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We show that in expanding regions, the scale factor measure can be reformulated as a local measure:

Observations are weighted by integrating their physical density along a geodesic that starts in the longest-

lived metastable vacuum. This explains why some of its properties are similar to those of the causal-

diamond measure. In particular, both measures are free of Boltzmann brains, subject to nearly the same

conditions on vacuum stability. However, the scale factor measure assigns a much smaller probability to

the observed value of the cosmological constant. The probability decreases further, similar to the inverse

sixth power of the primordial density contrast, if the latter is allowed to vary.
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I. INTRODUCTION

A. The measure problem

Similar to the cosmological constant problem [1–3], the
measure problem arises purely within the regime of valid-
ity of semiclassical gravity. All that is needed is a long-
lived vacuum state [4], or a sufficiently flat scalar field
potential [5,6], with positive vacuum energy. Under these
conditions, a finite spatial region will inflate eternally,
generating an unbounded four-volume. All possible events
will occur infinitely many times, and a cutoff is needed to
compute probabilities.

Unlike the cosmological constant problem, the measure
problem leaves a loophole: it is possible that the conditions
for eternal inflation do not actually occur in nature. But
increasing evidence indicates otherwise.

Slow-roll inflation is the dominant paradigm explaining
the origin of structure and the large-scale homogeneity and
flatness of our Universe. If we are prepared to believe that
the moderately fine-tuned scalar field potential necessary
for driving slow-roll inflation can arise in nature, it is hard
to imagine that the more generic feature of a local mini-
mum cannot exist.

Moreover, the observed Universe has positive vacuum
energy [7–9]. Unless our vacuum is unstable on a time
scale of order 10� 109 years—which would require re-
markable tuning—it alone suffices to generate eternal
inflation.

Finally, the only extant explanation [10–12] of the
smallness of the observed dark energy—the cosmological
constant problem—is the existence of a multidimensional
landscape of metastable vacua in string theory. This is
empirical evidence for string theory, and, in particular,
for eternal inflation.

A theory of everything, if it gives rise to eternal inflation,
should eventually allow us to derive a unique prescription

for computing probability amplitudes from first principles.
Yet our understanding of string theory, especially in cos-
mological settings, remains woefully incomplete. For now,
a top-down solution to the measure problem seems elusive.
Thus, we advocate following the traditional, phenomeno-
logical approach.

B. Phenomenological approach

As with any other theory, a compelling measure should
be reasonably well defined, simple, and general. In tackling
a problem so vast and unfamiliar, it is natural to seek more
specific guiding principles. For example, lessons from the
black hole information paradox motivated the causal-
diamond measure [13,14]. We would be ill advised, how-
ever, to turn our intuition into dogma, insisting absolutely
on theoretical properties that ‘‘any reasonable’’ measure
‘‘must’’ obey. Not only would we run the danger of putting
in by hand the answers we wish to get; worse, our wishes
may be misguided. Surely, for example, any reasonable
measure must reward the volume expansion during slow-
roll inflation in any given vacuum? In fact, this intuitive
requirement invites conflict with experiment [15,16]. The
causal-diamond measure abandoned volume weighting,
and the requirement seems now to have lost its dogmatic
status [17,18].
This brings us to the one property of a measure that we

can insist on absolutely: that its experimental predictions
not conflict with observations. In fact, many innocent-
looking measures do conflict with observation, and vio-
lently so. Some conflicts are extremely robust, arising al-
most independently of the properties of the underlying
vacuum landscape. Thus, they allow us to falsify measures
even while we still have much to learn about the landscape.
For example, the proper time cutoff [19–24] predicts a

very hot universe [25–32] with probability 1 (the
‘‘Boltzmann babies’’ or youngness paradox). Measures
that involve counting the number of observers per baryon
[33–39] predict an empty, cold universe [40,41] with
probability 1 (the ‘‘Boltzmann brain’’ paradox). Such para-

*bousso@lbl.gov
†freivogel@berkeley.edu
‡jingking@berkeley.edu

PHYSICAL REVIEW D 79, 063513 (2009)

1550-7998=2009=79(6)=063513(17) 063513-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.063513


doxes are important tools for testing and eliminating mea-
sure theories. We say ‘‘paradox,’’ as if there were any doubt
about the culprit. In fact, the above paradoxes represent
fatal failures: the measure assigns zero probability to the
observations we actually make. Such measures are experi-
mentally ruled out and must be discarded.

Another useful test is the more aptly named
‘‘Q-catastrophe’’ [15,16] alluded to earlier. In measures
that reward the volume expansion during inflation, such as
Ref. [38], inflationary model parameters generically re-
ceive exponential pressure toward extreme values. In this
case, anthropic constraints do not suffice to explain the
moderate values we observe for, say, the primordial density
perturbation, Q.

Other problems are more subtle, or depend on the de-
tailed structure of the vacuum landscape. The ‘‘staggering
problem’’ can arise in the measure of Ref. [38]: for some
landscape models, the measure assigns such unequal prob-
abilities to the cosmological production of different vacua
that most observers live in extreme environments where
their existence is an unlikely fluctuation [42–46]. In par-
ticular, the cosmological constant problem cannot be
solved in this case.

Finally, the value it predicts for the cosmological con-
stant, �, is an important test of any measure. This particu-
lar observable is special for two reasons: Its statistical
distribution in the landscape is understood well enough
to make detailed quantitative predictions. And its value has
been measured:

� ¼ 1:5� 10�123; (1)

in Planck units.
At present, the causal-diamond measure is the most

successful proposal phenomenologically. It avoids
Boltzmann babies, Boltzmann brains, and the staggering
problem. (The absence of Boltzmann brains requires that
all vacua decay faster than they produce such rare fluctua-
tions [41]—a nontrivial condition on the vacuum land-
scape, which, however, may well be satisfied by the
string landscape [47].) It does not reward volume expan-
sion, thus avoiding the Q-catastrophe and raising the pos-
sibility of the detection of open spatial curvature by future
experiments [48].

The causal-diamond measure predicts a value of the
cosmological constant consistent with observations. That
is, the observed value lies close to the mean and is highly
typical in the predicted probability distribution [49]. This
successful prediction is robust against variations of Q
[49,50].

C. Summary and outline

In this paper, we investigate the scale factor measure
[17], which cuts off the Universe at the time � when a
(randomly chosen) congruence of timelike geodesics has
expanded by a volume factor expð3�Þ along each geodesic.

Relative probabilities of different observational outcomes
can be defined by computing the ratios of the number of
times such outcomes occur in the regulated four-volume,
and then taking the regulator � ! 1.
Section II contains review material and establishes most

of our notation. In Sec. II A, we give a detailed definition of
the scale factor measure. A separate prescription is needed
in regions where geodesics contract and intersect with each
other. We review the prescription chosen by De Simone
et al. [17], who were the first to formulate one carefully. In
Sec. II B, we collect other useful definitions and results; in
particular, we review the solution found by Garriga et al.
[38] for the volume distribution of different vacua, which
also applies to the scale factor measure.
In Sec. III, we determine the shape of the scale factor

cutoff hypersurface in a homogeneous, isotropic, open
universe formed by bubble nucleation inside a parent
de Sitter vacuum. This is nontrivial, because the local scale
factor along each geodesic, and the average scale factor in
a bubble universe, are two different objects.
In Sec. IV, we compute the number of observations

below the cutoff surface by integrating over all bubbles
produced prior to the cutoff. We begin, in Sec. IVA, by
approximating the bubble interior metric as homogeneous,
ignoring local gravitational collapse such as occurs during
galaxy formation. We find that in this ‘‘no-collapse ap-
proximation, ’’the scale factor measure leads to a very
simple result: The probability of an observation in some
vacuum is proportional to the product of the probability
that a given geodesic in the congruence will enter that
vacuum, times the number density, per physical volume,
at which observations occur. It does not depend directly on
the time at which they occur, nor on the amount of volume
expansion since the bubble was produced.
Our result generalizes the results of Ref. [17], encom-

passing in a single formula the following important prop-
erties of the (no-collapse) scale factor measure established
by De Simone et al.1:
(1) No youngness paradox, since the physical density of

Boltzmann babies is negligible.
(2) No reward for excessive volume expansion during

slow-roll inflation: Once inflation has made the
Universe flat enough for structure formation, any
extra e-foldings will not affect the physical density
of observers. Thus, the scale factor measure avoids
the Q-catastrophe.

(3) The probability distribution for � is in excellent
agreement with the observed value, Eq. (1): If �

1De Simone et al. applied their prescription for collapsing
regions to the homogeneous collapse of bubbles with negative
cosmological constant, but implicitly used a no-collapse ap-
proximation elsewhere, ignoring the turnaround and collapse
of geodesics in structure-forming regions. This explains any
discrepancies between our papers, in particular, our less favor-
able conclusion concerning the value of � predicted by the scale
factor measure.
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had dominated much before the time when observa-
tions are made (i.e., now), galaxies would now be
exponentially dilute and the average density of ob-
servations would be highly suppressed. This result is
stable against variations of the primordial density
contrast, Q.

A simple result should have a simple explanation, which
we provide in Sec. IVB: In the no-collapse approximation
(i.e., if all geodesics in the congruence are always expand-
ing), the scale factor measure is equivalent to the following
prescription2: Consider a single geodesic that starts out in
the longest-lived metastable vacuum of the landscape, �.
Compute the expected number of observations of type �,
dhN�i, occurring along a fixed physical volume dV trans-

verse to the geodesic. The relative probability of observa-
tions � and � is dhN�i=dhN�i. In practice, this can be

accomplished by summing the probabilities that the geo-
desic will enter each vacuum i multiplied by the physical
density of observations of type� in vacuum i, so this more
general formula reduces to our earlier result.

We thus reformulate the no-collapse scale factor mea-
sure as a local measure. By this we mean a measure that
involves averaging over the statistical ensemble defined by
the different possible histories along a single worldline,
without necessarily assembling them into a global geome-
try. It would be natural to use the local formulation as the
general definition of the scale factor measure, since it can
be applied to collapsed regions without requiring addi-
tional rules.

The causal-diamond measure is another example of a
local measure in this sense. It differs from the no-collapse
scale factor measure only in two ways: (1) the transverse
volume included along the geodesic is not constant, but is
set by the size of a causally connected region; and (2) initial
conditions are not determined by the causal-diamond mea-
sure, but are considered a logically independent question.
This explains the pattern of similarities between the mea-
sures that have emerged, but it also clarifies how they
differ.

In Sec. IVC, we go beyond the no-collapse approxima-
tion and investigate how the De Simone et al. prescription
for collapsed regions affects the formulas for probabilities
in the scale factor measure. We find that it can be incorpo-
rated by a simple substitution: Instead of using the physical
density of observations, what matters is the (potentially far
greater) density those observations would have had, if they
had occurred at the time when the first structures formed
that would later merge into the objects hosting the obser-
vations. In other words, we can incorporate gravitational
collapse by mapping each observation back to the earliest
time when a geodesic on which it lies began to collapse.
Our own observations, for example, are thus condensed by

inverse of the expansion factor of our Universe since the
formation of the first dark matter halos.
Since neither the inflationary era nor the early postinfla-

tionary universe contains collapsed regions, this modifica-
tion has no bearing on the results (1) and (2) above,
concerning the youngness paradox and the
Q-catastrophe. In Sec. V, we investigate how the inclusion
of gravitational collapse affects the prediction for the
cosmological constant.
We begin by reviewing the predictions for the cosmo-

logical constant obtained in various measures: the
observers-per-baryon prescription (Sec. VA), the causal-
diamond measure (Sec. VB), and the no-collapse scale
factor measure (Sec. VC 1). In Sec. VC 2, we consider
the scale factor measure, with the prescription of Ref. [17]
for collapsed regions. We find that the cosmological con-
stant is not set by the time scale when observations are
made—as it is in the causal-diamond measure and, appar-
ently, in nature. Rather, its value is controlled by the time
scale of structure formation. This means that the scale
factor measure predicts a value that is up to 5000 times
larger than the observed value. By adding more specific
anthropic assumptions, the discrepancy can be mitigated,
but the observed value remains somewhat atypical.
If the primordial density contrast, Q, is allowed to vary,

we find that the preferred value of� scales likeQ3, and the
associated probability like Q6. This means, for example,
that a universe with Q 3 times as large, and � 27 times as
large, is 729 times as likely. It is difficult to see how
anthropic constraints or prior distributions for Q can over-
come a pressure so strong. In Sec. VD, we discuss possible
modifications of the treatment of collapsed regions in the
scale factor measure, which might improve these problem-
atic predictions.
In Sec. VI, we investigate the probability for Boltzmann

brains in the scale factor measure.3 Boltzmann brains are
observers that arise from rare thermal fluctuations, at a
superexponentially small rate per unit four-volume. Some
measures overcompensate for this suppression by includ-
ing superexponentially large regions of empty de Sitter
space [33–39] for every region containing ordinary observ-
ers. Then the vast majority of observations are made by
Boltzmann brains. Since almost none of the observations
made by Boltzmann brains agree with our observations,
these measures are ruled out. The causal-diamond measure
was shown in Ref. [41] to favor ordinary observers, if the
decay rate of every vacuum in the landscape is greater than
the rate for Boltzmann brains. Recent evidence suggests
that this nontrivial condition may be satisfied in the string
theory landscape [47].
Our local formulation of the scale factor measure makes

it clear that similar conditions will play a role in the scale

2We are using here the approximation of [42]; we will be more
precise in the body of the paper.

3A. Vilenkin and collaborators have independently analyzed
this question. We understand that their results will appear
simultaneously or in the near future.
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factor measure. The transverse volume along the defining
geodesic is the same in all vacua, whereas in the causal-
diamond measure, it is set by the cosmological constant.
Since the latter varies at most over an exponentially, but not
a superexponentially large range, this difference is negli-
gible in the context of Boltzmann brains.

The only remaining potential difference arises from the
initial conditions on the geodesic. In the causal-diamond
measure, it was reasonable to assume that these conditions
do not pick out vacua with unnaturally small cosmological
constant (a necessary condition even for Boltzmann
brains), so the initial vacuum received no attention in the
analysis of Ref. [41]. In the scale factor measure, however,
the initial vacuum is the longest-lived de Sitter vacuum,
which might well have a small cosmological constant.

Here, we refine the analysis of Ref. [41] in two respects.
In Sec. VIA, we include the contributions from the initial
vacuum to the number of Boltzmann brains. In Sec. VIB,
we demonstrate (under plausible assumptions on the struc-
ture of the landscape) that the production rates of different
vacua will not invalidate our earlier criterion for the domi-
nance of ordinary observers, and we find that it is aug-
mented only by the condition that the initial vacuum be
completely unable to produce Boltzmann brains (indepen-
dently of its decay rate). We argue that this condition is
likely to be satisfied. Thus, the scale factor measure and the
causal-diamond measure are virtually equivalent for the
purpose of Boltzmann brains.

II. DEFINITION AND RATE EQUATIONS

In this section we define the scale factor cutoff and
review some of its basic properties.

A. Definition of the scale factor cutoff

One approach to regulating the infinities in eternal in-
flation is through a smooth congruence of timelike geo-
desics orthogonal to a (nearly arbitrary) finite spacelike
surface �0. The idea is to use the geodesic congruence to
define a sequence of cutoff hypersurfaces ��. Then one

computes the number Ni of observations of type i, Oi, in
the four-volume between �0 and ��. The relative proba-

bility of two observations is defined by their relative abun-
dance in the limit where the cutoff is taken away:

P ðOiÞ
P ðOjÞ � lim

�!1
Ni

Nj

: (2)

A simple choice for constructing �� would be to follow

each geodesic for the same proper time. But the resulting
measure is ruled out at an overwhelming confidence level,
and independently of the details of the underlying theory: It
predicts that we should observe a much hotter universe
[25–32].

1. The no-collapse scale factor measure

A different cutoff on the congruence was recently de-
fined by De Simone et al. [17], building on earlier work.4

In this proposal �� is, roughly, a surface of constant local

scale factor. The scale factor time is defined by integrating
the local expansion rate relative to infinitesimally nearby
geodesics, along each geodesic:

�ðx; tÞ �
Z t

0

�

3
dt0; (3)

where t is the proper time along the geodesic labeled by x,
� ¼ r��� is the expansion, and �� is the 4-velocity vector

field tangent to the congruence. The local scale factor is
defined by

Aðx; tÞ � exp�ðx; tÞ: (4)

Intuitively, these quantities measure the growth of a local
volume element �V spanned by infinitesimally nearby
geodesics [55]:

� ¼ 3
d�

dt
¼ 3

dA=dt

A
¼ dð�VÞ=dt

�V
: (5)

2. Collapsed regions and other ambiguities

However, �� cannot be defined simply as a surface of

constant� or A. In collapsing regions, such as pockets with
a negative cosmological constant, or structure-forming
regions, geodesics will cease to expand and begin to ap-
proach each other. Then � < 0, and by Eq. (3), the scale
factor time decreases locally toward the future. Unless a
singularity is encountered, the focusing theorem guaran-
tees that geodesics will eventually encounter caustics: they
will intersect with infinitesimally neighboring geodesics.
Thereafter, they begin to expand again, and the scale factor
time increases once more.
This introduces two ambiguities: First, a given scale

factor need not be reached precisely once along each
geodesic. It may never be reached, or it may be reached
more than once. Which (if any) occurrence defines the
actual cutoff? Second, a given event may be threaded by
more than one geodesic. Should we count such events
once, or multiple times?

4Scale factor time is considered in some of the earliest
literature on (slow-roll) eternal inflation, which focuses on the
distribution of different field values [20–23]. The measure de-
fined by De Simone et al. is similar to the ‘‘pseudocomoving
volume-weighted measure’’ [24], which stops short of an explicit
definition of the probability of different observations, such as
Eq. (2), Eq. (1) of Ref. [32] or Eq. (1) of Ref. [17], and of a
prescription for collapsing geodesics. It shares some properties
with other measures [38,51–54], in which the scale factor (in the
guise of approximately equivalent formulations) regulates bub-
ble abundances but different (or no) cutoffs regulate the number
of observers per bubble.
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To resolve these ambiguities, De Simone et al. [17]
propose that an event should be included ‘‘if it lies on
any geodesic prior to the first occurrence’’ of the specified
cutoff on that geodesic. In other words, �� is the hyper-

surface that maximizes the four-volume V4 of the congru-
ence subject to the constraint that at every point p 2 V4

lies on at least one geodesic at scale factor time less than �.
This definition implies that if the cutoff is never reached

along some geodesic, all events on the geodesic are in-
cluded (no future cutoff). The formulation of De Simone
et al. suggests, moreover, that any event should be counted
at most once; we will adopt this definition here. Note that
with this definition, �� need not be a spacelike hypersur-

face. Rather, it becomes timelike near collapsing geode-
sics, spiking up toward the future, as shown in Fig. 1.

The prescription for collapsed regions chosen by
De Simone et al. is not the only possible one. Indeed, we
will find that it has phenomenological disadvantages
(Sec. V), and we will suggest other possible definitions.
In particular, the local formulation of the scale factor
measure (Sec. IVB) applies without modification both in
collapsing and expanding regions. However, we will not
explore these alternatives in detail; we focus on the defi-
nition of Ref. [17] in this paper.

There is another ambiguity, however, which has yet to be
resolved. When a new vacuum with lower cosmological
constant is formed by the Coleman-DeLuccia process,
there is a quantum region, where the geometry (in the
instanton approximation) jumps sharply and the continu-
ation of geodesics is not well defined. For downward

tunnelings, one can reasonably ignore this problem, since
the initial radius of the bubble wall can be much smaller
than the de Sitter radius, so only a negligible fraction of
geodesics entering the new bubble pass through the bubble
interior at the time of nucleation. Moreover, geodesics
quickly become comoving in regions with slow-roll infla-
tion, which are of the greatest interest.
De Sitter vacua may also tunnel upward, to vacua with

larger cosmological constant. Even though upward tunnel-
ings are very suppressed, the scale factor measure implies
that the majority of observers live on worldlines which
have been through upward tunnelings [43,46]. But there is
no approximate classical geometry describing an upward
tunneling. There is no natural way, therefore, of determin-
ing the tangent vectors of the portion of the geodesic
congruence entering the new bubble.
For the purpose of deriving the rate equations, in

Sec. II B, we will follow Ref. [38] and side step this issue
by making mathematically convenient assumptions. Once
we count observers in Sec. IV, the ambiguity will not
reenter: we are only interested in the most recent tunneling,
which is necessarily downward for producing ordinary
observers.

B. Rate equations and solutions

Before we can count observers in vacuum i, we will need
to know the number nið�Þ of such bubbles below the cutoff
�. This, in turn, requires knowing the physical volume
Við�Þ occupied by every vacuum. The evolution and dis-
tribution of these volumes is determined by the rate matrix
�ij describing the number of bubbles of vacuum i forming

per unit four-volume of vacuum j.
For nonterminal vacua (i.e., those with positive cosmo-

logical constant �i), the following definitions will be
convenient: the expansion at late times,

Hi �
�
�i

3

�
1=2

; (6)

the total decay rate of vacuum i per unit four-volume,

�j �
X
i

�ij; (7)

the dimensionless decay rate from vacuum j to i,

�ij � 4�

3

�ij

H4
j

; (8)

the total dimensionless decay rate of vacuum j,

�j �
X
i

�ij; (9)

and the branching ratio matrix

	ij � �ij=�j: (10)

During a time interval d�, the volume Vi in vacuum i
will increase due to intrinsic expansion, due to the produc-

τ

Σ2

Σ1

FIG. 1 (color online). Evolution of the scale factor cutoff
during structure formation. The constant scale factor time sur-
face �1 lies in the early, approximately homogeneous universe
and coincides with a surface of constant FRW time 
. As density
perturbations grow, some geodesics decouple from the Hubble
flow, stop expanding, and become trapped in collapsed regions
such as galaxies. If the scale factor cutoff exceeds the largest
scale factor ever reached along such geodesics, then the rule of
De Simone et al. requires that their entire future evolution be
included. (A similar result is obtained if the local formulation of
the scale factor measure is used as a general definition; see
Sec. VD.) Therefore, the later cutoff surface �2 no longer agrees
everywhere with a constant FRW time surface; it includes the
entire future of collapsed regions (gray/green), which show up as
spikes since the figure is drawn in comoving coordinates.
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tion of new bubbles of type i, and due to the expansion of
the bubble walls into the parent vacua. It will decrease due
to decay into other vacua, and due to the growth of such
bubble walls after they are produced.

Treating the motion of domain walls in detail is cum-
bersome, and it is unnecessary if all metastable vacua are
long lived (�i � 1). This is a reasonable assumption, since
�i � 1 conflicts with the notion of a vacuum, and �i � 1
requires fine-tuning. Such vacua will be too rare in the
landscape to play an important dynamical role.

Thus, most of the four-volume of each bubble type is
empty de Sitter space, and we can neglect transient effects
right after bubble nucleation. One transient is the period
between bubble creation and vacuum domination.
Therefore, the expansion � of geodesics in vacuum j can

be approximated by the Hubble constant at late times, � �
Hj � ð�i=3Þ1=2. The four-volume in vacuum j added dur-

ing the scale factor time d� is thus VjH
�1
j d�.

Another transient is the bubble wall expansion. A bubble
nucleated at the time �nuc will eventually occupy a comov-
ing volume in the geodesic congruence that would (in the
absence of the decay) have originated from a ball of
physical radius H�1

j in the parent vacuum j at the time

�nuc. This asymptotic comoving size is reached, to accu-
racy of order expð�� �nucÞ, after only a few units of scale
factor time. Thus we make a small error by anticipating
this growth: We ascribe a physical volume 4�=3H3

j to the

new vacuum i already at the nucleation time �nuc, and in
exchange neglect the bubble wall growth [38].5

With these approximations, vacuum i gains

dþVi ¼ 3Vid�þX
j

�
Vj

d�

Hj

�
�ij

�
4�

3H3
j

�
(11)

and loses

d�Vi ¼
X
j

�
Vi

d�

Hi

�
�ji

�
4�

3H3
i

�
(12)

in physical volume per scale factor time. Combining inflow
and outflow yields the Fokker-Planck equation

dVi

d�
¼ 3Vi � �iVi þ

X
j

�ijVj: (13)

Reference [38] rigorously derives the solution to this
equation. Only the behavior of de Sitter vacua will be
relevant here. For generic initial conditions with some
support in de Sitter vacua, the solution approaches attractor
behavior at late times. The volume in de Sitter vacuum i is

Við�Þ ¼ Csie
��: (14)

Here, C is a constant with the dimension of volume that
depends on the initial conditions but drops out in all
normalized probabilities;

� � 3� q; (15)

q is the smallest-magnitude negative eigenvalue of the
dimensionless flow matrix �ij � �ij�i; and sj is the asso-

ciated eigenvector:

�ijsj ¼ ð�i � qÞsi � pi; (16)

where we have defined the vector pi for later convenience.
To exponentially good approximation [42], the eigen-

vector is dominated by the longest-lived de Sitter vacuum,
�:

sj � �j�; (17)

and its eigenvalue is equal to the dimensionless decay rate
of this vacuum,

q � �� � 1: (18)

Thus, q is exponentially small in a realistic landscape. By
Eq. (2), this attractor solution is all we need to compute
probabilities.
A number of other results will be useful below, and we

collect them here. The expected number of times a world-
line starting in vacuum owill pass through vacuum i can be
obtained by summing over the whole branching tree [13]:

eio ¼ �io þ
X

paths from o to i

	iin	inin�1
	 	 		i1o; (19)

where i1 	 	 	 in are intermediate vacua connecting o and i,
and the branching ratios 	ij were defined in Eq. (10). This

can be written in matrix form as

eio ¼
�X1
n¼0

�n

�
io
: (20)

In the scale factor measure, the initial vacuum is the �
vacuum, and we will denote

ei � ei�: (21)

If the initial vacuum has relatively small cosmological
constant, as one might expect for the longest-lived vacuum,
then it is unlikely to be reentered later in the decay chain.
Then the sum in Eq. (20) converges rapidly; in particular,

e� � 1: (22)

In Ref. [44], the vectors pi and ei were shown to be
closely related:

5This behavior of the bubble wall applies only to downward
transitions. During upward transitions, the behavior of the con-
gruence defining the scale factor measure is not well defined in
semiclassical gravity. Following Ref. [38], we will choose ad
hoc to use the same rule in this case.
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pi ¼ q

�X1
n¼1

	n

�
ij
sj � q

�X1
n¼1

	n

�
i�
� qei ði � �Þ:

(23)

Note, however, that p� � qe�.

III. THE CUTOFF HYPERSURFACE IN A
HOMOGENEOUS BUBBLE

In this section, we investigate the evolution of the cutoff
hypersurface in a single bubble of an arbitrary vacuum,
nucleated inside a parent vacuum with positive cosmologi-
cal constant 3H2. We will drop the index iwhile discussing
a single vacuum. For now, we will ignore inhomogeneities,
such as density perturbations and local gravitational
collapse.

Assuming that the tunneling process is very rare, the
parent vacuum will have existed for a long time before the
nucleation event. This implies [56] that we can take the
geodesic congruence to be comoving in the flat slicing of
de Sitter space,

ds2 ¼ �dt2 þ e2Htðdr2 þ r2d�2Þ: (24)

We can think of r as labeling a particular shell in the
congruence. The geodesics between r and rþ �r span a
volume element

�Vðt; rÞ ¼ dV

dr

��������t¼const
�r ¼ 4�e2Htr2�r (25)

in the parent vacuum.
In the homogeneous approximation, the metric inside

the bubble is described by an open Friedmann-Robertson-
Walker (FRW) geometry

ds2 ¼ �d
2 þ a2ð
Þðd�2 þ sinh2�d�2
2Þ: (26)

The comoving geodesics from the host vacuum continue
into the bubble along nontrivial trajectories, defining a
second coordinate system ðt; rÞ inside the bubble, where t
is the proper time along the geodesic passing through an
event, and r is the radial position the geodesic had before
entering the bubble. We will now review the coordinate
transformation between ð
; �Þ and ðt; rÞ, derived in
Ref. [32].

Without loss of generality, one can choose coordinates
so that the bubble is nucleated at t ¼ 0, r ¼ 0. Consider a
comoving geodesic which passes through the event t ¼ 0,
r. If after a proper time t (as measured along the geodesic)
it has passed into the bubble, its coordinates ð
; �Þ will be

�ðt; rÞ ¼ � logð1�HrÞ þO
�
1

H


�


ðt; rÞ ¼ t� �þ e�� � 1

H
þO

�
1

H


�
:

(27)

Note that H in these formulas refers to the constant expan-
sion rate of the parent de Sitter space. The above equations

are valid for geodesics that have spent more than a proper
time H�1 inside the bubble.6 Physically, this result shows
that the geodesics become comoving in the open coordi-
nates after one outside Hubble time, and thereafter the
proper time along the geodesics increases at the same
rate as the open FRW time.
To construct the cutoff hypersurface, one must deter-

mine the scale factor time � as a function of the bubble
coordinates 
 and �. By Eq. (14),

�ð�nuc; 
; �Þ ¼ �nuc þ 1

3
log

�
�V½rð
; �Þ; tð
; �Þ


�Vðr; 0Þ
�
; (28)

where �nuc is the scale factor time at t ¼ 0, when the
bubble is nucleated. The volume element �V orthogonal
to the geodesics lies on a hypersurface of constant proper
time t [55]. By Eq. (26),

�V¼4�a2ð
Þsinh2�
�
a2ð
Þ

�
d�

dr

�
2

t¼const
�
�
d


dr

�
2

t¼const

�
1=2

�r

¼4�að
Þ2sinh2�
�
að
Þ2�

�
1�e��

H

�
2
�
1=2

He��r; (29)

where we have used Eq. (27). We are interested in events
much later than the outside Hubble time, so a2 � H�2,
and we can drop the second term in the square root:

�V ¼ 4�Ha3ð
Þe�sinh2��r: (30)

After using Eq. (27) to eliminate r from Eq. (25), Eq. (28)
yields the scale factor time inside the bubble:

�ð�nuc; 
; �Þ ¼ �nuc þ log½Hað
Þ

þ 2

3

�
�þ log

�
cosh

�

2

��
: (31)

IV. COUNTING ORDINARY OBSERVERS

In this section, we apply the scale factor cutoff to
counting observations in an eternally inflating multiverse
with multiple vacua. We exclude, for now, observations
resulting from violations of the second law (Boltzmann
brains, treated in Sec. VI). Initially, we will imagine that all
observations (if any) in a bubble of type i are made
instantaneously7 at the FRW time 
obsi after the vacuum
is produced, with number density obs

i per unit physical

6We also assume that the cosmological constant inside is much
smaller than outside. Corrections due to such approximation are
not included in Eq. (27). However, when the inside and outside
cosmological constants are the same, one can derive an exact
formula which is equivalent to Eq. (31) for all physical questions
we considered in this paper.

7In our investigation of the proper time cutoff [32], informa-
tion about the temporal distribution of observations, fið
Þ, was
crucial to demonstrating the youngness paradox. In the scale
factor measure, however, there is no youngness paradox [17],
and for the purposes of this paper, it suffices to use only gi �R1
0 fið
Þd
 and 
obsi � g�1

i

R1
0 fið
Þ
d
 as input parameters.
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volume:

dNi ¼ obs
i dvph: (32)

We will assume, moreover, that these parameters do not
depend on the parent vacuum from which i is entered.
These assumptions will simplify our treatment, and it
will be easy to drop them in the end and state a more
general result, Eq. (43).

Our treatment will go beyond that of De Simone et al.
[17] in that we do not approximate the bubble interior as
flat and homogeneous. Our detailed treatment of collapsing
regions, in Sec. IVC, has significant implications, invalid-
ating some of the conclusions of Ref. [17] (see Sec. V).

A. Counting observations in the no-collapse
approximation

Now we will compute the total number of observations,
Nið�Þ, performed in vacua of type i below the cutoff, �. By
Eq. (32), this amounts to computing the total physical
volume of the 
 ¼ 
obsi hypersurfaces below the cutoff.
In any single bubble, a shell of comoving radius � and
width d� contributes a physical volume

dvph
i ¼ 4�ðaobsi Þ3sinh2�d�; (33)

but only if the bubble was nucleated early enough for this
volume to be included below the cutoff.

By Eq. (31), the latest nucleation time that allows ob-
servers at radius � to contribute is

�nuc
ij ð�; �Þ ¼ �� log½Hja

obs
i 
 � 2

3

�
�þ log

�
cosh

�

2

��
:

(34)

Note that this time depends on the parent vacuum, j.
Hence,

Nið�Þ ¼
X
J

Z 1

0
d�nij½�nuc

ij ð�; �Þ
 dvph

d�
ð�Þobs

i ; (35)

where nijð�0Þ is the total number of bubbles of type i

nucleated inside vacuum j by the time �0.
Using

dnij ¼ �ijVjd�=Hj (36)

Eqs. (8) and (14) imply

nijð�nuc
ij Þ ¼ 3C

4��
H3

j �ijsj expð��nuc
ij Þ: (37)

Combining the above equations, we find

Nð�Þ ¼ 3C

4��

�Z 1

0
d�4�sinh2�ðexp�Þ�2�=3

�
�
cosh

�

2

��2�=3
�
e��ðaobsi Þq

�X
j

Hq
j �ijsj

�
obs
i :

(38)

The � integral is clearly convergent, with support concen-

trated near ��Oð1Þ. (For small q, its value approaches
4�=3.) Physically, this shows that mainly the central cur-
vature volume of the infinite open bubble geometry con-
tributes in the scale factor measure. Therefore, the
interesting results of Garriga, Guth, and Vilenkin [56]
regarding worldlines at large � are not relevant in this
measure.
Since q is exponentially small,Hq

j and ðaobsi Þq can safely
be neglected. By the discussion at the end of Sec. II,
�ijsj ¼ qei. Thus we obtain the probability

P i / ei
obs
i (39)

for observing vacuum i. The / notation indicates that the
universal factor � Cqe��=� has been dropped [since, by
Eq. (2), it does not affect relative probabilities], though the
probabilities have not been normalized.
Equation (39) immediately implies several key proper-

ties of the scale factor measure as follows:
(i) The probability for observing vacuum i is simply the

product of the number of times a typical worldline
can be expected to enter i-bubbles, ei, and the den-
sity, obs

i , of observations per physical volume on the
homogeneous time slice 
obsi at which they are
performed.

(ii) The probability of an observation depends on its
FRW time, 
obs, and on the FRW expansion factor
at that time, aobs, only through obs.

(iii) As a special case, we recover an important result of
De Simone et al. [17]: As in the causal-diamond
measure, the probability of a vacuum is insensitive
to the volume expansion factor during slow-roll in-
flation. This is a desirable property, because it avoids
the Q-catastrophe [15,16]—the overwhelming pres-
sure toward extreme (and counterfactual) inflation-
ary parameter values that results when exponential
volume factors are rewarded. Moreover, this prop-
erty makes it conceivable that inflation was short
enough to allow subtle signatures of the preceding
era to survive, such as detectable curvature [48].

(iv) Equation (39) also captures another important result
of Ref. [17], which we will examine in Sec. V: the
probability of vacua where vacuum energy comes to
dominate before 
obsi is exponentially suppressed,
because the matter density, obs

matter;i, will have been

diluted by the accelerated expansion. This, too, ap-
pears to replicate a success of the causal-diamond
measure: the suppression of moderately large values
of the cosmological constant �, which are larger
than the observed value but too small to affect the
number of observers per matter mass. We will find,
however, that this apparent success is an artifact of
the no-collapse approximation.

Equation (39) trivially generalizes to the case where
observations are made at different times 
�, � ¼
1; 2; 3; . . . . The total probability to observe vacuum i is
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P i / ei
X
�

obs
i ð
�Þ; (40)

where obs
i ð
�Þ is the density of observations taking place

at 
�. In the continuous case,

P i / ei
Z 1

0
d


dobs
i

d

; (41)

where the integrand is the number of observations made in
the FRW time interval (
, 
þ d
), per unit physical vol-
ume of the hypersurface 
. If more differentiated observa-
tions are performed (for example, local conditions such as
temperature, rather than just a determination of the vac-
uum), i can be given additional indices or arguments.

B. The no-collapse scale factor measure as a local
measure

In the no-collapse approximation, the scale factor mea-
sure can be reformulated as a local measure. By this we
mean that the measure can be defined by averaging over an
ensemble of individual worldlines, instead of constructing
a particular global spacetime. (The causal-diamond mea-
sure is an example of a local measure.)

This can be seen by the following argument, illustrated
in Fig. 2. The predictions of the scale factor measure are
dominated by the late-time attractor behavior of the
Universe. (An infinite number of observations are pro-
duced during this era, while only a finite number are
produced earlier.) Thus, we may as well pick a late-time
surface, �� with � very large, and choose it as our initial

surface, �0. In other words, we redefine � ! ����,
�� � 1, making sure we already start in the asymptotic
regime. This cuts out irrelevant transients and leads to a
very simple picture.
The volume occupied by long-lived metastable vacua on

the late-time attractor hypersurface �0 is dominated by
empty de Sitter regions, with volume fraction si allocated
to vacuum i [38]. We can choose �0 to be as large as we
like, guaranteeing that it can be allocated the correct
attractor volume fractions to arbitrary accuracy.
Now let us begin evolving forward along the congruence

orthogonal to �0. The scale factor measure instructs us to
count observations in the four-volume thus generated, tak-
ing ratios as � ! 1. Let us instead consider a reduced
four-volume, ~V4, which is finite, by dividing the initial
surface �0 into volume elements dV. As usual, we follow
the geodesic orthogonal to each volume element. But we
do not increase dV as the Universe expands. This creates a
family of ‘‘fat geodesics.’’ At the time �, the fat geodesics
occupy only a fraction e�3� of the total volume of ��. But

for every worldline, no matter in what type of region it
started, the missing volume is exactly the same, 1� e�3�.
Because all fat geodesics expand by the same volume

factor, the volume they do occupy on �� is a perfectly

faithful sample of the hypersurface. (This is the crucial
point—note, for example, that it would not hold in the
attractor regime of the proper time measure.) Moreover,
because this is true for every time interval d�, the four-
volume swept out by the fat geodesics is statistically
equivalent to the four-volume between �0 and ��.

Therefore, reducing to ~V4 will not affect probabilities:

P ðOiÞ
P ðOjÞ � lim

�!1
Ni

Nj

¼ Nið ~V4Þ
Njð ~V4Þ

; (42)

where V4 is obtained by following every geodesic to the
asymptotic future.8 Instead of thinking about the actual
collection of fat geodesics anchored on a large hypersur-
face, we may equivalently consider a statistical ensemble
of single geodesics, with initial conditions weighted by the
distribution of regions on a late-time attractor surface.
Neglecting the rare regions occupied by recently nucleated
bubbles, this means starting out with de Sitter vacuum i
with probability si. Because the vector si is dominated by
the � vacuum, to a good approximation [42], this means
starting the geodesic in the longest-lived metastable vac-
uum, �.
Thus, we reproduce the scale factor measure by follow-

ing a single geodesic starting in �. The worldline evolves
according to local dynamical laws, witnessing the decay of
vacua and perhaps the production of observers, until it ends
up in a terminal vacuum.We ‘‘fatten’’ the worldline, giving

η

Ση

FIG. 2 (color online). The light shaded (green) slices are
surfaces of constant scale factor time, ��; they have fixed

comoving size but increasing physical volume. Fat geodesics
(dark shaded, purple) have fixed physical width and thus de-
creasing comoving size. If the initial slice is chosen in the
attractor regime, the fat geodesics define a representative finite
sample of the total four-volume. Thus, the results of the scale
factor measure can be reproduced by following a single geodesic
of fixed width, starting in the longest-lived metastable vacuum.

8The no-collapse approximation does not allow us to consider
negative cosmological constant regions, but for the purposes of
this argument we can set �i ! 0 for all vacua with �i < 0.
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it a fixed physical cross section, a volume element dV
orthogonal to the worldline. Finally, we compute the ex-
pectation value (ensemble average) of the differential num-
ber of observations of type �, dN�, in the resulting four-

volume:

P � ¼ h�i; (43)

where, for a given worldline in the ensemble,

� ¼ dN�

dV
¼

Z
dt

dN�

dVdt
: (44)

We showed in Sec. III that geodesics quickly become
comoving after entering a new bubble. Thus, the volume
element dV lies inside a constant-
 hypersurface of each
FRW bubble universe. With the approximations used in
Sec. IVA, therefore, � is identical to the physical density

of observers, obs
i , in vacuum i. The factor ei is captured by

averaging over different worldlines in the ensemble [44],
so Eq. (43) reduces to Eq. (39) as a special case. The more
general Eqs. (40) and (41), too, are special cases of
Eq. (43).

It would be interesting to use Eq. (43) as the defining
equation of a measure. This would have a number of formal
advantages. One geodesic carries much less geometric
information than a whole congruence, so we face fewer
ambiguities about the treatment of upward jumps.
Moreover, Eq. (43) can be applied without modification
in collapsing regions, whereas the formulation based on in-
tegrating the expansion along a geodesic congruence re-
quires an additional, ad hoc, prescription to deal with such
regions. Finally, the use of Eq. (43) to define a measure
liberates us from the initial conditions si picked out by the
attractor regime of the geodesic congruence. Starting the
fat geodesic with initial conditions that favor Planck-scale
vacua, for example, would avoid the potential ‘‘staggering
problem’’ associated with the enormous suppression of the
upward jumps from the dominant vacuum �.

C. Proper treatment of collapsed regions

At least in our own bubble, some observations are made
in collapsed regions. The FRW metric, Eq. (26), does not
capture the local geometry of such regions, but provides
only an average over scales on which the Universe can be
considered homogeneous. Hence, this metric cannot be
used to compute the local scale factor, A, and the scale
factor time, �, along geodesics entering collapsed regions
such as galaxies. Despite the similar names, the FRW scale
factor a and the local scale factor A are two completely
different objects.

Geodesics that end up in dark matter halos will, by
definition, have ceased to expand, and decoupled from
the Hubble flow, before the halo formed. After reaching a
maximum expansion, they will have turned around and
collapsed, with A and � decreasing during the collapse.
These geodesics will reach observers, but their maximum

scale factor Amax will be unrelated to the FRW scale factor
at the time tobs, aobs. Rather, it will be related to the FRW
scale factor at the time of structure formation, aNL.
Consider a simple, spherically symmetric model. A dark

matter halo forms by the collapse of a spherical overden-
sity. Then baryons fall into their gravitational well, cool,
and condense in the center. Eventually the gas fragments
into stars.
Let us focus on the dark matter particles that end up in

the halo. Initially, each particle follows one of the geo-
desics in the congruence that defines the scale factor cutoff.
The maximum scale factor is achieved at the time of
turnaround, when all the dark matter particles are momen-
tarily stationary. Note that it is smaller than, but on the
order of, the FRW scale factor a at the time of turnaround.
After the turnaround, the particles fall toward the center

of the halo. Depending on interactions, the particles will
eventually stop following the geodesics, but in the spheri-
cal model, the geodesics remain very simple. They will
focus in the center of the halo, and begin expanding again,
back out to the turnaround radius; this pattern will be
repeated indefinitely. The entire congruence of geodesics
will keep oscillating about the center of the halo, with an
amplitude given by the turnaround radius. This radius is
twice the virial radius, and perhaps 10 times the eventual
galaxy radius. Therefore, the congruence continues to
thread the galaxy at all times. Crucially, it will capture
observers independently of how long it takes to form
them.9

With a more realistic structure formation model, the
situation would appear to be even more clear cut.
Generic geodesics will remain gravitationally bound to
the halo, but will be spread chaotically through micro-
lensing. (This means that the same event will lie on mul-
tiple geodesics, but as discussed above, we will count each
event only once.) Moreover, most large halos do not form
directly from a single overdensity, but by mergers and
accretion of smaller halos that virialized much earlier.
One expects that most geodesics threading merging halos
will remain gravitationally bound during the merger, and
end up covering the resulting larger galaxy. But then ob-
servers will have a local scale factor which is less than the
averaged scale factor at the time of the formation of the
smallest structures that eventually merge to form our gal-
axies. Note that these structures need not even be galaxies,
i.e., their mass could be below 107 solar masses.
The measure defined by De Simone et al. instructs us to

include all observations reached by geodesics whose maxi-
mum scale factor time is below the cutoff. Therefore, all

9In the spherical idealization with an empty shell between
overdense geodesics and the homogeneous background, there
would be a small fraction of events that are missed by the
congruence near the time when it is in focus. This would not
be an important effect quantitatively, and will be absent in a
realistic congruence.
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observations in collapsed regions will contribute as soon as
the cutoff exceeds the maximum local scale factor of the
first collapsing objects that end up constituting the host
objects of observations.

To include this effect, one could generalize to a more
detailed metric. But it is much simpler to continue working
with the homogeneous FRW metric, Eq. (26), and to
include collapse effects by pretending that all observations
in collapsed regions happen at the time 
NL when those
regions decoupled from the Hubble flow. This amounts to
projecting observations from the time 
obs back to the
earlier time 
NL, and thus, to increasing their number
density per physical volume to

̂ obs
i � obs

i

�
aobsi

aNLi

�
3
; (45)

where aNLi � að
NLi Þ.
Thus, we can include the effects of local collapse by

replacing Eq. (39) by

P i / eî
obs
i : (46)

V. THE COSMOLOGICAL CONSTANT

In this section, we estimate the probability distribution
for the cosmological constant in the scale factor measure.
We will find that it agrees roughly with the observed value
in the no-collapse approximation. Treating collapsed re-
gions according to the prescription of De Simone et al.,
however, yields a much larger value. We will then consider
variations of the scale factor measure and discuss how they
might solve this problem. Let us begin by reviewing the
history of anthropic predictions for the cosmological con-
stant and how they depend on the measure.

Throughout this paper, we will focus on positive values
of �, which have a greater potential for discrepancy with
observation. Negative values of � are bounded (in any
nonpathological measure, for example, if there is no
youngness paradox) by the order of magnitude of the
observed value, but positive values could be much larger
[11]. Both the causal-diamond measure [49] and the no-
collapse scale factor measure [17] assign somewhat higher
integrated probability to negative values than to positive
values of�, but the imbalance is not large enough to render
the observed value unlikely.

A. � and observers per baryon

In anthropic approaches to the cosmological constant
problem, one computes a probability distribution for ob-
served values of the cosmological constant. Originally
[33–39] this was implemented by multiplying the under-
lying distribution (arguably, dp=d� ¼ const in the regime
of interest) by the ‘‘number of observers per baryon,’’ or
per some other reference object. Implicitly, this defines an
(incomplete) measure. If one tries to take observers per

baryon seriously as a measure, one finds that any eternally
inflating de Sitter vacuum has an infinite number of ob-
servers per baryon (if it has any observers at all), and 100%
of the observers are Boltzmann brains [40,41].
Even aside from this problem, however, the observer-

per-baryon measure was already plagued by some annoy-
ing problems. The simplest test of the landscape solution to
the cosmological constant problem is to restrict attention to
vacua that differ from ours only through their value of�. In
this setting, the observer-per-baryon measure prefers val-
ues of � about 5000 times larger than the observed value;
the observed value is excluded at the 3:5� level [49]. We
find it useful to explain this in terms of the time scale


� ¼
ffiffiffiffi
3

�

s
(47)

at which the cosmological constant comes to dominate the
evolution of the Universe. In the observer-per-baryon mea-
sure, the number of observers will be proportional to the
number of baryons that are captured by galaxies. The
underlying distribution prefers larger values of �. There
is no penalty until � becomes large enough to disrupt
galaxy formation (
� � 
gal); such values will be strongly

suppressed. Thus one would expect� to be correlated with
the time of the formation of the first galaxies, 
gal:

�� 
�2
gal : (48)

In fact, however, the observed value of � appears to be
correlated with the (considerably later) time when obser-
vations are made, 
obs:

�� 
�2
obs � 10�4
�2

gal : (49)

This is the coincidence problem. The observers-per-baryon
measure (ignoring Boltzmann brains) would have naturally
explained a hypothetical coincidence between 
gal and 
�,

but it is only barely consistent with the actual coincidence
between 
obs and 
�.
Further tests can be made by allowing other parameters

(such as the density contrast, curvature, etc.) to vary in
addition to �, or by integrating out such parameters alto-
gether. This exacerbates the troubles of the observer-per-
baryon measure. For example, it strongly prefers larger
values of the density contrast, Q, than the observed value

Q� 2� 10�5. Since 
gal / Q�3=2, vacua with larger Q

can tolerate larger � (like Q3) while still forming a struc-
ture. Thus, a greater fraction of such vacua contains ob-
servers, and they are strongly preferred.

B. � and the causal-diamond measure

The causal-diamond measure [13,14] was the first to
solve these problems. Most directly, it solves the coinci-
dence problem, predicting a value of � such that 
� �

obs, or �� 
�2

obs. Greater values of � are suppressed

mainly because observers become exponentially dilute
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within the cutoff [49]:

dP
d log�

/ �1=2 exp

�
� 3
obs


�

�
: (50)

Using 
obs �Oð10 GyrÞ (or alternatively, and less anthro-
pocentrically, equating the peak observation time with the
time of peak entropy production), this relation leads to a
prediction of � in excellent agreement with the observed
value. Because the causal-diamond measure correlates �
directly with the era when observations are made, and not
with the time when structure forms, the Q runaway prob-
lem is absent [49,50].

C. � and the scale factor measure

De Simone et al. [17] have argued that the scale factor
measure shares some of these desirable properties. We will
now examine this claim, focusing, once more, on the case
where only� varies, while keeping 
obs fixed. We will find
that the conclusions of De Simone et al. apply in the no-
collapse approximation, but are invalidated by collapse
effects.

1. No-collapse approximation

In the no-collapse approximation adopted in Ref. [17],
Eq. (39) tells us that

dP
d�

/ dp

d�
obsð�Þ: (51)

We assume that dp=d� is constant in a small interval (say,
10�20) around � ¼ 0, after coarse graining over an even
smaller interval (say, 10�130). If this is not the case, then
the landscape cannot solve the cosmological constant prob-
lem, and the scale factor measure would be ruled out.
Hence we may drop this factor and write

dP
d log�

/ �obsð�Þ: (52)

To understand how the observer density depends on �,
let us rewrite obs as a fraction of the physical matter
density at the time of observations,

obsð�Þ ¼ �ð�Þobs
matterð�Þ; (53)

so that

dP
d log�

/ ��ð�Þobs
matterð�Þ: (54)

It is reasonable to assume that �, the number of observ-
ers per unit matter mass, is proportional to the Press-
Schechter mass function [36], the fraction of matter mass
in collapsed objects above a certain critical mass (107 solar
masses for the smallest galaxies; more if one makes the
additional anthropic assumption that observers require par-
ticularly large galaxies). To first approximation, � is un-
affected by� as long as 
� � 
gal. Larger values of�will

noticeably affect galaxy formation, and for 
� � 
gal, �

rapidly vanishes.
The matter density at the time of observations is inde-

pendent of � as long as 
� � 
obs. But if � comes to
dominate earlier, then it will drive a period of exponential
expansion before observations are made, and the matter
density will be far lower. Roughly, we can write

obs
matterð�Þ � obs

matterð� ¼ 0Þ exp
�
�3


obs

�

�
: (55)

For example, in vacua with 
� � 2 Gyr, the density of
galaxies at 
obs � 13:7 Gyr will be a factor of order 10�9

times smaller than in vacua with 
� � 13:7 Gyr. Thus,
moderately large values of � are totally suppressed, even
though they do not disrupt galaxy formation. We conclude
that in the no-collapse approximation, the suppression of
large � is dominated by the dilution of matter, and one
obtains

dP
d log�

/ �exp

�
�3


obs

�

�
: (56)

Comparison with Eq. (50) reveals that the exponential
factor is the same as that arising in the causal-diamond
measure. In both measures, this factor arises primarily
from the effect of � on the matter density, rather than its
effect on galaxy formation. The prefactors differ because
the physical volume of the causal diamond also depends on

�, as with ��1=2 for large �. (In both cases the prefactor
contains a factor � from the Jacobian d log�=d�.) Both
distributions peak near �� 
�2

obs, in excellent agreement

with observation, Eq. (49).

2. Proper treatment of collapsed regions

With the proper treatment of collapsed regions, however,
the result changes drastically. Equation (39) is replaced by
Eq. (46), and correspondingly, we must replace Eq. (52) by

dP
d log�

/ �̂obsð�Þ; (57)

where ̂obs is the density, per physical volume, that obser-
vations would have had if they had occurred at the time 
NL
when the first dark matter halos decoupled from the Hubble
flow. By Eqs. (45) and (53), it follows that

dP
d log�

/ ��ð�ÞNL
matterð�Þ; (58)

where NL
matter is the physical matter density at the time 
NL.

This matter density is insensitive to � unless � is large
enough to affect the formation of the earliest dark matter
halos, at the time 
NL. Since 
NL < 
gal, the dilution of

matter density is now no longer the effect suppressing large
�. Rather, it is a disruption of galaxy formation: the Press-
Schechter factor, which enters through �. It becomes sup-

RAPHAEL BOUSSO, BEN FREIVOGEL, AND I-SHENG YANG PHYSICAL REVIEW D 79, 063513 (2009)

063513-12



pressed if� exceeds 
�2
gal , so the distribution will peak near

this value.
Thus, the scale factor measure reproduces the re-

sult obtained from the observers-per-baryon measure,
Eq. (48), except for the latter measure’s manifest
Boltzmann brain problem. It prefers a value of � that is,
depending on the strength of anthropic assumptions, 1 to 4
orders of magnitude larger than the observed value.

Moreover, the scale factor measure suffers from a run-
away problem if the strength of initial density perturba-
tions, Q, is allowed to vary. The pressure toward large Q is
actually greater than in the observers-per-baryon measure.
In both measures, larger Q allows for larger values of �,
since the maximum vacuum energy is of order of the
density at the time of galaxy formation, which is propor-
tional toQ3. This enters through the first factor in Eq. (58),
suppressing the probability of the observed value of � by
an additional factor ðQ0=QÞ3. But in the scale factor mea-
sure, the last factor in Eq. (58) offers an additional reward
for large Q: the density at the time of the earliest halo
formation also scales similar to the third power of Q. This
makes it more difficult to compensate for the runaway
problem by prior distributions or anthropic cutoffs.

D. Can the scale factor measure be improved?

We have found that the scale factor measure predicts
�� 
�2

gal , while the causal-diamond measure predicts ��

�2
obs. Can we pinpoint the key difference between the

measures leading to these different results? And can the
definition of the scale factor measure be modified to yield a
more desirable answer?

The causal-diamond measure is defined nonlocally, in
terms of the event horizon of a single worldline.
Observations inside this horizon will be included, while
those outside will not. The horizon size is not affected by
local phenomena such as gravitational collapse. If 
� �

obs, then observations will be dilute, and few if any will be
captured by the diamond.

The scale factor measure is defined in terms of a local
quantity, the expansion and local scale factor of a congru-
ence of geodesics. The local scale factor runs backward
once structure formation begins, and a special rule is
needed to decide how the cutoff should be specified in
this case. By the rule of De Simone et al., future observa-
tions occurring on such geodesics are immediately counted
at structure formation, so the dilution of galaxies by the
cosmological constant cannot affect the probability
distribution.

One might attempt to improve the scale factor measure
by replacing the local scale factor, A, with the averaged
scale factor, a, describing the spatial curvature radius in
expanding open FRW bubbles, while a geodesic is passing
through matter dominated regions (up to an obvious con-
stant factor that depends on the scale factor time at which
the geodesic enters the matter dominated region). The idea

would be to avoid the effects of collapse by averaging over
collapsed regions and defining the scale factor time in
terms of the averaged Hubble flow.
A problem with this approach is that the FRW scale

factor a is only approximately defined. On the scales
currently within the horizon, there exists a preferred slicing
of constant average density, which defines hypersurfaces of
constant a. However, because the Universe is not exactly
homogeneous and isotropic, the averaging procedure is
necessarily somewhat ambiguous—in the observable
Universe, at least at the level of 10�5. At larger scales, or
in different bubbles, density fluctuations can be much
larger. Bubbles with eternal slow-roll inflation cannot be
assigned a preferred FRW slicing at all; neither can the
asymptotic regions containing Boltzmann brains. Thus, it
is unclear how this idea would lead to a sufficiently general
prescription for computing probabilities.
A more promising approach to improving the scale

factor measure is to change the rule that deals with collaps-
ing geodesics, so that observers are not counted by geo-
desics that turn around too early. For example, whenever an
event is passed through by multiple geodesics, we might
assign its scale factor time to be the maximum scale factor
time among those geodesics. This is in principle as well
defined as the proposal in [17], which corresponds to using
the minimum. A closely related idea is to extend each
geodesic only until its first caustic, when neighboring geo-
desics intersect and � ! �1. Whether such prescriptions
lead to a better prediction for � is an interesting question,
but one beyond the scope of the present paper.
Finally, we may turn to the local formulation of the scale

factor measure, Eq. (43), for help. In expanding regions, it
is equivalent to the formulation using a geodesic congru-
ence, but as noted at the end of Sec. IVB, the local
formulation can be applied without modification in col-
lapsed regions. It would, however, suffer from a similar
problem with predicting �. Most fat geodesics are cap-
tured by dark matter halos around the time when those
objects first form. Therefore, the expected density of ob-
servations is set by the matter density inside galaxies, and
not by the large-scale average of the matter density of the
FRW solution at the time of observations, 
obs. As a result,
Eq. (43) is insensitive to the value of the cosmological
constant unless it is large enough to disrupt galaxy for-
mation. It would predict �� 
�2

gal , in poor agreement with

the observed value �� 
�2
obs.

Still, Eq. (43) may turn out a useful starting point for a
more successful measure. Instead of fattening the geodesic
infinitesimally, for example, we could consider construct-
ing a larger transverse volume. We can then either attempt
to take a large volume limit, in which the average density
may become sensitive to the dilution caused by early
vacuum domination. (Whether this can be done in a well-
defined manner is, again, a question beyond the scope of
our present work.) Or we could use a finite transverse
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volume. To avoid explicitly introducing an arbitrary length
scale into the measure, this volume could be defined in
terms of the cosmological event horizon surrounding the
worldline. This fixes the � problem, but it fails to produce
a novel measure: With this prescription, we would simply
recover the causal-diamond measure (with a particular
choice of initial conditions).

VI. BOLTZMANN BRAINS

In this section, we compute the number of Boltzmann
brains, and determine the conditions under which they
dominate over ordinary observers. We define Boltzmann
brains as observers that arise from local violations of the
second law of thermodynamics. This occurs at late times in
de Sitter vacua. States of energy E � T are produced at the
Boltzmann-suppressed rate

�iðEÞ ¼ 4�

3
H4

i expð�E=TiÞ (59)

where Ti ¼ Hi=2� is the Gibbons-Hawking temperature
of the de Sitter horizon. The minimum mass of a
Boltzmann brain (if any) will depend on the vacuum. But
on general grounds [41,57], the exponential factor cannot
be larger (though it can be much smaller) than expð�SBBÞ,
where SBB is the coarse-grained entropy, or number of
particles, in the most primitive Boltzmann brain,

�BB
i < expð�SBBÞ: (60)

One can only speculate about the value of SBB, but it is
certain to be exponentially large. Thus, Boltzmann brains
are double exponentially suppressed.

A. The ratio of Boltzmann brains to ordinary observers

We can neglect crunching vacua, as well as the initial
non–de Sitter regime of metastable vacua: because of the
enormous suppression of Boltzmann brains, almost all of
them will be produced in the asymptotic de Sitter regime.
The number of Boltzmann brains produced in vacuum i
between the time � and �þ d� is

dNBB
i ¼ �BB

i Vid�=Hi: (61)

By Eq. (14), the total number of Boltzmann brains pro-
duced prior to the cutoff � in vacuum i is therefore

NBB
i ¼ Ce��

�

si
Hi

�BB
i : (62)

By Eqs. (16) and (17), s� � 1 for the dominant vacuum and
si ¼ pi=ð�i � qÞ � pi=�i for all other vacua. Dropping
the usual factor Ce��=�, the total probability for observa-
tions by Boltzmann brains is

P BB / H�1� �BB� þX
i��

H�1
i pi

�BB
i

�i

: (63)

We are interested in comparing this to the total number of

observations by ordinary observers,

P OO
i / X

i

pi
OO
i : (64)

The key simplification arising in this comparison is that
pi, �

BB
i , and �i, are generically double exponentials. That

is, they are of the form expð� expxÞ with x � 1. We will
use a triple inequality sign for such numbers, for example,

�BB ��1: (65)

Such numbers obey special laws of arithmetic. For ex-
ample, for y and z double exponentially large, y=z � y if
y > z. Moreover, if y is a single exponential and z a double
exponential, then zy � z=y � z. A double exponential
takes the same value in any conventional system of units,
though it can be useful to think in terms of Planck units for
definiteness.
The landscape contains an exponentially large number

of vacua, but so far there are no indications that it might be
doubly exponentially large. Thus, Hi is at most a single
exponential, and we can write

P BB

POO
�

�BB� þ P
i��

pið�BB
i =�iÞP

i
pi

OO
i

: (66)

Note that we have retained OO
i , since it can be zero or

doubly exponentially small in some vacua. Because Eq.
(66) involves a ratio of double exponentials, either the
numerator or the denominator will completely dominate
(depending on the measure, and on the landscape), and the
relative probability will be zero or infinity to good approxi-
mation. Whoever wins, wins big.
We can restate this result in terms of the expected

number ei of times a worldline starting in the � vacuum
will pass through vacuum i (see the discussion at the end of
Sec. II). Using q � ��, we can include the � vacuum in the
sum:

P BB

POO
�

P
i
eið�BB

i =�iÞP
i
ei

OO
i

: (67)

At this level of approximation, the causal-diamond mea-
sure yields nearly the same result [41]. In the causal-
diamond measure, the number of Boltzmann brains in
vacuum i is the expected number of times the generating
worldline enters vacuum i, ei, times �BB

i , times the ex-
pected four-volume the diamond will span in vacuum i
(given by the lifetime of vacuum i, H�1

i ��1
i , times the

de Sitter horizon volume, 4�=3H3
i ). The expected number

of ordinary observers is ei times the number of ordinary
observers inside the de Sitter horizon of vacuum i. Keeping
only double exponentials, the relative probability in the
causal-diamond measure is again given by Eq. (67).
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Aside from negligible non-double-exponential factors,
the only way the two measures differ, for the purposes of
Boltzmann brains, is through ei, which depend on initial
conditions. A priori, the question of initial conditions has
nothing to do with the measure problem, and in the causal-
diamond measure, they remain separate issues. One imag-
ines that the Universe started, perhaps, in a randomly
chosen vacuum, or in an ensemble governed by the tunnel-
ing wave function, favoring Planck-scale vacua. Physical
probabilities are not strongly affected by this uncertainty
[44]. In the scale factor measure, on the other hand, the
eternally inflating Universe exhibits attractor behavior,
which can be mimicked by choosing the particular initial
probability distribution si, defined in Sec. II. Roughly, this
means starting the worldline in a very particular vacuum:
the longest-lived metastable vacuum [42], �.

B. Under what conditions do Boltzmann brains
dominate?

In this section, we will show that with some reasonable
assumptions about the landscape, the ratio of Boltzmann
brains to ordinary observers takes an even simpler form.
Except for the � term, each term in the numerator of Eq.
(66) contains the ratio �BB

i =�i. By the laws of double
exponential arithmetic, this ratio is dominated by the larger
of the two exponents,

�BB
i

�i

�
�
�BB
i < expðSBBÞ if �BB

i < �i;
��1
i > expðþSBBÞ if �BB

i > �i;
(68)

where we have used Eq. (60) for the inequalities.
We will now constrain the factor pi multiplying this

ratio. With no loss of generality, we may restrict the sum
in Eq. (66) to the set of vacua containing observers or
Boltzmann brains. Let us label the vacua in this set by
the index a instead of i. By Eqs. (19) and (23), pa can be
obtained by a sum, over all decay paths, of products of
branching ratios.

pa ¼ q
X

paths from � to a
	ain	inin�1

	 	 		i1� ða � �Þ: (69)

This equation holds only for a � �, but those are precisely
the pa appearing in Eq. (66).10

We will make three assumptions:
(1) For every vacuum a, every decay path from � to a

contains at least one intermediate de Sitter vacuum.
This assumption is very plausible in a multidimen-
sional landscape such as that of string theory, where
neighboring vacua have vastly different values of
the cosmological constant (a crucial feature for

solving the cosmological constant problem [3,12]).
Assuming that distant vacua cannot be accessed
with appreciable probability, it follows that �� �
1=SBB in direct decays, so it is exponentially un-
likely that the dominant vacuum can decay to any
vacuum large enough to contain observers or
Boltzmann brains.

(2) For every vacuum a, there exists at least one decay
path from � to a which does not pass through any
de Sitter vacua with horizon entropy bigger than
SBB. This assumption, too, is plausible given the
scarcity of vacua with � � 1, and given our ability
to choose any path we like.

(3) Of the decay paths posited in assumption (2), at least
one ‘‘dominates’’ the sum in Eq. (69), in the follow-
ing extremely weak sense: By dropping all other
terms, we change the sum by less than a double
exponential factor. Similar to assumption (1), this
is plausible in a multidimensional landscape with
large step size, where decay chains in the semiclas-
sical regime are short.

We remain agnostic about whether the � vacuum has
horizon entropy larger or smaller than SBB. The dominant
vacuum is special. It is at least conceivable that its defining
properties strongly select for a very small cosmological
constant, and we do not wish to prejudice this issue here.
We will be interested in bounding pa only to within

double-exponentially large factors. By assumption (3),
we can drop the sum over paths and write

pa � q	ain	inin�1
	 	 		i1� ða � �Þ: (70)

Assumption (1) guarantees that n � 1, so 	i1� exists in
the product and represents the branching ratio from one
de Sitter vacuum to another. For two connected de Sitter
vacua, detailed balance gives �i1� ¼ ��i1 expðSi1 � S�Þ
where Sj is the horizon entropy of vacuum j. Also, the

decay rate must be faster than the recurrence time, �i1� >
expð�S�Þ. We are only considering vacua which eternally
inflate, ��i1 < 1, so

expð�S�Þ< �i1� < expðSi1 � S�Þ: (71)

We can divide by �� to get a bound on the branching ratio,

1

��
expð�S�Þ<	i1� <

1

��
expð�S� þ Si1Þ: (72)

For the other branching ratio(s) appearing in Eq. (70), we
can use the cruder bound

expð�SjÞ< 1

�j

expð�SjÞ<	ij < 1; (73)

which holds also if the destination vacuum is terminal (as a
might be). Substituting these bounds into Eq. (19), we
obtain

10While our discussion will focus on the scale factor measure, it
can be adapted to the causal-diamond measure simply by replac-
ing � with another initial vacuum.
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expð�S�Þ expð�Si1 � Si2 � 	 	 	 � SinÞ
<pa < expð�S� þ Si1Þ; (74)

where we have used �� � q. By assumption (2) (and
assuming that the path is not exponentially long), we
have

P
n
k¼1 Sik � SBB, so

expð�S�Þ expð�SBBÞ ��pa ��expð�S�Þ expðþSBBÞ:
(75)

(We remind the reader that we use the triple inequality sign
for the inequality of double exponentials.)

We have bounded pa to within a range small compared
to expðSBBÞ. Meanwhile, by Eq. (68), the ratio �BB

i =�i is
either larger than expðSBBÞ or smaller than expð�SBBÞ. By
double exponential arithmetic, therefore, we can neglect
the uncertainty in pa when we multiply these terms:

pa

�BB
a

�a

� expð�S�Þ�
BB
a

�a

: (76)

By similar double exponential reasoning we can do the
same thing in the denominator, so the ratio becomes

P BB

POO
¼

�BB� þP
a
expð�S�Þð�BB

a =�aÞP
a
expð�S�ÞOO

a

: (77)

It seems likely that in our vacuum the density of observers
is not double exponentially small, and in Planck units
OO < 1, so

P
a

OO
a is not double exponential as long as

the number of vacua is not double exponential. Therefore,

P BB

POO
¼ expðS�Þ�BB� þX

a

�BB
a

�a

: (78)

For the ordinary observers to dominate, the ratio must be
less than 1, so every term must be less than 1. This requires

�BB
a

�a

< 1 8 a: (79)

Also, if the dominant vacuum can produce Boltzmann
brains at all, then it will do so far faster than the recurrence
rate expð�S�Þ, so for the first term to be less than 1 we need

�BB� ¼ 0: (80)

If either of these conditions is violated, the Boltzmann
brains dominate.11

C. Discussion

Let us summarize our result in general terms. If any
vacua have lifetimes longer than their Boltzmann brain
time (�a < �BB

a ), then by the laws of double exponentials,
the Boltzmann brains will dominate—unless there is a
conspiracy in the landscape so that the rate of production
pa of every single Boltzmann brain producing vacuum
is double exponentially small compared to the pa for
some vacuum which contains mostly ordinary ob-
servers. Conversely, if all vacua decay before they pro-
duce Boltzmann brains, and the � vacuum does not pro-
duce Boltzmann brains, then ordinary observers domi-
nate unless all of the pa for ordinary observer vacua
are double exponentially small compared to the pa for
some vacuum which produces primarily Boltzmann
brains.
It is interesting to compare the conditions necessary for

the absence of Boltzmann brains with those arising in the
causal-diamond measure. For the purposes of Boltzmann
brains, the causal-diamond measure and the scale factor
measure differ only through the choice of initial condi-
tions, i.e., through the second of the two conditions in Eqs.
(79) and (80). In the causal-diamond measure, there is no
reason to select initial conditions that favor vacua with
extremely small cosmological constant �< 1=SBB. Thus,
it is implausible that Boltzmann brains would dominate via
Eq. (80) (with the � vacuum replaced by the relevant initial
conditions).
In the scale factor measure, on the other hand, the �

vacuum may have very small cosmological constant, for
example, because of a correlation between vacuum stabil-
ity and the degree of supersymmetry breaking. Thus, while
the string landscape may well satisfy Eq. (79), it appears
that the scale factor measure gives Boltzmann brains a
second chance through Eq. (80).
We should not make too much of this difference.

Cosmological constant aside, Boltzmann brains are fairly
complex objects and will not arise in every imaginable
low-energy field theory. Thus, we expect �BB

a to vanish
exactly in most vacua. In the � vacuum, the necessary
conditions on matter content are no more likely to be
satisfied than in any other randomly chosen vacuum, since
low-energy properties such as particles and fields are un-
likely to be correlated with the high-energy features re-
sponsible for the vacuum’s longevity. Thus it seems very
likely that �BB� ¼ 0.
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11Our result is consistent with the conditions found by Linde
[24] for a toy landscape with two de Sitter vacua and a sink. This
toy landscape is so small that it violates our assumptions, but
nevertheless Eqs. (79) and (80) are necessary and sufficient for
ordinary observers to dominate. The condition �1s � �21 (in the
notation of Ref. [24]) ensures that 2 ¼ �; the condition �1s �
�1B corresponds to Eq. (79). Equation (80) was not explicitly
spelled out but is implicit in Fig. 4 of Ref. [24].
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