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Dark energy and dark matter are only indirectly measured via their gravitational effects. It is possible

that there is an exchange of energy within the dark sector, and this offers an interesting alternative

approach to the coincidence problem. We consider two broad classes of interacting models where the

energy exchange is a linear combination of the dark sector densities. The first class has been previously

investigated, but we define new variables and find a new exact solution, which allows for a more direct,

transparent, and comprehensive analysis. The second class has not been investigated in general form

before. We give general conditions on the parameters in both classes to avoid unphysical behavior (such as

negative energy densities).
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I. INTRODUCTION

Cosmological observations point to the existence of
nonbaryonic cold matter and of a late-time acceleration
of the Universe (see, e.g., [1–3]). If gravity is modeled on
cosmological scales by general relativity, and if we assume
that the Universe is homogeneous and isotropic on these
scales, then the late-time acceleration is sourced by a dark
energy component, and the Universe is dominated by the
‘‘dark sector.’’ The quest to uncover the true nature of dark
matter (DM) and dark energy (DE) is one of the most
pressing topics of modern cosmology.

One of the fundamental puzzles within this quest is the
‘‘coincidence problem’’: how is it that we seem to live in a
time when the densities of DM and DE are of the same
order of magnitude, given that they evolve very differently
with redshift? An interesting proposal is that interaction
between the dark fields could perhaps alleviate the coinci-
dence problem. Various interaction models have been put
forward and studied (see, e.g., [4–24]).

For a flat Friedmann-Robertson-Walker universe, the
background dynamics after recombination are governed
by the equations of energy balance and the Raychaudhuri
field equation:

_�b ¼ �3H�b; (1a)

_�c ¼ �3H�c þQ; (1b)

_�x ¼ �3ð1þ wxÞH�x �Q; (1c)

_H ¼ �4�G½�b þ �c þ ð1þ wxÞ�x�; (1d)

where H ¼ _a=a is the Hubble parameter, �c is the cold
DM density, �b is the baryonic density, �x is the density of

DE, and wx < 0 is its constant equation of state. The
baryons only interact gravitationally with the dark sector,
and Q is the rate of energy transfer in the dark sector. The
Friedmann constraint equation is

H2 ¼ 8�G

3
ð�b þ �c þ �xÞ: (2)

Note that the field equations (1d) and (2) are independent
ofQ, because of total energy conservation. A positiveQ>
0 represents transfer of energy from DE to DM; a negative
Q< 0 represents transfer of energy from DM to DE.
In this paper, we consider interactions that are linear

combinations of the dark sector densities:

Q ¼ Ac�c þ Ax�x: (3)

Here the rate factors AI are either proportional to H or
constants, leading to two classes of interaction model:

model I AI ¼ 3�IH; (4)

model II AI ¼ 3�I; (5)

where �I are dimensionless constants and �I are constant
transfer rates. Observations impose the general constraint
that the interaction should be subdominant today, so that

j�Ij � 1; j�Ij � H0: (6)

Model I has been recently analyzed by [4] (and earlier
work considered the special cases �c ¼ �x [5] and �x ¼ 0
[6]). We use an alternative approach, defining new varia-
bles to simplify the parameter space and finding the general
exact solution. We are able to recover previous results
more directly and simply and to provide some new insights
into the model.
The H in the Q-term for model I is motivated purely by

mathematical simplicity. By contrast, the energy exchange
in model II is motivated by similar models that have been
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used in reheating [25], curvaton decay [26], and decay of
DM to radiation [27]. As far as we know, model II for the
dark sector interaction has not been treated in the general
case before. The special case �x ¼ 0 has been analyzed by
[7] (and by [8] in the case where DE is modeled by
exponential quintessence).

A summary of the paper is as follows. Some properties
of the general case (Q not specified) are presented in
Sec. II. Model I is studied in Sec. III. In Sec. IV, we analyze
model II. Finally, we conclude in Sec. V.

II. THE CASE OF GENERAL Q

We define the dimensionless dynamical variables [28]

x ¼ 8�G

3H2
�x; y ¼ 8�G

3H2
�c; z ¼ 8�G

3H3
Q: (7)

Before proceeding further, we now show that we can
‘‘hide’’ the constant DE equation of state by defining a
new interaction variable ~z :¼ z=ð�wxÞ; in this way, all our
results below will be independent of the value of wx.

The dark sector balance equations read

x0 ¼ 3xð1� xÞ � ~z; ~z :¼ � z

wx

; (8a)

y0 ¼ �3xyþ ~z; (8b)

where a prime denotes d=dð�wxNÞ, with N ¼ lna (we
choose a0 ¼ 1). The baryonic density is determined by
the Friedmann constraint,

8�G

3H2
�b ¼ 1� x� y: (9)

We cannot solve the system of equations until Q is
specified, but we can draw some conclusions for a general
Q or ~z. The simplest cases are ~z ¼ ~zðx; yÞ, when the system
(8) is closed and autonomous. Model I is such a case. The
next simplest cases are those for which z is not determined
algebraically by x and y, but does satisfy an equation of
motion of the form ~z0 ¼ Fðx; y; ~zÞ, so that we have a 3-
dimensional autonomous system. Model II is an example
of this case.

The critical points ðx�; y�Þ of the dynamical system (8)
must comply with the conditions

3x�ð1� x� � y�Þ ¼ 0;(10a)

�3x�ð1� x� þ y�Þ þ 2~z� ¼ 0;(10b)

where ~z� is the interaction variable ~z evaluated at the
critical points. Equation (10a) implies that either x� ¼ 0,
which represents the usual matter dominated point, or x� þ
y� ¼ 1, which implies no contribution from the baryonic
component.

From Eq. (10b), we see that the option x� ¼ 0 directly
implies that ~z� ¼ 0. Thus pure matter domination can only
exist if the interaction term vanishes at the corresponding
point. On the other hand, the option x� þ y� ¼ 1 leads to

3x�ð1� x�Þ ¼ ~z�: (11)

If the dynamical system is autonomous, the above equation
depends only on x� and gives the position of the critical
point that is compatible with a nonzero interaction term
(and no baryonic contribution). By contrast, if the system is
not autonomous, we require extra information before we
can completely determine its critical points.
Another quantity of interest is the dark-energy-to-dark-

matter (DE-DM) ratio, R ¼ �x=�c. From Eqs. (8) we
obtain the evolution equation

R0

R
¼ 3� ðxþ yÞ

xy
~z; R ¼ �x

�c

¼ x

y
; (12)

which is equivalent to Eq. (3) in [29,30]. As we show later,
this equation can lead to exact solutions in some particular
models. A key point relates to the factor ðxþ yÞ in
Eq. (12): its substitution by the Friedmann constraint (9)
in some cases can hide the existence of exact solutions
(e.g., [4,29–31]). The standard noninteracting case, ~z ¼ 0,
shows the expected exponential result R ¼ R0e

�3wxN,
where R0 ¼ �x0=�c0 � 3:4 is the present value of the
DE-DM ratio.
If the current value of R is close to an asymptotic value,

R0 ’ R1 :¼ Rð1Þ, then the coincidence problem is
‘‘solved.’’ (Strictly, one has transferred the coincidence
problem to a problem of explaining the dark sector inter-
action.) In this case, R must be a slowly evolving function
as N ! 1, i.e., R0 ’ 0 at late times, which requires

3xy� ~zðxþ yÞ ’ 0: (13)

As we shall discuss next, for some models this condition is
met only at some points of the phase space.

III. MODEL I: Q ¼ 3Hð�x�x þ�c�cÞ
This model was intensively studied in [4] (our �I cor-

respond to their �I). We find the critical points in a more
direct way and also find the general exact solution. This
allows us to recover many of their results more directly and
simply and to provide some new insights into the model.

A. Critical points and their properties

The dimensionless interaction variable ~z is

~z ¼ 3ð~�xxþ ~�cyÞ; ~�I ¼ � �I

wx

: (14)

Thus ~z ¼ ~zðx; yÞ and the phase space is two dimensional
and autonomous.
As discussed before, the first type of critical point in

Eqs. (10) is that for which x� ¼ 0 and ~z� ¼ 0. Such a
critical point in the present model also needs y� ¼ 0, and
then it corresponds to a baryon dominated point. This point
is not realistic and we will exclude it from our analysis; for
more details, see [4].
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The critical points that are compatible with a nonzero
interaction term comply with the constraint x� þ y� ¼ 1
and are solutions of Eq. (11) in the form

x�ð1� x�Þ ¼ ~�xx� þ ~�cð1� x�Þ: (15)

The critical points and their linear stability are summarized
in Table I; the results are in agreement with those of [4].
For convenience we have defined the parameters

C1 ¼ 1
2ð1� ~�x � ~�cÞ; (16a)

C2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 � ~�x ~�c

q
: (16b)

Note that the existence condition for the critical points
ensures that C2 is real.

For a physically viable model, one of the critical points
should correspond to a DM dominated universe, x ! 0 and
y ! 1, at early enough times; moreover, this critical point
should be an unstable point. The only candidate is point A,
but xA � 0. For DM domination we need jxAj � 1; to
linear order in x�, we obtain from Eq. (15) that

xA ’ ~�c

1� ~�x

; yA ’ 2C1

1� ~�x

: (17)

At late times we must get a DE dominated universe, which
should correspond to the stable point B. For the latter,
Eq. (15) gives the estimate

xB ’ 2C1

1� ~�c

; yB ’ ~�x

1� ~�c

: (18)

For certain parameter values the DE density is negative
at early times [4] (see also [7] in the cases �x ¼ 0 and
�x ¼ �c). In a first approximation we can use Eqs. (17)
and (18) to determine the conditions under which both DM
and DE are non-negative and well behaved at all times.

At early times, we must impose the constraint

0 � xA ’ ~�c

1� ~�x

< 1; (19)

which is satisfied if

~� c � 0; 1> ~�x þ ~�c; (20)

or

~� c � 0; 1< ~�x þ ~�c: (21)

Likewise, at late times we have the constraint

0 � yB ’ ~�x

1� ~�c

< 1; (22)

and then the same conditions (20) and (21) apply, but now
with the interaction constants interchanged, ~�c $ ~�x. It
can be verified that the conditions described above give the
correct description for the different cases depicted in
Figs. 7, 8, and 9 in [4].
It follows that for a plausible scenario, the interaction

parameters ~�c and ~�x must be both nonpositive or both
non-negative. A remarkable result arises now. If the inter-
action parameters are to have the same sign, the only
permitted case is that of Eq. (20), as the case in Eq. (21)
cannot be consistently satisfied if the interaction parame-
ters are both negative.
Another constraint appears from the condition that the

critical points are such that 0 � x�, y� � 1. From Eqs. (17)
, we get ~�x < 1; likewise, from Eqs. (18) we get ~�c < 1.
Finally, the critical points should be real, C2

2 � 0, and then
the allowed values ð~�c; ~�xÞ are those located below the
rotated parabola

ð~�x � ~�cÞ2 � 2ð~�x þ ~�cÞ � 1: (23)

Therefore, we arrive at the overall conclusion that 0 �
~�c, ~�x � 1 if the DM and DE contributions are to be
positive and well behaved, 0< x, y < 1, at all times.
This is in agreement with the results of [4] (see the critical
points A2 and B2 in Table I). We used a first order calcu-
lation based on Eqs. (17) and (18); however, by continuity,
we expect the result to be true even in cases where DE and
DM contribute significantly at early and late times.
A more general statement exists regarding the positivity

of the dark components at early times. Note that we can
write Eq. (15) for the critical points in the form

3wxx�y� ¼ �3ð�xx� þ �cy�Þ ¼ �z�: (24)

If both DM and DE are to be positive for all times, then z
and wx should have opposite signs. This explains why the
DE component becomes negative at early times in certain
models: it is because the interaction variable z can become
negative at DM domination. In our case, non-negative
interaction constants ensure that both DM and DE are
positive at all times (see also Figs. 7 and 9 in [4] for
some other examples.)

TABLE I. Critical points of model I and their stability. C1, C2 are given in Eq. (16); notice that C2 is positive by definition. The
existence conditions are given here in general, but the discussion in the text suggests that both interaction parameters should be
positive, see Eq. (20), so that both xA and xB are positive too. Thus, point A is of the saddle type whereas point B is stable.

Point x� y� Existence Eigenvalues Stability

A C1 þ ~�c � C21� xA C2
2 � 0 �3ðC1 þ ~�c � C2Þ; 6ðC2 þ ~�xÞ Unstable if xA < 0 and C2 þ �x > 0.

Saddle if xA > 0 and C2 þ �x > 0
or xA < 0 and C2 þ �x < 0. Stable if xA > 0 and C2 þ �x < 0.

B C1 þ ~�c þ C21� xB C2
2 > 0 �3ðC1 þ ~�c þ C2Þ;�6C2 Saddle if xB < 0. Stable if xB > 0.
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In Fig. 1, we show the allowed values of the interaction
parameters (represented by the red shaded region) accord-
ing to the discussion above.

B. DE-DM ratio: exact solution

With the interaction term (14), Eq. (12) becomes

R0 ¼ �3½~�xR
2 � ð1� ~�x � ~�cÞRþ ~�c�: (25)

This equation provides the known solutions of simpler
cases, e.g., for the case �x ¼ 0, we have

R ¼
�
�x0

�c0

þ �c

wx þ �c

�
e�3ðwxþ�cÞN � �c

wx þ �c

; (26)

which directly recovers Eq. (7) of [9]. Here we present the
new solution in the general case �x � 0:

RðNÞ ¼ C1

~�x

� C2

~�x

tanh½3wxC2ðN � N1Þ�; (27)

where C1 andC2 are given by Eqs. (16), and the integration
constant is

N1 ¼ � 1

3wxC2

tanh�1

�
1

C2

�
~�x

�x0

�c0

� C1

��
: (28)

Using Eq. (27) we can integrate the DM energy balance
equation to obtain the DM density as a function of N:

�c ¼ �c0e
ð�3��c�C1ÞN

�
cosh3C2ðN � N1Þ

cosh3C2N1

�
1=3

; (29)

and then the DE density follows directly as �xðNÞ ¼
RðNÞ�cðNÞ.
The asymptotic values of the DE-DM ratio from Eq. (27)

are directly related to the values inferred from the critical
points in Table I,

R�1 :¼ Rð�1Þ ¼ C1 � C2

~�x

¼ xA
yA

; (30a)

R1 :¼ Rð1Þ ¼ C1 þ C2

~�x

¼ xB
yB

: (30b)

It follows that the smallest value of the DE-DM ratio R�1
is determined by the critical point A; likewise, its largest
value R1 is determined by the critical point B. The corre-
spondence between the asymptotic values of R and the
critical points A and B is not surprising after all, because
the roots of R0 ¼ 0 in Eq. (25) are actually the ratios
inferred from the critical points.
There is an interesting point concerning the initial values

of the DE-DM ratio. For given values of the free parame-
ters of the model (wx, �x, and �c), the initial value of the
DE-DM ratio, Ri, should be such that

Ri > R�1; (31)

otherwise the evolution of the DE-DM ratio is not de-
scribed by Eq. (27). A similar constraint exists for the
late-time value R1:

R1 > R0; (32)

to ensure that the value R0 is included in the range of values
allowed by the exact solution (27).
Further constraints on the values of the interaction pa-

rameters can be obtained from Eqs. (31) and (32).
According to Eq. (17), if the DE contribution is to be small
at early times, we can write

R�1 ¼ xA
yA

’ ~�c

2C1

; (33)

and then, for a given value of Ri, Eq. (31) becomes the
constraint

~� c <
Ri

1þ Ri

ð1� ~�xÞ: (34)

By using Eq. (18), i.e., under the assumption that the
DM contribution is small at late times, we find the com-
panion expression of Eq. (33), which is

R1 ¼ xB
yB

’ 2C1

~�x

; (35)

and then Eq. (32) becomes the constraint

~� c < 1� ð1þ R0Þ~�x: (36)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

α~ c

α~x

R∞,m = 10
R0 = 3.4
Ri   = 0.1
α~c = α~x

FIG. 1 (color online). The shaded (red) region contains the
allowed non-negative values of ~�c and ~�x satisfying the reality
constraint (23). The dotted (cyan) line represents the equality in
Eq. (34) for Ri ¼ 0:1, the dashed (blue) line represents the
equality in Eq. (36) for R0 ¼ 3:4, and the dash-dotted (green)
line is Eq. (37) with R1;m ¼ 10. The solid (yellow) line corre-

sponds to the particular case �c ¼ �x [5]. The only region that
provides reasonable values of the DE-DM ratio at both early and
late times is the one surrounded by the solid (thick black) lines.
The value Ri ¼ 0:1 was chosen for presentation purposes; the
allowed region would become much smaller for a more realistic
value Ri � 0:1.
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If we want an upper limit on R1, i.e., R1 <R1;m, where

R1;m is some maximum value, then a new constraint arises

from Eq. (35),

~� c > 1� ð1þ R1;mÞ~�x: (37)

The inclusion of the constraint equations (34), (36), and
(37) in Fig. 1 indicates that only a small region of the
parameter space may be compatible with observations. The
examples in Fig. 1 correspond to Ri ¼ 0:1, R0 ¼ 3:4, and
R1;m ¼ 10.

It can be verified that the above results are in agreement
with the results presented in [4,5,7,9,31,32]. In particular,
the diverse cases presented in those papers are explained in
a unified way by the exact solution (27), and our approach
provides very simple expressions for the analysis of the
parameter space. For example, it readily explains the trou-
blesome features encountered in Figs. 7, 8, and 9 of [4].

In Fig. 2 we show examples of the evolution of the DE-
DM ratio for fixed values R1, R0, and wx. The curves
correspond to different values of ~�x, and the values of ~�c

were determined from Eq. (35). Finally, we show in Fig. 3 a
typical example of a phase space with parameters in the
allowed region of Fig. 1.

We are assuming that the initial conditions are set at the
onset of matter domination, and that the DM to baryonic
matter ratio is the same as in the standard case,

�b

�c

��������i
’ �b;0

�m;0

’ 1

5
: (38)

Note that the above is just an approximation, since the DM
component in the interacting case does not evolve exactly

as a�3; see Eq. (29). Then the initial conditions of the DM
and DE contributions, with the help of the Friedmann
constraint (9), are determined from

xi þ 6
5yi ’ 1: (39)

Some examples of numerical solutions of the equations
of motion are shown in Fig. 3 for different initial condi-
tions. All of them represent valid solutions that start at a
matter dominated epoch and end in a final state with finite
DE-DM ratio. This final state is uniquely determined by
the values of the free parameters of the model.
The phase-space portrait reveals some other aspects of

the interacting model under consideration, apart from the
critical points and their stability studied above. It shows the
line R�1 ¼ x=y, which approximates very well the heter-
oclinic curve that connects the (unstable) critical point at
the origin (actually, this is the baryonic dominated critical
point discussed in Sec. III A) with the (saddle) point A. It is
then apparent that any curve with initial DE-DM ratio Ri <
R�1 leads to trajectories in which the DE component is
negative and the DM grows without bound.

 0.0001

 0.001

 0.01

 0.1

 1

 10

-10 -5  0  5  10

R
(N

)

N

α~x = 0.0850
     = 0.0900
     = 0.0909
   ΛCDM
R0 = 3.4

FIG. 2 (color online). Evolution of the DE-DM ratio RðNÞ
according to Eqs. (16) and (27). The chosen values of the various
parameters are R0 ¼ 3:4, R1 ¼ 10, whereas the value of ~�c was
determined from Eq. (35) for the given values of ~�x. For
comparison, the dash-dotted (green) line represents the standard
�CDM case. The dotted line corresponds to exactly ~�c ¼ 0, for
which case R�1 ¼ 0 and the earlier evolution is very similar to
that of standard �CDM.

FIG. 3 (color online). The phase space of model I in the case
~�x ¼ 0:15, and ~�c ¼ 0:05. The circles (red) are the critical
points A and B (see Table I), and the dashed (green) line is the
(heteroclinic) constraint xþ y ¼ 1 that connects them. The dot-
dashed (green) line that connects the saddle point A to the
unstable critical point at the origin is a good approximation to
the heteroclinic trajectory between the two points. The long-
dashed (red) line represents the ratio x=y ¼ 0:1. The dotted
(blue) line is the approximate Friedmann constraint (39). The
solid (black) lines are numerical solutions of the equations of
motion for different initial conditions. The trajectories with
initial conditions on the right of the heteroclinic line end up at
point B; if the initial conditions are on the left, the DE compo-
nent becomes negative and the DM one grows without bound.
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Therefore, the constraint equation (31) is not only nec-
essary for the trajectory to be described in terms of the DE-
DM ratio in Eq. (27), but it is also needed to have a
reasonable evolution of the Universe after the onset of
matter domination.

The initial value Ri is related to the e-fold number Ni by

Ri ¼ �C1

�x

þ C2

�x

tanh½3C2ðNi � N1Þ�; (40)

where N1 is determined from Eq. (28), so that there is a
one-to-one correspondence between Ri and Ni. Thus dif-
ferent initial conditions result in different times for the
appearance of a matter dominated epoch. Different initial
conditions can have dramatic effects on the past history of
the Universe, even if the final state can be arranged to be
the same in all cases.

C. Special cases

Our results apply for some special cases already present
in the literature. For instance, if ~�x ¼ ~�c [5], then Eqs.
(16) suggest that ~�c � 1=4 for the critical points to be real
[see also Eq. (23)]. Moreover, Eq. (17) implies that ~�c � 1
if proper matter domination is to appear and then RA � 1.
Since Eqs. (19) and (22) together imply that RB ¼ 1=RA,
this model has difficulty to achieve an asymptotically
constant DE-DM ratio relevant to the coincidence problem.

Another example is ~�x ¼ 0 [9], for which the critical
points, from Eq. (15), are xA ¼ ~�c and xB ¼ 1. However,
Fig. 1 indicates that any reasonable model necessarily
needs ~�x � 0 to alleviate the coincidence problem.

For completeness, we can also have the case ~�c ¼ 0.
Then there is proper matter domination for any value 0 �
~�x � 1, because xA ¼ 0, and the case is free from the
problems related to a finite value of R�1; see Figs. 1–3.
The coincidence problem can be addressed if the only
nonzero interaction parameter is given an appropriately
small value, as RB ’ 1=~�x.

IV. MODEL II. Q ¼ 3ð�x�x þ �c�cÞ
In the simplest model of the reheating process after

inflation in the early Universe, one assumes that the oscil-
lating inflaton field � behaves like a matter fluid that
decays into relativistic particles; the decay is parametrized
by a constant decay width �� [25]. In our notation, Q ¼
����. Motivated by this, and by similar models for cur-

vaton decay [26] and for decay of DM to radiation [27], we
arrive at model II: Q ¼ 3ð�x�x þ �c�cÞ, where the �I are
constant decay widths. Unlike model I, the Q here is not
constructed a priori for mathematical simplicity, and the
dynamics are considerably more complicated as a result.

The variable z becomes

z ¼ 3

�
�x

H
xþ �c

H
y

�
; (41)

which typically grows in an expanding universe, and di-
verges in the limit H ! 0. Because of this, it is convenient
to define the new variable [8],

u :¼ H0

H þH0

; (42)

which allows us to compactify the evolution of z. Here, H0

denotes the current value of the Hubble parameter. Early
times correspond to u ! 0, and late times to u ! const (if
_H < 0, then u ! 1). As in model I, we redefine the inter-
action variables as

~� IðuÞ :¼ u

1� u

�I

ð�wxÞ ; �I :¼ �I

H0

: (43)

Notice that u0 ¼ 1=2 and then ~�I0 ¼ �I=ð�wxÞ. Thus

~z ¼ 3u

1� u

ð�xxþ �cyÞ
ð�wxÞ ¼ 3½~�xðuÞxþ ~�cðuÞy�; (44)

which is a time-dependent version of the model I expres-
sion (14). The equations of motion become

x0 ¼ 3xð1� xÞ � 3½~�xðuÞxþ ~�cðuÞy�; (45a)

y0 ¼ �3xyþ 3½~�xðuÞxþ ~�cðuÞy�; (45b)

u0 ¼ � 3

2wx

ð1þ wxxÞuð1� uÞ; (45c)

where a prime again denotes d=dð�wxNÞ. Note that the
DE equation of state appears explicitly in Eq. (45c) be-
cause the value of wx is necessary to know the time
evolution of the cosmological model.

A. Critical points

The system (45) is autonomous, and, to begin with, Eq.
(45c) admits the critical values u� ¼ 0 and u� ¼ 1.
If u� ¼ 0, then Eqs. (45a) and (45b) suggest the critical

values: (a) x� ¼ 0, with y� to be determined from the
Friedmann constraint (9); and (b) x� ¼ 1 and y� ¼ 0.
These are the expected critical points from the general
discussion in Sec. II; see Eqs. (10). The stability of these
points can be established by standard methods, from which
we find that (a) is unstable, while (b) is of a saddle type for
�1<wx < 0 and stable for wx <�1.
On the other hand, for u� ¼ 1 the only possibility, again

from the general discussion in Sec. II, is x� þ y� ¼ 1, and
then the critical value x� is determined from Eq. (15) but
with variable �I. Equation (15) has solutions

x�ðuÞ ¼ C1ðuÞ 	 C2ðuÞ þ ~�cðuÞ; (46)

where CIðuÞ are defined as in Eq. (16), with ~�I ! ~�IðuÞ.
For u ! 1 (that is, ~�I ! 1), the asymptotic approxi-

mate solutions are
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x� ’ 1

2
þ u

2wxð1� uÞ ½ð�x � �cÞ � j�x � �cj�

� 1

2

�j�x � �cj
�x � �c

��
�x þ �c

�x � �c

�
: (47)

The asymptotic values in the above equation depend on the
values of the interaction parameters. In the case ð�x �
�cÞ> 0, we find

x� ! x�� ¼
��1;
�c=ð�c � �xÞ; y�� ¼ 1� x�� ; (48)

and for ð�x � �cÞ< 0, we find

x� ! x�� ¼
�
�c=ð�c � �xÞ;
1;

y�� ¼ 1� x�� : (49)

The critical points ðxþ� ; yþ� ; 1Þ are always unstable, whereas
ðx�� ; y�� ; 1Þ are always stable. The finite critical points of
the system (45) and their stability are summarized in
Table II.

It should be stressed that model II is a time-dependent
generalization of model I, and then there should be good
agreement in the formulas of the two cases. For instance, a
quick comparison between Eqs. (17) and (18) and Eqs. (48)
and (49) quickly shows this is the case.

Point A represents matter (DM and baryons) domination
at early times, with no contribution from DE (unlike in
model I). Point C is a late-time attractor only in the case
ð�x � �cÞ> 0, and then we also require �c < 0 if the
energy density of the dark fluids is to be positive at the
critical point. Furthermore, C is a scaling point, since the
asymptotic DE-to-DM ratio is

R ¼ x

y
! ��c

�x

¼ ��c

�x

; (50)

which only depends on the ratio of the decay widths. This
asymptotic ratio also shows that the interaction rates �I

should have opposite signs if both dark densities are to
remain positive at late times. Thus

�x � 0 and �c � 0 (51)

are necessary conditions to have a finite and positive late-
time attractor in the model.

Apart from finding the critical points, we need to know
the behavior of the system at early times, since model II
can also exhibit a negative DE component, as shown in [7]
in the case �x ¼ 0.
In principle, we would need to scan exhaustively the 3-

dimensional phase space. A shortcut we will take is to find
the points x̂ at which x0ðx̂Þ ¼ 0, see Eq. (45a), for fixed
values of the variables y and u. The result is

x̂�ðuÞ ¼ 1
2½ð1� ~�xÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ~�xÞ2 � 4~�cy

q
�: (52)

In the early Universe, u ! 0, one possibility is x̂þ ¼ 1, but
the interesting solution is

x̂� ’ ~�cy: (53)

Clearly, the value of x̂� above marks the point at which the
x-component of the phase-space velocity x0 changes sign.
If the evolution of the cosmological system departs from

an early unstable point corresponding to non-negative dark
components, then we must impose the condition x̂� � 0,
otherwise the DE variable will approach point A from
below, x ! 0�. This generalizes the �x ¼ 0 result of [7]
to any value of �x and wx (see also the discussion below).
As a consequence, a non-negative DM interaction �c � 0
is necessary to ensure a positive DE density at early times.
It is now clear that we cannot, in general, find a version

of model II in which negative values of the dark energy
densities are consistently avoided at both early and late
times. In this sense, model II can only be used if we restrict
it to apply either (a) from the beginning only up to the
present time, or (b) from some finite time (e.g., recombi-
nation) onward.

B. Special cases

The first special case is �x ¼ �c. Following the discus-
sion in the previous section, it is necessary to have positive
interaction rates to have a proper early matter era. For the
late universe, the critical points are

x�� ¼ 1
2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4~�cðuÞ

q
; (54)

and then a negative value of �c is required for the critical
points to be real. But even in this case the values of x�� are

TABLE II. Critical points of model II. The early Universe is u ! 0, the late Universe is u ! 1, and �I ¼ �I=H0. The1-eigenvalue
for point C appears due to the limit u ! 1. As discussed in the text, see for instance Eq. (51), �x > 0 and �c < 0 are required to have
non-negative dark components at late times; those same conditions directly imply that point C is stable.

Point x� y� u� Existence Eigenvalues Stability

A 0 y� 0 All �c, �x 0; 3; �3=ð2wxÞ Unstable if wx < 0.
B 1 0 0 All �c, �x �3ð1þ wxÞ=ð2wxÞ; �3; �3 Saddle if �1<wx < 0.

Stable if wx <�1.
C ��c=ð�x � �cÞ �x=ð�x � �cÞ 1 �c � �x

3
2wx

�x��cð1þwxÞ
�x��c

;

3�c=ð�x � �cÞ;
�1 
 sgnð�x � �cÞ

Stable if �wxxC < 1, and xC > 0,
and �x > �c. Unstable otherwise.
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not finite in the limit u ! 1; hence, the simple case �x ¼
�c cannot provide a realistic model.

In our numerical experiments we have found that the
case ð�x � �cÞ< 0 has interesting properties. First, a prob-
lematic early evolution can be avoided if we choose �c �
0; note that �x may be positive or negative, as long as �x <
�c. As u ! 1, point C is unstable and there are two
possibilities for its late-time evolution; see Eq. (49).

The first one arises if at some time the DE variable x is to
the right of pointC, so that the system can freely follow the
late-time attractor x�� ¼ 1. This case is not interesting, as
the Friedmann constraint demands then that the DM vari-
able y ! �1.

The opposite case corresponds to the DE variable lo-
cated to the left of point C, in which case x ! �1 and,
because of the Friedmann constraint again, the DM vari-
able grows without bound y ! 1.

Whether the solution of Eqs. (45) is to the right or to the
left of the unstable point C depends on the initial condi-
tions and the values of the interaction parameters �I. For
instance, if the Universe were described by this variant of
model II, then we would be to the right (left) of point C if
x0 > xþ� (x0 < xþ� ).

The special case previously considered in [7] corre-
sponds to �x ¼ 0, and then it is a simple realization of
the case just described above. According to our previous
discussion, the model needs �c > 0 in order to have a
positive early DE component, in agreement with [7].
(Note that our interaction parameters are defined with an
opposite sign to those of [7].)

If �c < 0, the early evolution of the Universe is problem-
atic, but there exists the late-time attractor x ! 1 and y !
0, which is precisely the case in [7]. However, the case
�c > 0 is not a better option, because pointC then becomes
an unstable critical point for which x� ¼ 1 and y� ¼ 0.
According to its present conditions, our Universe would be
at the left of pointC and its late-time evolution would result
in x ! �1 and y ! 1.

Actually, Eq. (1b) has an exact solution if �x ¼ 0,

�c ¼ �c0a
�3 exp½3�cðt� t0Þ�; (55)

which tells us that the DM energy density is always posi-
tive, regardless of the sign of �c. It also confirms the
expectations discussed above: (a) if �c < 0, the DM com-
ponent may scale at a rate faster than the usual a�3 at early
times, but it exponentially vanishes at late times; (b) if
�c > 0, the DM component may scale at a rate slower than
the usual a�3 at early times, but it exponentially grows at
late times.

As for the special case �c ¼ 0, we see that the dark
components are well behaved, because both cases �x > 0
and �x < 0 lead the Universe to the (unstable) critical point
xþ� ¼ 0 at early times.

The differences appear at late times. If �x < 0, the
discussion about the general case ð�x � �cÞ< 0 also ap-

plies here. For example, our Universe would be presently
located at the right of point C, and then its final fate would
be x ! 1 and y ! �1.
If �x > 0, then point C is stable but represents a DM

dominated stage. If this were the case of the present
Universe, this would mean that the present DE dominated
epoch is a transient phenomenon and that the Universe
would eventually be dominated by DM again.
The above statements can be clearly seen from the exact

solution of Eq. (1c) in the case �c ¼ 0,

�x ¼ �x0a
�3ð1þwxÞ exp½�3�xðt� t0Þ�; (56)

which is the companion solution of Eq. (55). The transient
character of the DE dominated epoch is controlled by the
interaction �x; a long enough DE era requires an appropri-
ately small DE interaction.

C. DE-DM ratio

The evolution of the DE-DM ratio is governed by Eq.
(25), with ~�I ! ~�IðuÞ. We no longer have an exact solu-
tion because of the explicit dependence on u; however,
there are some semianalytical results that can help us to
understand the dynamics of the model.
The troublesome features of negative DE at early times

can also be derived via the equation for R:

_R ¼ �3ðwxH þ �c þ �xÞR� 3�c � 3�xR
2: (57)

In the matter dominated era, we have jRj � 1 and j�Ij �
H, so that �c / a�3 and then H ¼ 2=3t. Equation (57)
becomes

_R ! � 2wx

t
R� 3�c; (58)

with solution

R ! � 3�c

1þ 2wx

tþ Ct�2wx ; (59)

where C is an integration constant that has to be chosen to
impose appropriately the condition R ! 0 as t ! 0. If
wx <�1=2, the �c mode dominates over the C mode as
t ! 0, and then the DE becomes negative for �c < 0.
There is another constraint we may impose on the free

parameters of model II. If we require the DE-DM ratio to
be a growing function at the present time, i.e., R0j0 > 0,
then according to Eq. (25), we need

~� c � �~�xR0 þ R0

1þ R0

; (60)

where ~�Ið1=2Þ ¼ ~�I; see Eq. (43).
We show in Figs. 4 and 5 some numerical examples for

the evolution of the DE-DM ratio obtained from Eqs. (45).
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The different cases confirm the results on model II as
discussed above.

In particular, if we require positivity of both dark com-
ponents as t ! 1 and as t ! 0, then we require �c ¼ 0
and a positive small value of �x; the smaller �x is, the
larger the maximum value reached by the DE-DM ratio
before the Universe enters again into a late-time DM
dominated epoch.

V. CONCLUSIONS

We have made a careful analysis of two simple models
of interaction between DM and DE. The first model,
model I, has an interaction term proportional to the
Hubble parameter times a linear combination of the dark
sector densities, and is one of the most studied in the
literature.
We developed different mathematical techniques to in-

vestigate the properties of the model under simple but
general enough assumptions. Our results recover those of
previous studies, and we found new analytic expressions
that clarify the limitations of model I.
To begin with, we absorbed the (constant) DE equation

of state wx into the equations of motion, so that the
parameter space is truly two dimensional; this very much
simplified the study of the allowed values of the interaction
parameters (compare our Fig. 1 with the corresponding 3-
dimensional figures in [4]).
The absorption of the equation of state is not a mere

mathematical trick. The original equations of motion
would have been

x0 ¼ �3wxxð1� xÞ � z; (61a)

y0 ¼ 3wxxyþ z: (61b)

We can see that Eqs. (8) are recovered by setting wx ¼ �1
in the above equations. Thus, the cases discussed are in
some sense isomorphic to the cosmological constant inter-
acting case.
This fact also shows the degeneracy between interacting

models with a constant DE equation of state; if there is a
successful model with a cosmological constant, one can
find another one with a different value of wx. However, the
models are distinguishable in their particular evolution, as
the DE equation of state should appear explicitly in the
final expression of the DE-DM ratio, see Eq. (27), and
other quantities.
Even though our general assumption was wx < 0, it is

clear that in practice we have to restrict ourselves to values
of the DE equation of state that allow an accelerating
expansion at the present time, i.e., wtot <�1=3. It is also
possible to allow phantom values wx <�1, although it is
not clear whether any physically consistent models exist in
this regime. A comparison with observations would then be
required to distinguish among the different possibilities,
but this is beyond the purposes of the present study.
We presented for the first time the surprisingly simple

Eq. (12) for the DE-DM ratio, and its simple analytic
solution (27). We stress that the exact solution (27) allows
us to easily and directly uncover the limitations of this
interaction model. The exact solution has only one free
integration constant, and thus we need a careful choice of
initial conditions to ensure an evolution that remains close
to that of the standard noninteracting cosmology.
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FIG. 5 (color online). The same as in Fig. 4, but now for the
fixed value �c ¼ 0:2. As expected, early evolution is positive
because �c > 0 (see the inset), but point C is unstable in all
cases. The DE-DM ratio first diverges for x0 < xþ� , but asymp-
totes to R ! �� 1 at late times whatever the case x0 > xþ� or
x0 < xþ� ; see Sec. IVB and Eqs. (49).
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FIG. 4 (color online). Examples of the DE-DM ratio R as
obtained from the numerical solutions of Eqs. (45), under the
condition that all cases have x0 ¼ 0:7 and y0 ¼ 0:24 at N ¼ 0.
We took a fixed value of �x ¼ 0:2 for the case wx ¼ �1, and the
values of �c are as indicated on the plot. Negative (positive)
values of DE at early times appear for negative (positive) values
of �c (see the inset), and a finite late-time attractor appears only
if the condition ð�x � �cÞ> 0 holds. The values for which ð�x �
�cÞ � 0 lead to x ! �1, and may also break the constraint (60)
.
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Surprisingly restrictive limitations are needed on the
interaction parameters, �c and �x. Our simplified study
of the parameter space showed that the parameters should
take very small values. This is also in agreement with other
studies in which one can find a careful comparison of the
model with cosmological observations (see for instance
[4,9,29,30,32]). We showed that the model that seems to
work better is the simple case�c ¼ 0. This model is almost
indistinguishable from the standard �CDM at early times,
but provides a finite DE-DM ratio at late times so that the
coincidence problem is alleviated.

Other interesting properties arise from the interacting
model II of Sec. IV. Even though it can be thought of as a
time-dependent version of model I, the properties of the
critical points differ significantly.

First of all, its vanishing interaction variables at early
times allow model II to have a true matter dominated
epoch, which in fact corresponds to a (unstable) critical
point of the dynamical system. However, a positive DM
interaction �c > 0 is necessary in order to keep the DE
component positive at early times.

Also, the DE-DM ratio can be finite and positive at late
times, but this requires the dark interactions to have oppo-
site signs and to comply with the condition �x > �c. It is
then apparent that we cannot, in general, have a realization
of model II in which the dark components are well behaved
for all times and the coincidence problem is addressed.

There is though a simple model that may be realistic and
corresponds to �c ¼ 0. This model can satisfy all the
constraints and the DE interaction �x can be adjusted so
that the Universe can have appropriate matter and DE eras.
The only difference is that DE domination is a transient
event: the Universe would eventually go back to a DM
dominated epoch at late times.
Finally, we note that the problem of negative dark sector

densities is not the only problem with models I and II: the
curvature perturbation also has a nonadiabatic instability
on large scales [7]. As pointed out in [7], both of these
pathologies in the interaction models are related to the way
in which we treat DE, i.e., as a fluid with constant wx. If wx

is allowed to vary in the early Universe (as happens with
scalar field DE), then the pathologies can be avoided.

ACKNOWLEDGMENTS

G.C.-C. is supported by the Programme Alban, and the
Mexican National Council for Science and Technology,
CONACYT,. The work of R.M. was supported by the
U.K.’s Science & Technology Facilities Council, and by
a Royal Society exchange grant. The work of L. A. U.-L. is
supported by CONACYT (56946), DINPO, and PROMEP-
UGTO-CA-3. R.M. thanks the Departmento de Fı́sica at
the Universidad de Guanajuato for hospitality during part
of this work. L. A.U.-L. would like to thank Diana Juárez
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