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Recently Eisenstein and collaborators introduced a method to ‘‘reconstruct’’ the linear power spectrum

from a nonlinearly evolved galaxy distribution in order to improve precision in measurements of baryon

acoustic oscillations. We reformulate this method within the Lagrangian picture of structure formation, to

better understand what such a method does, and what the resulting power spectra are. We show that

reconstruction does not reproduce the linear density field, at second order. We however show that it does

reduce the damping of the oscillations due to nonlinear structure formation, explaining the improvements

seen in simulations. Our results suggest that the reconstructed power spectrum is potentially better

modeled as the sum of three different power spectra, each dominating over different wavelength ranges

and with different nonlinear damping terms. Finally, we also show that reconstruction reduces the mode-

coupling term in the power spectrum, explaining why miscalibrations of the acoustic scale are reduced

when one considers the reconstructed power spectrum.
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I. INTRODUCTION

The baryon acoustic oscillation (BAO) method [1] is an
integral part of current and next-generation dark energy
experiments. Oscillations in the baryon-photon fluid, fro-
zen into the matter distribution at decoupling, provide a
standard ruler to constrain the expansion of the Universe.
These sound waves imprint an almost harmonic series of
peaks in the power spectrum PðkÞ, corresponding to a
feature in the correlation function �ðrÞ at �100 Mpc,
with width �10% due to Silk damping (see [2,3] for a
detailed description of the physics, and [4] for a compari-
son of Fourier and configuration space pictures). While the
early Universe physics is linear and well understood, the
low redshift observations are complicated by the nonlinear
evolution of matter (not to mention galaxy bias and redshift
space distortions [5], but we will defer these to future
work) which erases the oscillations on small scales and
shifts the peaks [4,6–8]

PobsðkÞ ¼ e�k2�2=2PlinðkÞ þ PmcðkÞ þ � � � (1)

by coupling individual k-modes which are at early times
independent. The exponential damping of the linear power
spectrum (or equivalently the smoothing of the correlation
function) reduces the contrast of the feature and thereby the
precision with which the size of ruler may be measured.
Neglect or incorrect modeling of the ‘‘mode-coupling’’
term Pmc may bias the resulting distance measurements.

In [4] it was pointed out that much of the modification to
the power spectrum comes from large-scale modes, bulk
flows, and supercluster formation, in principle enabling
their effects to be corrected. Eisenstein et al. [9] introduced
a method for removing the nonlinear degradation of the
acoustic signature, sharpening the feature in configuration
space or restoring/correcting the higher k oscillations in
Fourier space. Given the ambitious nature of future experi-
ments, there has been considerable interest [9–11] in ‘‘re-
construction’’ schemes which remove the effects of
nonlinearities, reducing the damping and mode-coupling
terms above.
Since the method proposed in [9] is an inherently non-

linear mapping of the observed density field, it is difficult
to intuitively understand. It is however easily formulated
within the Lagrangian picture of structure formation,
where the fundamental quantity is the displacement of
particles from their initial positions (contrasted with the
Eulerian picture where one tracks the evolution of the
density field at a fixed location). Motivated by recent
developments in Lagrangian perturbation theory (LPT)
[7,12], we discuss reconstruction within the context of
LPT, both to elucidate how it works and to expose possible
shortcomings. Although we use the method of [9] for
specificity, the lessons learned have broader validity.
We proceed as follows: Sec. II introduces the essential

aspects of both LPT as well as reconstruction. We then
compute the reconstructed density field to second order,
and demonstrate that there are corrections to the linear
density at this order. Section III then explains why the
BAO feature is enhanced in the reconstructed power spec-
trum. We conclude in Sec. IV, highlighting potential ave-
nues for improvements.
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II. RECONSTRUCTION AND THE DENSITY FIELD

The Lagrangian description of structure formation [13–
15] relates the current, or Eulerian, position of a mass
element, x, to its initial, or Lagrangian, position, q, through
a displacement vector field �ðqÞ,

x ¼ qþ�ðqÞ: (2)

The displacements can be related to overdensities by [16]

�ðxÞ ¼
Z

d3q�ðDÞðx� q��Þ � 1; (3)

where �ðDÞ is the 3D Dirac � function, or in Fourier space
by

�ðkÞ ¼
Z

d3qe�ik�qðe�ik��ðqÞ � 1Þ: (4)

The displacements evolve according to

d2�

dt2
þ 2H

d�

dt
¼ �rx�½qþ�ðqÞ�; (5)

where � is the gravitational potential. Analogous to
Eulerian perturbation theory, LPT expands the displace-
ment in powers of the linear density field, �l,

� ¼ �ð1Þ þ�ð2Þ þ � � � ; (6)

where [17]

�ðnÞðkÞ ¼ i

n!

Z Yn
i¼1

�
d3ki
ð2�Þ3

�
ð2�Þ3�ðDÞ

�X
i

ki � k

�

�LðnÞðk1; . . . ;kn;kÞ�lðk1Þ � � ��lðknÞ (7)

and the LðnÞ have closed form expressions, generated by
recurrence relations. Specifically,

L ð1Þ ¼ k

k2
(8)

is the well-known Zel’dovich displacement, e.g., [18],
which is 1st order LPT. Expanding the exponential in
Eq. (4) we obtain a perturbative series for the overdensity,

� ¼ �ð1Þ þ �ð2Þ þ � � � where, e.g.,

�ð2Þ ¼
Z

d3qe�ik�q
�
�ik�ð2Þ � ðk ��ð1ÞÞ2

2

�
(9)

or in terms of the LðnÞ’s

�ð2Þ ¼ 1

2

Z d3k1d
3k2

ð2�Þ3 �ðDÞðk1 þ k2 � kÞ�lðk1Þ�lðk2Þ

� ½k �Lð2Þðk1;k2;kÞ þ k �Lð1Þðk1Þk �Lð1Þðk2Þ�
(10)

is second order in the linear density field �l.
The prescription of [9] can be cast into this framework as

follows:

(i) Smooth the density field to filter out high k nonline-
arities. In Fourier space, this is equivalent to multi-
plying by a function SðkÞ which monotonically
decreases from unity at low k to zero at high k,

�ðkÞ ! SðkÞ�ðkÞ: (11)

(ii) Compute the negative Zel’dovich displacement
from the smoothed density field

s ðkÞ � �i
k

k2
SðkÞ�ðkÞ: (12)

(iii) Shift the original particles by s and compute the
‘‘displaced’’ density field,

�dðkÞ ¼
Z

d3qe�ik�qðe�ik�½�ðqÞþsðqÞ� � 1Þ: (13)

Note that if the original density field were linear,
and S ¼ 1, this would undo their displacements
exactly, moving them back to their original posi-
tions and giving �d ¼ 0.

(iv) Shift a spatially uniform grid of particles by s to
form the ‘‘shifted’’ density field,

�sðkÞ ¼
Z

d3qe�ik�qðe�ik�sðqÞ � 1Þ: (14)

Again, assuming linear theory would imply
�sðkÞ ¼ ��ðkÞ.

(v) The reconstructed density field is defined as �recon �
�d � �s

�reconðkÞ ¼
Z

d3qe�ik�qe�ik�sðqÞðe�ik��ðqÞ � 1Þ
(15)

with power spectrum PreconðkÞ / hj�2
reconji.

Note that S / s ! 0 is equivalent to no reconstruction,
which is helpful in interpreting some of the expressions
below.
When applied to simulations this process yields an

enhanced BAO feature [8–11] with a reduced ‘‘shift’’ in
the peak. Our focus here is to understand what this proce-
dure is doing within an analytic framework.
In the spirit of LPT we can expand the reconstructed

density field in a perturbative series

�recon ¼ �ð1Þ
recon þ �ð2Þ

recon þ � � � : (16)

As anticipated above, the reconstructed field equals the
linear density field to lowest order. Working to the next
order, we find
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�ð2Þ
recon ¼ �ð2Þ � 1

2

Z d3k1d
3k2

ð2�Þ3 �ðDÞðk1 þk2 �kÞ�lðk1Þ

��lðk2Þk �Lð1Þðk1Þk �Lð1Þðk2Þ½Sðk1ÞþSðk2Þ�:
(17)

We observe that the second-order term in the reconstructed

density field does not vanish. While �ð2Þ contains Lð2Þ, the
correction only involvesLð1Þ and so cannot fully cancel the
nonlinearity. This is a general feature—the corrections to

�ðnÞ only involve terms Lði<nÞ—and follows from the fact
that we only worked to first order when shifting objects.
We note in passing that one might be able to construct

higher order reconstruction schemes such that �ðn>1Þ
l con-

tributions to the reconstructed density vanish, but that is
beyond our scope here.

To recap: the reconstruction algorithm above generates a
density field with second-order corrections, not the linear
density field. The next section explains why simulations
saw an improvement when using reconstruction, by con-
sidering the reconstructed power spectrum.

III. THE POWER SPECTRUM

A. A toy model

To best highlight the effects of reconstruction on the
power spectrum, we start with a toy model that captures
both the physics and the algebraic structure of the full
gravitational perturbation problem. This toy model is par-
ticularly useful for identifying the effect of reconstruction
on the nonlinear damping of the linear power spectrum in
Eq. (1). Section III B describes the correspondence be-
tween the toy model and the full gravitational instability
problem, extending the analysis of the effect of reconstruc-
tion to the mode-coupling terms as well.

Consider a model, inspired by the peak-background
split, where � can be split into low (L) and high (H)
frequency pieces,

� ¼ �L þ�H; (18)

with �L the Zel’dovich displacement based on a linear
density field �l,

� LðkÞ ¼ i
k

k2
�lðkÞ: (19)

For simplicity we assume that �H is also Gaussian and is
uncorrelated with �L. The intuitive picture behind this
model is that �L encodes the linear density field, while
�H encodes the nonlinearities; importantly, the baryon
oscillations only exist in �L and not in �H.

Using Eq. (4) the power spectrum is

PðkÞ ¼
Z

d3qe�ik�qðhe�iki��iðqÞi � 1Þ; (20)

where q ¼ q1 � q2, and �� ¼ �ðq1Þ ��ðq2Þ. For

Gaussian �

he�ik���ðqÞi ¼ exp½�1
2kikjh��iðqÞ��jðqÞi� (21)

with

kikjh��iðqÞ��jðqÞi ¼ 2k2i h�2
i ð0Þi � 2kikj�ijðqÞ; (22)

where �ijðqÞ � h�iðq1Þ�jðq2Þi is the displacement corre-

lation function and we have used translational invariance
for the correlation function at zero lag. To lowest order the
zero-lag correlation function is �ijð0Þ ¼ �ij�

2=2, with �2

the mean-squared Zel’dovich displacement of particles,

�2
L ¼ 1

3�2

Z
dpPLðpÞ (23)

with a similar expression for �H. Note that the relation of
the damping to the Zel’dovich displacement follows natu-
rally from the LPT formalism and shows the similarity of
the treatments in Refs. [4,6,7,12].
Given our assumption of uncorrelated low and high

frequency pieces, we have �2 ¼ �2
L þ�2

H. However
Fig. 1 demonstrates that the dominant contribution comes
from relatively large (k < 0:3h Mpc�1) scales. If we esti-
mate �H by substituting the nonlinear power spectrum in
the equation above, we find that the dominant contribution
comes from linear motions, even at z ¼ 0. For simplicity,
we will therefore assume �2 ’ �2

L in what follows.

FIG. 1. The damping scale at z ¼ 0 as a function of the
maximum wave number for the linear (solid line) and nonlinear
(dashed line) power spectra. Note that the dominant contribution
to the damping scale comes from linear motions.
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The nonlinear power spectrum is then given by

PðkÞ ¼ e�k2�2
L=2

Z
d3qe�ikiqiekikj�ijðqÞ: (24)

Following [7] we leave the zero-lag piece exponentiated,
but expand the exponential inside the integral. The first
term of the expansion gives PL. This procedure can be
viewed as a resummation of terms in the standard pertur-
bative expansion which leads to a power spectrum of the
form in Eq. (1),

PobsðkÞ ¼ e�k2�2
L=2PLðkÞ þ PmcðkÞ þ � � � (25)

with Plin ¼ PLðkÞ. Note that PmcðkÞ contains termsOð�2
HÞ

representing the high frequency part of the power spectrum
and terms Oð�4

LÞ corresponding to second-order (in PL)
corrections. We will consider these terms in the next
section.

The above can be extended to compute the reconstructed
power spectrum for this model. Since �H has no low
frequency piece by construction, we assume that the in-
ferred shift, sðkÞ, is simply given by

s ðkÞ ¼ �SðkÞ�LðkÞ þOð�2
LÞ: (26)

The fields �d and �s of Sec. II are then generated to first
order by ð1� SÞ�L þ�H and �S�L, respectively.
Since the reconstructed density field is the difference of
the two fields, there are three terms (two autospectra, Pss,
Pdd and one cross spectrum Psd) that make up the recon-
structed power spectrum: Precon ¼ Pss þ Pdd � 2Psd. The
autopower spectra are exactly analogous to the nonlinear
power spectra, except for the damping terms,

PssðkÞ ¼ e�k2�2
ss=2S2ðkÞPLðkÞ þ � � � (27)

and

PddðkÞ ¼ e�k2�2
dd
=2½1� SðkÞ�2PLðkÞ þ � � � (28)

where we have dropped higher order terms. The Gaussian
damping is modified to

�2
ss ¼ 1

3�2

Z
dpS2ðpÞPLðpÞ (29)

with an analogous expression for�dd with S2 ! ð1� SÞ2.
The cross power spectrum is

PsdðkÞ ¼ �e�k2�2
sd
=2SðkÞ½1� SðkÞ�PLðkÞ þ � � � (30)

where

�2
sd ¼ 1

2ð�2
ss þ�2

ddÞ; (31)

and the negative sign comes from the fact that the random
field was shifted by the negative Zel’dovich term. Putting
the pieces together, we find that the damping term becomes

DðkÞ � e�k2�2=2 ! S2ðkÞe�k2�2
ss=2 þ ½1� SðkÞ�2e�k2�2

dd
=2

þ 2SðkÞ½1� SðkÞ�e�k2�2
sd
=2: (32)

Before proceeding, it is useful to choose an explicit form
for the smoothing; the standard choice is a Gaussian,

S ðkÞ ¼ exp

�
� k2R2

4

�
: (33)

Figure 2 plots the various damping scales as a function of
the smoothing scale. As expected, for nonzero smoothing,
both �ss and �dd (and therefore �sd as well) are less than
the nonlinear damping scale. This is the crux of the recon-
struction method—that the PL contribution to the recon-
structed power spectrum is less damped than in the
nonlinear power spectrum. This holds even when taking
into account that there are additional terms depending upon
SðkÞ in DðkÞ as we now show.
Before considering Eq. (32) for arbitrary choices of

smoothing scales, we consider the special case where
�ss ¼ �dd ¼ �sd; for the Gaussian smoothing above,
this corresponds to a smoothing scale R� 30h�1 Mpc.
The damping of PL in the reconstructed power spectrum
simplifies considerably; the reconstructed power spectrum
has the form,

PreconðkÞ ¼ e�k2�2
ss=2PLðkÞ þ � � � : (34)

Note that this is identical to the form of the nonlinear
power spectrum Eq. (25) except that �ss <�, reducing
the damping.

FIG. 2 (color online). The ratio of �ss, �sd, and �dd to �, as a
function of the Gaussian smoothing scale, R. Note that for no
smoothing, �ss ¼ � and �dd ¼ 0, while for infinite smoothing,
�dd ¼ � with �ss ¼ 0.
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Figure 3 shows the damping, DðkÞ, for smoothing scale
R ¼ 5h�1 Mpc, as an example of its general form for an
arbitrary choice of smoothing scale. Given R, the factors
involving SðkÞ determine the range of wave numbers for
which each of the three power spectra dominate. For large
R (see below), Pdd dominates over the wave numbers
important for baryon oscillations [0:07< kðh=MpcÞ<
0:35] but as we argue below, this limit is not optimal. As
we decrease R, we might have expected that Pss would
have dominated; however, decreasing R quickly increases
�ss to close to the nonlinear damping scale (Fig. 2), limit-
ing the importance of Pss. Indeed, in Fig. 3, we see that Pss

has the linear power spectrum more strongly damped than
the nonlinear power spectrum. The dominant term at small
R is therefore Psd; Fig. 2 shows that �sd is �0:6� and is
only weakly dependent on R. This suggests that such a
reconstruction method can reduce the damping of the
linear power spectrum by a factor �2.

The above discussion argues that the smoothing scale
determines the wave number where Pdd becomes domi-
nant. The obvious question is whether the above analysis
suggests a value for the smoothing scale. We argue that the
natural choice is R� �, the nonlinear (damping) scale. To
see why, we start by observing that the terms we ignored in
Pdd are Oð�2

HÞ, whereas for Pss and Pdd they involve

higher powers of the displacement. This is just the state-
ment that the small-scale displacements have their largest

effect on Pdd which is not surprising, given that Pdd is
based on the original density field. We would ideally want
to reduce these terms, which argues for making R as small
as possible. However, from Eq. (25), we see that the linear
field is damped on scales smaller than �. Smoothing on
scales much smaller would then violate our assumption
that sðkÞ is derived from the linear density field, which
leads to choosing R� � as might have intuitively been
expected.
The above discussion explains how reconstruction re-

duces the damping of the acoustic oscillations (or equiv-
alently, how it sharpens the peak in the correlation
function). We now turn to its effect on the mode-coupling
terms, by considering the reconstructed power spectrum
within LPT.

B. Lagrangian perturbation theory

Many of the features of reconstruction in the last section
carry across to the gravitational instability problem within
LPT. We will closely follow the LPT formalism developed
in [7,12] in which the broadening of the peak and the
mode-coupling terms appear naturally.
For the unreconstructed power spectrum the derivation

leading to Eq. (20) still holds. However now we must use
the cumulant expansion theorem

he�iXi ¼ exp

�X
N¼1

ð�iÞN
N!

hXNic
�

(35)

(where the hXNic are the connected moments) to compute
the expectation value of the exponential. In the toy model
only the N ¼ 2 term survived, for the full problem higher
orders contribute as well. Expanding ðk � ��ÞN using the
binomial theorem we have two types of terms: those where
the � are all evaluated at the same point (which we can
take to be the origin) and those with j q1’s and N � j q2’s.
As in the toy model, and following [7], we leave the first set
of terms exponentiated while expanding the second set of
terms in powers of �. If we keep only the lowest order
terms in the exponential we regain the form of Eq. (1) with
� given by the rms Zel’dovich displacement

PðkÞ ¼ e�k2�2=2

�
PLðkÞ

�
1þ

Z
d3k1PLðk1ÞGðk;k1Þ

�

þ
Z

d3k1d
3k2PLðk1ÞPLðk2ÞF2ðk1;k2;kÞ þ � � �

�

(36)

where F and G can be expressed in terms of Lð1Þ and Lð2Þ
and explicit expressions may be found in [7]. There are
oscillations in PL and the mode-coupling term (second
line), but the integral in the first line has a wide kernel so
the oscillations are suppressed. As it happens, F is peaked
around k1 � k2 � k=2, which helps to explain why this
term in the third line leads to a peak shift. If PL contains an
oscillatory piece, e.g., sinðkrÞ, then the third term contains

FIG. 3 (color online). The damping of the linear power spec-
trum for the nonlinear power spectrum (dashed line), and the
reconstructed power spectrum [Eq. (32), solid line, assuming a
smoothing scale R ¼ 5h�1 Mpc]. The dotted lines decompose
the reconstructed damping into the leading contributions from its
Pss, Psd, and Pdd components These curves have been calculated
assuming z ¼ 0.
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a piece schematically of the form sin2ðkr=2Þ � 1þ
cosðkrÞ, which oscillates out of phase with PL. It is the
sum of the two out of phase components that leads to a shift
in the peak of �ðrÞ or the phasing of the harmonics in
PobsðkÞ.

It is now straightforward, though tedious, to repeat these
steps for the reconstructed field. The formalism of Ref. [7]
must be generalized to allow two displacements (s and�).
Again there are three contributions, Pss, Pdd, and Psd, and
three smoothings, �ss, �dd, and �sd of the same form as
before. The term proportional to PL becomes

PreconðkÞ ¼ fe�k2�2
ss=2S2ðkÞ þ 2e�k2�2

sd
=2SðkÞ½1� SðkÞ�

þ e�k2�2
dd
=2½1� SðkÞ�2gPLðkÞ; (37)

directly comparable to the result of the toy model.
The leading contribution to the mode-coupling term is

the same as in standard perturbation theory, and is strictly

positive, coming from h�ð2Þ�ð2Þi. Recalling the relation

between �ð2Þ
recon and �ð2Þ we need to replace F in the

mode-coupling term with F̂ subject to

2F̂ðk1;k2Þ � k �Lð2Þðk1;k2Þ þ k �Lð1Þðk1Þk �Lð1Þðk2Þ
� ½1� Sðk1Þ � Sðk2Þ� (38)

where k1 þ k2 ¼ k. The piece of the mode-coupling in-
tegral which shifts the peak comes from k1 � k2 � k=2
where k �L2 ¼ 0 and

F̂ðk=2;k=2Þ ¼ 2f1� 2Sðk=2Þg: (39)

Since the term in f� � �g is bounded between�1 and 1, F̂2 <
F2 for all k, suppressing the reconstructed mode-coupling
term relative to the corresponding term in the nonlinear
power spectrum. This explains why the miscalibrations in
the acoustic scale were reduced after reconstruction in [8].

IV. COMMENTS

It is now generally understood ([4,6,7] and this work)
that the dominant effect of the nonlinear evolution of
matter perturbations on the baryon oscillations is to damp
the higher harmonics, PobsðkÞ ¼ expð�k2�2=2ÞPlinðkÞ þ
� � � , or equivalently, smooth the feature in the correlation
function. Eisenstein et al. [9] proposed a reconstruction
method, demonstrated on simulations, that undoes this
nonlinear smoothing and appears to restore the linear
power spectrum. Motivated by recent progress in

Lagrangian perturbation theory [7,12], we revisit this al-
gorithm in order to better understand why it works as well
as its shortcomings. Our principal conclusions are as fol-
lows:
(i) The field generated by the reconstruction process is

not the linear density field at second order. Note that
this is a general statement, independent of assump-
tions about the smoothing of the initial density field.

(ii) Reconstruction does reduce the damping of the
oscillations, by about a factor of 2 when the input
density field is smoothed on the nonlinear scale.

(iii) Reconstruction also reduces the mode-coupling
terms which introduce an out of phase component
of the oscillations or shift the peak.

(iv) The reconstructed power spectrum is the sum of
three power spectra (the autopower spectra of the
displaced and shifted fields, and their cross spec-
trum), each of which have different damping terms
[Eq. (32)]. An appropriate model for the recon-
structed power spectrum should take this into ac-
count, instead of modeling it as a single damping
scale.

(v) When the smoothing scale is close to the nonlinear
scale, the correlation between the shifted and dis-
placed fields plays a crucial role.

Our results suggest a number of natural extensions. The
effects of bias and redshift space distortions have been
incorporated into the Lagrangian formalism [7,12], and
could therefore be folded in to the LPT formulation of
reconstruction. We have observed that the reconstructed
density field is not the linear density field; an interesting
possibility is to explore whether higher order reconstruc-
tion schemes actually yield dividends. Even within the
context of the existing reconstruction schemes, it is pos-
sible that a different weighting of the three power spectra
may yield improved accuracy in measuring the distance
scale. We leave these avenues open for future investigation.

ACKNOWLEDGMENTS

We thank David Spergel and Will Percival for conver-
sations on reconstruction. N. P. is supported by NASA
HST-HF-01200.01 and LBNL. M.W. is supported by
NASA and the Department of Energy. J. C. is supported
by the Department of Energy. This work was supported by
the Director, Office of Science, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

[1] D. J. Eisenstein, New Astron. Rev. 49, 360 (2005).
[2] D. J. Eisenstein, W. Hu, J. Silk, and A. S. Szalay,

Astrophys. J. Lett. 494, L1 (1998).

[3] A. Meiksin, M. White, and J. A. Peacock, Mon. Not. R.
Astron. Soc. 304, 851 (1999).

[4] D. J. Eisenstein, H.-J. Seo, and M. White, Astrophys. J.

NIKHIL PADMANABHAN, MARTIN WHITE, AND J.D. COHN PHYSICAL REVIEW D 79, 063523 (2009)

063523-6



664, 660 (2007).
[5] R. E. Smith, R. Scoccimarro, and R.K. Sheth, Phys. Rev.

D 77, 043525 (2008).
[6] M. Crocce and R. Scoccimarro, Phys. Rev. D 77, 023533

(2008).
[7] T. Matsubara, Phys. Rev. D 77, 063530 (2008).
[8] H.-J. Seo, E. R. Siegel, D. J. Eisenstein, and M. White,

Astrophys. J. 686, 13 (2008).
[9] D. J. Eisenstein, H.-J. Seo, E. Sirko, and D.N. Spergel,

Astrophys. J. 664, 675 (2007).
[10] E. Huff, A. E. Schulz, M. White, D. J. Schlegel, and M. S.

Warren, Astropart. Phys. 26, 351 (2007).
[11] C. Wagner, V. Müller, and M. Steinmetz, Astron.

Astrophys. 487, 63 (2008).

[12] T. Matsubara, Phys. Rev. D 78, 109901 (2008).
[13] T. Buchert, Astron. Astrophys. 223, 9 (1989).
[14] F. Moutarde, J.-M. Alimi, F. R. Bouchet, R. Pellat, and A.

Ramani, Astrophys. J. 382, 377 (1991).
[15] E. Hivon, F. R. Bouchet, S. Colombi, and R. Juszkiewicz,

Astron. Astrophys. 298, 643 (1995).
[16] A. N. Taylor and A. J. S. Hamilton, Mon. Not. R. Astron.

Soc. 282, 767 (1996).
[17] F. R. Bouchet, S. Colombi, E. Hivon, and R. Juszkiewicz,

Astron. Astrophys. 296, 575 (1995).
[18] B. Grinstein and M.B. Wise, Astrophys. J. 320, 448

(1987).

RECONSTRUCTING BARYON OSCILLATIONS: A . . . PHYSICAL REVIEW D 79, 063523 (2009)

063523-7


