
density Eq. (34), according to Eq. (49) no circular polar-
ization is generated to O(g) in our approximation. In
fact, it is easy to see that to O(g) (the refractive term),
Egs. (46)—(49) reproduce the well-known effect of optical
activity of the electromagnetic radiation, rotating the plane
of linear polarization during propagation [7-10]. This is a
useful check of the calculations.

The relevant linear combinations of the damping term
Eq. (43) which source the polarization of the photon en-
semble to O(g?) and due to first-order processes are

. dp - . o e = ..
—(2ig)? fﬁTA(P)QpEMP T,(p)2qg + P)ai(E1,€5 + fzafzﬂ)[zelemp(lll)(‘I) + 262K€2,up(212)(q)

. - . -
(€1x€1, + E2K62,u)[261,8510'p(11)(q +p) + 262,8520/0(22)((1 +p)

zdp(o)(lql))
diql /

262/( 62;1, p(212) (Q)

62K€2#)[2€1Bgl(rp(111)(q + p) + 2€2B€2(rp(212)(q + p)

zdp(o)(lql))
dlgl /

A(P)a, €7 T (p)2q + P)i(&1,€15 + Er,Exp)[ (€61, + szfzu)[Pglz)(Q)

(GZKGI,U, + EIKGZ#)[ZEIBEIUp(lll)(q + p)

2 dp(())(l(Il))
dlql /)
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. dp (o TAPKT
Dy — Dy = _(2lg)2fmTA(P)‘]pf AT, (p)
X (29 + p)ol(E1,€15 + E1pE2p)
le)(q)]

E]KGZ,U,)(EIBEZ(T - 610623)

X (€14€1, T fzxfzﬂ)[P(l)(‘I)
- (EZKEl,u, -
< [p\3(@+p) = p5(@ + p)I
Pq TP P q T Py
Given the above expressions it is easy to see that no mixing

occurs between Ay and the set {A;, Ay, Ay} as a result of

the damping term Eq. (43). Therefore, in our approxima-
|

2I:\Iint(l‘) = 1(277-) (2 )2 (zdzg)zl’

d’p
dlidly, —————
: (277')32172

X e*i((ﬂ|)O*(ll)O*(Pz)O*(lz)U)153(pl — P> — l)
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tion, no circular polarization is generated by first-order
processes up to O(g?).

V. THE SECOND-ORDER INTERACTION TERM

We now move on to calculate the contribution to the
evolution of the photon density matrix from scattering
processes which are second order in the interaction
Hamiltonian density operator Eq. (34). Details of the cal-
culation of the second-order interaction Hamiltonian and
the corresponding refractive term are presented in
Appendix B. The second-order interaction Hamiltonian is
given by

2 o f“"aﬂff””’\'(fv(h)fg(lz)(_igﬂp)[((l?l + P2+ 1)o(2py + 1))

€§K(172)555(171)fl;r (p2)a,(py)

+ ((p1 + p2

The refractive term of Eq. (27) due to this interaction
Hamiltonian is

K22 (0), D, (@)]) = i(27)} 53(0)(28)2(8,, 50 (q)
8usPur(@)€X (el (DT (),

where we have defined 7~ ij(q) via

Qa0 T (q) = — f dldL QP8 + DT, 1)

X T, Dlg- (I, + 1)]

1
X
[(12)2 +2l,-q+ie

1
()P =2, -q ie]' (52)

Note that the interaction Hamiltonian Eq. (51) and the
refractive term Eq. (52) were computed using the photon
propagator in the Feynman gauge Eq. (B3), but a demon-
stration of gauge invariance of these results is detailed in
Appendix C. For an unpolarized photon ensemble, it is
easy to see that the right side of Eq. (52) vanishes when
evaluated in terms of p® defined in Eq. (28) above. The
contribution to the perturbed density matrix, p!, to second
order in the interaction coupling g is

< E}J( ) = (%pﬁ)(q)

uspu)(q))eé‘ (@De/ (T ,(q).  (53)

Here we have used Eq. (27) and have ignored the damping
term, which is of O(g*). Expressing Eq. (53) explicitly in

— 1) (2py = 1)) P TR H B &3 (p 1 —p, + 1)

(p2 + 12)2 + i€

sg(Pl)fm(Pz)as (p1)a, (Pz):l.

(py — LL)* + i€ Gb

terms of photon density matrix components gives the evo-
lution equations

t 4 )0 (q )— ( e esp\N(q) + e e’ pN(@)T . (q)

d
(54)
< pia )——(e1 €015 (a) — & €py) @) T ()
(55)
2i
“>< )= i([el el — e elol) (@)
—eetlp!)@) — pH@DT 1(g)  (56)
21
E (211)( )_ lg (— [51 61 — €& Ez]P(l)(q)

+ et eslp\) (@) — PN (@DT uu(q). (57
All polarization vectors €, in the above expression depend
on q, the same photon momentum as in the argument of the
photon density matrix. Using the Stokes brightness pertur-
bations in Egs. (30)—(33), we can now express the evolu-
tion of the polarization of the photon ensemble due to
processes mediated by 2H, (1) as

9 ag =0, (58)
dt

2
8@ =~ 5 @A/ @ + @A), (59)
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2
%Adm=—sﬂM®Awm—iw®Ad®l (60)

L avia) = S (0@30@) + E@3 o). 61
where we have defined the contractions

(@) = —27 ,,(e'es + efel), (62)

x(@) =27, (e e} — €)'el), (63)

Y(@) =27 ,,(ef' el — € €)) (64)

and the quantity 7~ v 18 defined via the integral expression
Eq. (562).

The circular polarization brightness Ay is sourced by
terms which are proportional to either Ay or Ay, : a linearly
polarized photon ensemble in the presence of the interac-
tion Eq. (34) will acquire circular polarization due to
processes which are of second order in the interaction.
As long as the interaction acts, both Stokes brightnesses
Ap and Ay are rotated with Ay. Note that the above
equations do not depend on the time component of 7', (x)
since the polarization vectors are purely spatial.

VI. DISCUSSION

The evolution Eqgs. (58) to (61), along with
Egs. (46) to (49), are the central result of this paper.
Other source terms associated with the usual Compton
scattering effects will also appear on the right sides.
While the polarization brightnesses will be zero prior to
recombination, during recombination A, and A, become
nonzero, with an amplitude a factor of 20 smaller than the
intensity fluctuations A;. It is easy to see by inspection of
the evolution equations that at that point, A, and Ay will
rotate into each other with a characteristic angular fre-
quency wgoy = g2¢/k° Ay and Ay will rotate into each
other with a characteristic frequency w,, = g>x/k°, and
A, and A, will rotate into each other with a characteristic
frequency woy = ga, along with an exponential decay or
growth of A, and A, associated with the first-order damp-
ing effects. All of these source terms are active whenever
the interaction Eq. (34) is nonzero, in contrast to the
conventional Compton scattering terms, which are only
significant when the photons propagate through ionized
regions of the universe.

The rotation between A, and Ay can be constrained
from current measurements in a straightforward way.
Linear polarization on the sky is conveniently expressed
in a different basis, corresponding to the “‘gradient” and
“curl” pieces of the polarization tensor field [35,36], also
known as the E/B decomposition [37]. This decomposition
is useful because scalar density perturbations in the uni-
verse, which evolve into the structures we see today via
gravitational instability, generate only E-mode polariza-
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tion. Subsequent rotation of the polarization plane as the
wave propagates rotates E-mode into B-mode. Current
limits on the amplitude of B-mode polarization (see
Refs. [38—40] for some recent linear polarization measure-
ments) can be translated into limits on the total rotation of
linear polarization between the time of last scattering and
today; see Refs. [41,42] for corresponding limits on mag-
netic fields due to Faraday rotation. Precise limits on the
interaction studied here from the first-order rotation effect
Eqgs. (47) and (48) can be obtained similarly, and will be
computed elsewhere. But we know that the total amount of
rotation must be small at frequencies between 50 GHz and
150 GHz where good measurements of the primordial
linear polarization have been made. Given this observatio-
nal constraint on linear polarization rotation, can some
realistic cosmological model generate detectable circular
polarization via Egs. (59)—(61)? First, note that w,y has
dimensions of [gT], and that for this rotation to be below
current limits,

otherwise, as the microwave background photons propa-
gate a Hubble distance from last scattering until today, we
would have substantial rotation of E-mode into B-mode
polarization. We are aware of no other laboratory or theo-
retical constraints on this class of interactions.

Now note that any first order damping effects will con-
tribute an extra factor of length compared to a(g), arising
from an additional time integral over the field 7, (x); if the
field is active for all times, this leads to roughly a factor of
H;'. Then the time scale for exponential growth or decay
of linear polarization is, by dimensional estimate,
woy(woy/Hy), which is small compared to wqy: we
can always neglect the exponential growth or decay of
linear polarization compared to its rotation.

For generation of V polarization, wyy and wyy both
have dimensions [g?7?/k°], differing only by a geometric
factor related to the propagation directions of the photons
and the direction of the field T#(x). So a dimensional
estimate for both is @y = wyy = wop(wey/k°). A typi-
cal microwave background photon today will have a fre-
quency of k°=~100GHz or 10''s™! while the
characteristic size of wgy at the observational limit is
H,, a huge mismatch in scales. So in the case considered
here, the generation of circular polarization is always
vastly subdominant to the rotation of the linear polariza-
tion, and can be neglected.

The calculation presented here demonstrates generally
that, given additional interactions beyond Compton scat-
tering, circular polarization is not necessarily zero, and
elaborates the framework for calculating it for a given
microphysical interaction. Other interactions may well
induce circular polarization without optical activity from
the linear interaction term, and for these cases circular
polarization could be the most constraining probe. We
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have also only considered a constant field 7 * for simplic-
ity; calculations for a nonconstant field are messier but
straightforward, involving convolutions over the field and
photon distributions. Spatial or temporal variations in the
field could change the relative importance of the optical
activity and circular polarization generation effects. In
particular, the torsion field necessarily couples to fermions
via the interaction L;p = gl’f Jy* as well as a
torsion-induced  four-fermion  interaction Lpp =
gZIZ/'y57“ ] 1]/75 Y. [43-45], where g, and g, are renor-
malized couplings. It would be interesting to study the
coupled system of torsion and fermions subject to our
formalism for evaluating V, since backreaction effects
from the torsion-fermion interaction could enhance the
amplitude and modify the scale of V; we leave this to
future work.

We encourage experimenters to make measurements
testing the standard lore that circular polarization of the
cosmic microwave background radiation should be identi-
cally zero, and theorists to consider the effects of any
nonstandard photon couplings on microwave background
polarization as photons propagate over cosmological
distances.
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APPENDIX A: FIRST-ORDER CALCULATION

In this appendix we determine the contribution to the
time evolution of the photon density matrix due to pro-
cesses which are first order in the interaction Hamiltonian
density Eq. (34). We first detail the calculation of the
refractive term and then the damping term of Eq. (27).
The first-order interaction Hamiltonian is simply given by

AV () = fd3x.’]-[7. (A1)
In the approximation employed here, all operators in the
collision terms of Eq. (27) are from the free theory. From
this point on, all operators represent free-theory operators
and we drop the “0” superscript used in Sec. III. Ignoring
any processes in which two physical photons are either
annihilated or created leads to the following expression for
the interaction Hamiltonian:

A = 2g j Pxdpdkdk’ e BT (p)(—ik)

X (al (k)a, (k') €3, (k) €, g (k') elPTh=k)x
— al(Ka (k) e;5(K)e, , (k)e' k=R (A2)
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where we have used the expression for A x givenin Eq. (14)
and we have used the shorthand notation

d*p 4’k
dp = | ——, dk =
] P Qm)* f Q2m)32k0

Performing the spatial integral and relabeling dummy mo-
mentum variables and spacetime indices in the second term
of (A2) gives

lﬁim(t) = —2ig fdpdkdk/(27)35(3)(k +p—k)

X eitkotpo—kyt envab T (p)al(k)a, (k')

€5, (k) (k + k') €, 5(K). (A3)

Now perform the [ dk’ integral, after which we have

Tu(p)ei(k()+l74)_|k+l)|)l

—2i dpdk

lgf P 2k + pl
€, (k) (e (k| + |k + pl)

+ eIB(2k; + p)))e,p(k),

i (1) = al(k)a, (k)

eMvaB (p)ei(ko+po—|k+p|)t
= —2i dpdk .
lg/ P 2|k + pl

x al(k)a,(k)€;,, (k) (k + k) €,5(6),

(A4)

where (k), = (Ik + p|, k + p). Equation (A4) is our first-
order interaction Hamiltonian. Now the commutator nec-
essary for the refractive term of Eq. (27) is given by

~ ~ . T (p)ei(k0+p07|k+p|)t
'A._ (1), D = -2 fd dk -~
['Hi, (1), D,y (q)] ig | dp 2k + pl

X €5, (k)(er" Pk + k)o)e,p(k)
X (27)°24°(8,,6°(q — k —p)
x al(k)a,(g) — 8,,8%(q — k)

x al(q)a, (k)

(A5)

where we have used the canonical commutation relations
between the free creation and annihilation operators
Eq. (15). Taking the expectation value of (AS5) and using
the relationship between the number operator and density
matrix given by Eq. ((17), we arrive at the following
expression:

) R N T (p)ei(ko+P()*|k+P|)f
YA, (1), =2 f k
l<[ mt(t) Duv(q)]> 8 dpd 2|k +P|

€ (e Pk + k)€, (k) (27)°
X (2¢°78%(q —k —p)d’(q — k)
X (6urpsv(q) - (A6)

SUSpMF(q))'

Perform the [ dk integral gives

063524-9



STEPHON ALEXANDER, JOSEPH OCHOA, AND ARTHUR KOSOWSKY PHYSICAL REVIEW D 79, 063524 (2009)
T, (p)e!tav*mlarel (2m)38%(0) A#E(q) = (2m)*87(0) AlHFl(g),

([ Ay (1), D@ = 28 [ dp

4lqllq + pl T,(p)
393
X €0, (g) e B (g + ) ,5(@) 2 = [avemre v il 2lq + pl
X (2¢°)*8*(—=p)(8,,p5(q) X (e*"B(|q| + Iq + pl)
6vspur(q)) (A7) + GMVjB(ZQj + P]))r (A9)

where as before we have defined (3), = (Iq + pl.q + p)

where we have anticipated the fact that the delta-
so that the above can be expressed as

distribution factor will be present once an appropriate
i[! I:Iin (1), @W( ) = 2g€%,(@)(2¢°) (8,04, (q) form for the external field 7', (x) is chosen. The refractive
[ Hin @) 8ol ped term of Eq. (27) due to first-order processes can then be

5vspur(q))fdp(2W)353(—p) eXpI'eSSSd as

T (p)eltao* rola+phr i[' A1, (0), D, (@] = 4g¢°27)* 53(0) €, (@)(8,,05, (@)
2|q + pl ‘ - Svspur(q))ﬂ#ﬂ(Q)er,B(q)
X (e*9B(|q| + |q + pl) + eriB (A10)

X (2g; + pi)e + p). A8
(24, + pi)eér(@ +p) (A8) Next we consider the damping term of Eq. (26), the
Define the quantity integrand of which involves the double commutator

R R R . T (p)ei((k1)0+ﬂo—|k1+P|)f TA(l)ei((kz)0+lo—|k2+l|)(l—f’)
YA, (t — ), ['A,, (), D =2 2[dld dk,dk
[ mt( ) [ 1m() uv(q)]] ( lg) P 2 1 2|k] + P| 2|k2 + ll

X e, (k)e* Bk, + Ig1)afrﬂ(/gl)fza(kz)fg)‘pk(kz + EZ)pemK(IEZ)(Zﬂ-)GZqO

X (8,83(q — ki — P)2(K;)°8,,,83(ky + I — k)ak (k) (q)

~2¢°8,,8(k, — q)al (k)a, (kz)) 8,s0°(q — k1)(24°8,,8%(ky + 1 — @)} (ky)a,
X (ky) = 2(ky)°8,,83(k, — k; — p)ak(q)a,, (k»))), (A1)

where we have used the canonical commutation relations between the free creation and annihilation operators, Eq. (15),
and have defined (k;), = (|k; + pl, k; + p) and (k,), = (Ik, + |, k, + I). Now the [dk, and the [dk, integrals can
be performed, giving

ei(lq—p|+po—|q|)t(._-§# (G- NG-p+Da€p(@)d,,
4lq —pllq|

[ Ayt = ), [ Ay (0), D, (@] = (208)*2¢° f dldPTA(l)e"A""TV(p)G’”“ﬁ(

ella=p=ilth=la=pht=r) _ _ _ s
X[2|q_P| 4|q_p_l||q_p| Ena(q—p—l)(CI—p—l+q—p)pemK(Q—p)8msan(q—p—l)
. Oei(qo+lo*|q+l|)(t*t/) . _ _ At o
xav(Q)_zq 4|q||q+l| entr(q)(q+q+l)p6mk(q+l)6nvas (qu)am(qﬁ»l)]
et laeigg (g)(g + BRABLN| el io-labu-o)
4lq +pllql 4lq—1llql

eilla+pl+lo=lg+p+ih(r=r)

4lq +pllg+p+I|

X €, dry+ q~+,,+l),,emk(mpﬂ)amézl(q)am(q~+,7+l)]). (A12)

X EZO.(CN],[)(C?,I + Q)pEmK(Q)amuan (C] l)a (Q+p) 2|q + pl

After taking the expectation value, this becomes
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[ Hi(t = ), [' Ay (0), D (@D = (2ig)2fdldpﬂ(l)E‘T“'KTV(p)e“”“B(27T)353(1 + p)eirothl

% (e‘iwﬂo_lw,l)t’€§M(5+1)(Q~+1 + q)aerﬂ(Q)‘sur [6* (q)(q + 5]+1) € (5]+1)5 p
no p MK msr nv

2|lq + 1]
X (Q) - EZU(Q)(‘] + q+l)p6mk(q+l)5nvpsm(q + l)]

e~ ilatel+io=lal! e (4)(g + G, ) a€,5(Gs,)0
Sp +pla€rp q+p UST % [~ ~
- 2|q + pl [Emr(q+p)(q+p + CI)pEmK(CI)

X Spupr(@ + D) = €80(Gs )Gy + q>pemk<q>5mpum<q>]). (A13)

Interchanging / and p in the first set of terms gives

([ Ayt = ), [ Ay (1), Dy (@)1) = (2ig)? f dldp(2m)* & (I +p)eltrorhor

X(e-“'q'*f’o—'“*"”’m¢(p)e”“ly¢(l)ewﬁezfﬂ(c7+,,)(q+,,+q>ae,,3(q)6w
2lq +pl
X[€na (@ q+d+p)p€mic(dsp)SmsPnv( @ — €10(@)q+ G4 ) p€mic(G 1 p) S P sm(@+P)]
e Matpltho=lab T (1) €m0k T (D) er P €5, (q)(q+ G ) €rp(G ) S
- 2lq+pl

X [Efm'(g]+p)(g]+p + Q)p EmK(Q)Smupnr(q + p) - e;kttf(q+p)(c~]+p + ('I)p Emk(q)anrpum(q)])‘

(A14)

After relabeling some spacetime and polarization indices in first set of terms, the above becomes

([ At = ), [' A (0), Do (@] = (2ig)? f dldp(2m)}83(I + p)ePoth)t

% Tv(p)G{r)LpKT/\(l)eluvaﬂe;a'(q+p)(q+p + Q)pemK(Q)etﬂ(Q)(q + q~+p)a€rﬁ(q+p)
2|q + pl
X {e_i(|q|+po_|q+p|)tl5um[6rnpsu(q) - 6svpnr(q + P)] - e—i(|q+p|+lo—|q|)f'

>< 5vs[8mupnr(q + p) - anrpum(q)]}' (A15)

Now integrate over [, di' (t — ) and define Ag = |q + p| — |q] to arrive at

Do = [ dtC B (.1 0 0). Dirf@)]D

. )5 +p) : . o
= @igp [ didp =T e () T (D€, G + )yl + )30 — M)
X [8rn6um€mK€s,upsv(q) - ‘Sumasvemxes,upnr(q + p)] + 6(10 + AQ)[arnsvsemkesﬂpum(q)

- aumasvemkes,u,pnr(q + P)]}’ (A16)

where for convenience we have defined D,,,, above, as well as the abbreviations €,, = €,,(q) and é,,, = €,,(q + p). Note
that since p is expressed in a linear polarization basis all polarization vectors above have been assumed to be real. Now in
the f dl integral above, the relevant factor can be simplified as
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én(remkes#érﬂ fdlS(l + p)f/\(l)(q + €]+p)péa—ApKTV(p)(q + €]+p)a6,uvaﬁ

= &,0€c€s, & p1Ti(lo, =PIl + g + pl1e”™ — To(lp, —p)(2q; + p;)e <}
X AT ;(po. P)lal + lq + pl — pole*®8 — 2T (py, p)g,;€*°F},
= &ur€mcsu&rp{Tillo, P (Al + g + pI) + Iple” + 2T (ly, p)g;”*}
XAT;(po. P)lal + lq + pl = pole* %8 — 2T (po, p)g;e*i°P},
where in getting to the final expression we have used py MT,,]( p) = 0, the fact that €,,, (k) can be fixed as purely spatial for
any momentum k, and the assumed behavior of 7', (x) under a parity transformation, Eq. (36). Now perform the appropriate

energy integrals made trivial by the presence of delta-distributions in Eq. (A16). The relevant factor from the second term
of Eq. (A16) becomes

gna’emkes,ugrﬁ fdlofs(lo + AQ){TI(ZO; p)[lql + |q + Pl + l()]e(TiOK + 2f()(10’ p)qieaiOK}

XATj(po, P)llal + lg + pl = pole*®# = 2T (po, p)g;€*°F},
= & Emc€snbrpiTi(—Ag p)lgl + Iq + pl — Agle” + 2To(—Ag, p)g;e”<}

X AT (po p)llal + lq + pl — pole®%8 — 2T(po, p)q; €8},
= Euremienrpl—2Ti(Aq, p)lale”™ + 2T (Aq, P)g;e”HT ;(po, )lal + 1q + pl — pole®® — 2T(p, p)g;e"F},
= &r€nc€su€rp{—2T1(Aq, P)g, €™ HT;(po. P)llal + lg + pl — pole/% — 2T, (po, p)g €}, A

where in arriving at the final expression above we have used the assumed behavior of 7, (x) under a time reversal
transformation Eq. (37). Now perform the p integral present in the first term of Eq. (A16) and arrive at

EnUEmKEs,u grﬁ fdpo5(Po - AQ){Tt(IO’ p)[lql + |q + pl + lO]E(riOK + 2T0(lg, p)qieo—iOK}

XAT;(po. P)lal + lq + pl = pole* 8 — 2T (po, p)g;e*i°F}
= Eno'emkexﬂérﬁ{ivi(lo: P)[|Q| + |q + pl + ZO]EUiOK + 2T()(l()r p)qiegiOK}{ZTV(Aq; p)Qae#Vaﬁ}-

Next change the integration variable /[, — — p, remaining in the first term of Eq. (A16) and the factor above becomes
gn(remkes,u, grﬂ{_’fi(pO’ p)[lql + |q + Pl - pO]e(riOK + 2T0(p0’ p)qiegi()K}{ZTV(Aq’ p)qae,u.vaﬁ}’ (AIS)

where we have again used Eq. (37). Following some relabeling of spacetime and polarization indices, the factor (A18)
becomes identical to the factor (A17). Thus Eq. (A16) can be expressed as

. dp 7 (= TApKT ~ vaBz =
Duv = _(2lg)2€mkes,u, IWTA(p)qpe AP Tv(p)(zq + p)aelu ﬂena'erﬁ(gnrauspmv(q) + Srnav.\'pum(q)

- 6u55mvpm(q + P) - aumssvpnr(q + P))’ (A19)

where we have defined the 4-vector p = (Ag, p) and recall that Ag = |q + p| — |q|. The linear combinations necessary to
describe the evolution of the independent polarization degrees of freedom are

: dp = - o e = .
Dy = Dy = —(2ig)? fm TA(P)q, € T,(p)2q + P)ul(€1nE15 + ErpE2p)[2€1,€1,p11(Q) * 262,62, p0(q)

+ (€2c€1p * €14€2,)[P12(Q) T o1 (@]] — (€161, T €246, )[2€15E1,011(q + P) + 26,58,,020(q + P)
+ (15625 + Exp€1,)p12(q + P) + poi(q + P} (A20)
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. d o - e - _
Dy, = Dy = —(2ig)? [Tipl TA(p)q, € T,(p)2q + p)oi(€1,€15 + ErpErp)l€rcer lpi1(q) + p11(q)]

+ €2c€1,[P2(@) £ pn(@)] + (€161, + €2€,)P12(q) = p2i(Q]] — (€xc€1, * €14€2,)
X [&g€islp1(q+p) = pii(q + P+ &Epéylpn(q + P) £ prlq + p)]+ (€58, * &,&p)

X [p12(q + p) * poi(q + p)]I}

If we define the quantity

d - -
m 8908 9) = [ 3T Tu(P)a, e T, (p)

X (2q + ﬁ)aeﬂvaﬂgmr‘snrgrﬁ
(A22)

and the integral operator

m

m 6O Bld: ) = emceon [ 57 5 TPV,
X €T ,(p)(2q + P)a
X etraPe, €.

X (8usOmuPra(q + P)

+ 8umOswPur(q + P)),

Equation (A19) can be expressed in the general form
Duv = _(Zig)z(z'n-)S5(3)(0){6mx(€uupmy(q)
+ €v,upum(q))B’;LK(Q) - Bz[fl; puv(Q)]} (A24)
|

(A23)

(A21)

APPENDIX B: SECOND-ORDER CALCULATION

In this Appendix we explicitly calculate the relevant
quantities describing the evolution of the photon density
matrix due to processes which are second order in the
interaction Hamiltonian Eq. (34). The second-order scat-
tering matrix operator is

. 1 fe © (1) oy £y(1
so=-1 f_m dt f_w drT{A (ALY (1)),

- —if’" A2, (B1)

where I-AII(;E (r) is the first-order interaction Hamiltonian,
Eq. (Al). We will denote the interaction Hamiltonian
operator which has a nonzero overlap with a single photon
lying in both the initial and final scattering states as
’H, (). Applying Wick’s theorem to simplify the time
ordered product in Eq. (B1) gives (ignoring vacuum terms)

1

_if{@)(t) = _%(29)2 /d3Xd4yeuyaﬁEPUAKTu(x)To(y) : <121“(33)6aAg(x)/ip(y)a)\AAﬁ(y)

where all partial derivatives are understood as acting solely
on the function immediately to the right; the variable being
differentiated is in the argument of this function. We
denote the contraction of two operators A and B by

It
AB.
To simplify Eq. (B2), we use the free-theory photon propa-
gator in the Feynman gauge,
d*k —igwe*"k'(x*y)
Q2m)* K+ ie

(See Appendix C below for a demonstration of gauge

D,uv(x - y) =

(B3)

[

+A/4 (7)0a Ag (I)Ap (y)aAAn (y) + Au (2)0a AB (I)Ap ()0 Am (y) + Au (7)0a Aﬁ (z)Ap (y)0x An (y)

(B2)

)

invariance, where we explicitly consider a different
gauge-fixed photon propagator). In order to deal with the
derivative couplings, we interpret the time ordering as T*
ordering; specifically, we require that derivative couplings
act outside of the time ordering operation [46]. For conve-
nience, define the operators

A (x, p) = a,(p)e,(ple P, (B4)

AL (x, p) = al(p)e(p)er™. (BS)

Equation (B2) then becomes
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N 1 d‘k & a3 —je k)
—iH% (1) = _5(28)2fd3xd4y Pi P2 ie )

Qm)* 2m)*2pY 27)32p) kK + ie

L8up(—ip1)(AL (x, p1) — Ag(x, pO)—ip2)(AL (3, p2) — A (30, p2)) + (kN8 uic(—ip1a) (A5 (x, p1)
—Ag(x, POA (Y, p2) + A, (0, p2)) + (—ika)gp, (AL (x, p1) + AL (x, pO)—ip2)(AL(y, p2) — Al (y, p2))
+ (—iko)ik))gp(AL (x, p1) + AL (x, pD)A, (v, p2) + AL (y, p2))]e (B6)

e BT, T, )

Picking out the nonvanishing overlap of H®(¢) on single-photon initial and final scattering states and calling this 2H, (1)
gives

ie —ik-(x—y

20 = 5 oP [ @xdty [[audpidprerterT, (T, 00—
X (AL (0, p2)AS(x, p1) = Ag(x, p)AL (3, p2)) + gukik)(=ip1) A, (v, p2)AS (x, p1) — Ag (x, pD)AS (3, p2))

+ g, (—ika)(—ipa)(=AL (3, p)AS (x, p1) + AL (x, pAL (3, p2) + gpu(—ika)(ik))(A, (v, pD)AS (x, py)
+ AL (x ppAS (v, p2)] (B7)

)[g#p<—ipla><—ip2A>

where we have again used the shorthand notation for the integral measures defined in Appendix A After some relabeling of
spacetime indices, Eq. (B7) becomes

e ik (x—y)

A i .
()= — 5 Qo [ dxady [ dkdpidpserr s T, 0T, 00 i8] (G ) (Pralp2 = s

e~ ik (y=x)

~ kalpz = AL 0 AR 5 1) + (G JPrelpz = B~ alp2 ~ DDA p0AL G | B8)

using the property D,,(x —y) = D,,(y — x). Now plug in the Egs. (B4) and (B5), express T, (x) in terms of its Fourier
transform, and perform the [dx and [ dy integrals to get

1(277)7 e Pers T (1))T (L)

2 Zfdkd d
(2g) p1dp> .

X [e” l((p‘)o WS (py — 1 + k)84 (py + I + k)sz(Pz)frﬁ(Pl)a (p2)a,(py)
+ P 3 (p ) + 1+ K)8H(py — L + K)elg(p1)en(pa)al (pp)a,(p)] (BY)

2I:Iint(l‘) - (_ig,u.p)(pla(pZ - k)/\ - ka(pZ - k)/\)

Next perform the k integral:

1(277)

21, (1) = (2¢)? f dpydpsdl, diyet "B o T (1T, (1,)( zgw)[((m oot D)o@y + 1))

> e_,-((pl)o_(/])U_(pz)o_(lz)ll),83(p1 —I—p,—1) EvK(pZ)Ev,B’(pl)as (p2)a,(p1)
(p2 + 12)2 + ie

sB(Pl)er(Pz)a (P1)ar(l72)

+((p1 + P2 — 1)a(2py — 1)) P =0 403 (p) + 1 — p,y + 1) 3
( - 12) + ie

]. (B10)

We are now in the position to compute the commutator of 2H, (r) and D, (q) necessary for the refractive term of
Eq. (27). This is given by
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1(277')

A, (1), Dyy(q)] = — == (%ﬂﬂ%@ﬂwwwwﬂmeﬁUMZ@mM””

fsx(Pz)fsﬁ(Pl)

(pr + L)* +

X (8%(q — p1)d.,al (p)a,(q) — 83 (q — pa)d,.al(@)a,(py) + (p + py — lz)a(2pz — b))
5ﬁ(p1) rK(pZ)

(p2 — L)* +

—ﬁm—pn&ﬁﬂmm@»ﬂ. (B11)

X [((Pl + py+ Bh)o2py + L) )e ) = §3(p — 1 —p, — 1) (2 )*24°

X )" = &3 (p, + 1 —p, + 1) (2 7)°2¢°(8%(q — p)d,.al (p1)a,(q)

Take the expectation value of Eq. (B11) above to get

WEM&ﬁmmD=—ﬁﬂ

@w[@ﬂwﬂ%wmﬂmwaﬂwme%@wWWMWwW$m p1)

X 8 (py —q)8(py +1—py + D(8,,p5,(q) — 5vspur(Q))[(P1 + P2 — 1)a(2py — 1),

% o= illp)*=(p2 )%rM

i — 6? (pl)ErK(pZ)
(pr + L2 + i€ +(p1 + P2 — b)a@py — 1)) P (”2)0)'/3—]
2T b

P2 — 12)2 + ie '
(B12)

Now perform the p; and p, integrals, giving

1(277)

A (1), D@ = — == (kﬁfﬂﬂﬁm 1)ereBers AT (INT (1) (—ig,,)e B (8,,p,,(q)

ESK(q) es,B (Q)

€;5(q)€(q)
(g + 1)* + * ]

(q - 12)2 + ie '
(B13)

mmmm@m+me+bn + (g - 1)a2q — 1),

Focus now on the following factors present in Eq. (B13):

et Be AT (INT (L) €: (@) €,5(q)(2q * 1)o(2q * 1)), = 2e*7*Pe, " T (1) T (L)€ (9)€,5(q)(2q * 1) g,

where we have used [, ,,](l) = 0 in arriving at the expression on the right. Now use the epsilon identity e*”*¢ poAk =
—65Y 6“55] to perform the contractions above and arrive at

=2(T, - T,2q * ) - qlle, - €] = [To - T\ e, - qll2g = 1) - €1+ [T5 - €129 = 1) - €][T * q]

B B B B B B (B14)
— [T, €l2q* 1) -qlle, T\ 1+ [2q £ 1) - Tollg - €T, - €] — [T 2q = LT, - qlle, - €.

To simplify this, use €, - €, = —§,,, which when contracted with (8,,0,,(q) — 8,sp.-(q)) in Eq. (B13) vanishes, as well
as €,(q) - ¢ = 0 and q - g = 0. The remaining terms from the expression (B14) then become

F 2T, 1) - fr]fm%((lz)ﬂfy(l?, =) — (L)' T, =) = =2[T(15, 1) - €,Jesiqo((L) T, 1) + (1,)° T (19, 1))
= 22T, 1) - €1, T (19, Dgo (9 + 19),

where we have used Eq. (36) as well as repeated use of [ AT +](1) = 0. Inserting this expression back into Eq. (B13), we
have
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<[2[:Iint(t)’ ®uv(q)]> = _(27T)3(2g)2(6urpvv(q) - 5v‘\'pur(q)) fdlldl263(l + l)ei(l?+[g)t[€r ' T(lo» l)][f(lo’ l) ' Es]

1

X [q- () + zm[

We now define a quantity 7T ; ; by
QmP&O)T (q) = - [ dlydL Qw81 + DT (1. 1)

X T, Dlg - (I, + 1,)]

1
X
[(12)2 + 2]2 q + ie

1
a (1L,)> =2, - q+ ie]' (B16)

Equation (B15) can be expressed conveniently in terms of
this quantity:

i{([2A;,(0), D, (@)]) = i(27)*8%(0)(28)*(8,,050 (@)

— 8P (@) e (el ()T . (q),
(B17)

where we have exploited the fact that €!(¢)el(¢)T ; i(q) =
e (q)er(q)T ur(q) since €(q) is purely spatial. Explicitly,
the components of i{[*H. (1), D,,(q)]) are given by

(A (1), Dy (@) = i2m)38%(0)22)*T ,..(q)
X (el (@)es(@)pi2(q)

+ ey (el (@)pa(q),  (BIY)

(A (1), Dip(@)]) = i27)}8%(0)28)*T ., (q)
X ([l (q)€l(q) — €5 (q)es(q)]
X p12(q) — €5 (q@)el(@)lpi1(q)

— pn(q))), (B19)
|

i(2m)?
2

CHuW0s D@ = —

1
(12)2 + 212 q + i€ B (12)2 - 2[2 q + lf]

Plg+qg+1h).g+q+1)

- 5vspur(q))|: (q T l2)2

(q — lz)M(CI —1b)
TGy

Pg+qg—1)og+q—1),

(B15)

(1), Doy (@] = i27)}63(0)(28)* T ., (q)
X (—[ef'(9)ei(q)
— &(q)€) (9)]p2(q)
+ e (@e5(@lp1i(@) — pn(@)))

(B20)
(A, (1), Dyp(@)]) = i27)*8°(0)28)*T ., (q)
X (e1'(q)€5(q)p12(q)
— €5 ()€ (q)p2(q)). (B21)

APPENDIX C: GAUGE INVARIANCE

Here we verify that the calculation in Appendix B is
gauge-invariant by explicitly using a different gauge-fixed
photon propagator, namely

d*k —ie k()

Dyuplx =y = Qm* K+ ie 1)
Kk,
X<g/,u/_(1_§) 'Ll:z )

Isolating the contribution to {[>H, (), f)lw(q)]> due to the
term linear in (1 — &) gives

(2g)? /dlld1253(l + DerraPera AT (1T, (L)(I(1 — €)' D(5,,p,,(q)

(g +BL)u(g+1)

fTK(f])fs/B(Q)
Mg+ 10) +ie
etﬁ(q)ErK(Q) ]

(g — L) + ie ©2)

where we have performed all the integrals similar to those in arriving at Eq. (B13). Simplify the above by making repeated

use of the antisymmetry of the epsilon tensor:
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<[2I:Iint(t)§’ buv(q)b =

This expression vanishes because €”7%([,) pf(,(lz)

1(277)

(g +BL)u(g+1),

ESK(q) 633 (Q)

PHYSICAL REVIEW D 79, 063524 (2009)

(2g)2fdl AL (1 + Derr P era T (1T 4 (L) (i(1 — £)e TR (8,,p,,(q)

(q — lz)M(q - 2)p

awpuxq))[

1(277')3

(¢ + 1)

(1) u(l),

TN L)+ ie

GSK(q) GS,B(CI)

€:5(q@)€(q) ]

aq)‘( - 1)+ iel

(g — bL)?

(2g)? [ dlid, 83 (1 + 1) er B er T (INT (L) (i(1 — €)' (8,05, (q)

6wpw(q>>[
1(277')

(q+ L2 1N LY? T ie

GSK(q) Esﬁ ((*I)

(1) (1), €:5(q)€(q) :I
(g — 1))? e A(q—l)2+le

2g)? f dldlL 8 + D(i(1 = )(8,p50(@) = 8ypur(@)e TR (€179 (1), T, (1))q,)

X (ew“uz)pf(,(zz)qn[

=0.

(g + 1) g + 1h)* + i€

€.5(q)€(q) ]
(g — L) g — L) +iel

= 0, as we have required in order to arrive at Eq. (B15). Therefore, the

final evolution equations for the photon density matrix p will indeed be independent of the gauge parameter ¢.
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