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We explore the consequences of the existence of a very large number of light scalar degrees of freedom

in the early universe. We distinguish between participator and spectator fields. The former have a small

mass, and can contribute to the inflationary dynamics; the latter are either strictly massless or have a

negligible VEV. In N-flation and generic assisted inflation scenarios, inflation is a cooperative phenome-

non driven by N participator fields, none of which could drive inflation on its own. We review upper

bounds on N, as a function of the inflationary Hubble scale H. We then consider stochastic and eternal

inflation in models with N participator fields showing that individual fields may evolve stochastically

while the whole ensemble behaves deterministically, and that a wide range of eternal inflationary

scenarios are possible in this regime. We then compute one-loop quantum corrections to the inflationary

power spectrum. These are largest with N spectator fields and a single participator field, and the resulting

bound on N is always weaker than those obtained in other ways. We find that loop corrections to the

N-flation power spectrum do not scale with N, and thus place no upper bound on the number of

participator fields. This result also implies that, at least to leading order, the theory behaves like a

composite single scalar field. In order to perform this calculation, we address a number of issues

associated with loop calculations in the Schwinger-Keldysh ‘‘in-in’’ formalism.

DOI: 10.1103/PhysRevD.79.063504 PACS numbers: 98.80.Cq

I. INTRODUCTION

Many candidate theories of fundamental physics predict
the existence of large numbers of scalar degrees of free-
dom. Classically, if these modes are not excited they play
no role in the cosmological dynamics. Quantum mechani-
cally, however, light scalar modes fluctuate with an ampli-
tude set by the Hubble scale H and, since everything
couples to the graviton, they contribute to loop corrections.
Thus, while adding N light scalar modes need not change
the classical dynamics of the early universe, we expect
quantum contributions that scale with N. In addition, if
these fields are in thermal equilibrium with the rest of the
universe their contribution to the effective number of de-
grees of freedom modifies the relationship between density
and temperature. For a given H we can therefore find an
upper limit on N, above which these modes dominate the
cosmological evolution.

Consider a scenario with N scalar fields,

S ¼
Z

d4x
ffiffiffi
g

p �
M2

p

2
RþX

I

�
� 1

2
ð@�IÞ2 þ VIð�IÞ

��
; (1)

where the total potential V ¼ P
IVIð�IÞ is a sum of N

uncoupled potential terms.1 A field �I is ‘‘light’’ if
d2VI=d�

2
I =2 � m2

I � H2. We make a distinction between
participator and spectator fields. The latter are either
massless because VI is strictly zero, or their vacuum ex-

pectation value (VEV) is very small. Conversely, partici-
pator fields have small but nonzero mass and sufficient
VEV for them to help drive inflation via their contribution
to the overall density.
Perhaps the simplest route to a meaningful bound on N

is to note that all these fields undergo quantum mechanical
fluctuations of order ��i �H=2�. During inflation these
fluctuations freeze out as classical perturbations at scales
larger than the Hubble length, 1=H. Each field has gradient
energy ðr�Þ2=2, which counts towards the overall energy
density. The gradient energy thus scales like
Nð��=�xÞ2=2� NH4=8�2. Given H, the energy density
is provided by the 0� 0 Einstein equation, H2 ¼ �=3M2

p.

For self-consistency, the gradient contribution must be
much smaller than other contributions to �, so

N � M2
p

H2
: (2)

If inflation occurs at the GUT scale, thenMp=H � 105 and

N � 1010. This bound can be derived by many routes (e.g.
[1,2]), and appears to be robust.2

One can also consider bounds on N from loop correc-
tions to the gravitational constant. Since gravity (and thus
the graviton) couples to all fields, matter loop corrections
can renormalize its value [5,6]. Veneziano [7] argued that
in order for the effective value of Newton’s constant to be

1We use the reduced Planck mass M2
p ¼ 1=8�G throughout.

2In [3,4] this limit on N is derived in the context of N-flation
but in reality it applies to any scenario with N light fields.
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greater than zero we need

N � M2
p

�2
; (3)

where � is the scale of the invariant UV cutoff, for ex-
ample, the mass scale of the N stable fields. Likewise,
Veneziano [7] points out that this bound prevents potential
violations of the holographic bound on the entropy density
that can be encountered when the total number of species
grows without limit [8,9], the so-called ‘‘species problem.’’
More recently, Dvali [10] noted that in the presence of a
large number of species, the Veneziano mechanism weak-
ens the gravitational coupling by a factor of 1=N. Setting
N � 1032 and working at the TeV scale to satisfy the bound
of Eq. (3) solves the hierarchy problem, provided some
ultraviolet completion of the standard mode can produce
the requisite value of N. Dvali also provides an alternate
nonperturbative derivation of Eq. (3) based on the consis-
tency of black hole physics.

In Sec. II we begin by considering stochastic inflation
[11–13] with multiple degrees of freedom. Many simple
inflationary potentials possess a range of field values for
which the potential is safely sub-Planckian, while the
stochastic motion of the field dominates the semiclassical
rolling. With a single field, a stochastic phase is necessarily
eternal, since the inflationary domains perpetually repro-
duce themselves. However, once N > 1, more complicated
scenarios become possible. Specifically, with N participa-
tor fields we can implement assisted eternal inflation with-
out any single field acquiring a super-Planckian VEV. This
scenario is a variety of ‘‘assisted inflation’’ where the
inflaton is a composite of many individual fields [14].
Second, we find solutions where individual fields move
stochastically, but a well-defined composite field rolls
smoothly towards its minimum. Finally, we find models
where a field (or fields) evolves semiclassically, along with
other fields that move stochastically. If these fields have
symmetry breaking potentials they yield an apparent ‘‘mul-
tiverse’’ of disconnected bubbles. However, the stochastic
phase ends globally, as the semiclassically evolving field
gives a natural cutoff to what would otherwise be an
eternally inflating universe, providing a potential toy
model for studying the well-known measure problem in
eternal inflation [13,15–20].

All fields couple to the inflaton gravitationally, and thus
contribute loop corrections to the inflation potential, via a
coupling of order ðH=MpÞ2. This is necessarily a small

number during the last 60 e-folds of inflation, given that H
fixes the scale of tensor fluctuations and is bounded by the
absence of an observed B-mode in the microwave back-
ground. Consequently, any single loop makes a tiny cor-
rection to the inflaton propagator. However, this
contribution is amplified by N, the number of species
that can flow round the loops, and in Sec. III we compute
the relevant one-loop corrections to the inflaton propagator.

We consider two limits—N spectator fields with a single
inflaton, and the N-flation case, with N participator fields
[21,22]. With N spectator fields we find an upper bound on
N similar to those of [7,23]. We describe these results in
Sec. III, relegating many details to Appendix A. We work
in the ‘‘in-in’’ formalism [24–27], which has been turned
into an extremely powerful tool for studying higher order
corrections to cosmological correlations by Maldacena
[28] and Weinberg [29]. This calculation requires us to
develop the fourth order interaction Hamiltonian for a
theory of inflation with N uncoupled scalar fields, which
we present in Appendix B, and which will have applica-
tions beyond the current calculation. Moreover, it turns out
that there are some subtleties with the computation of loop
corrections in the in-in formalism which we also clarify in
the Appendices. Finally we conclude in Sec. IV.

II. STOCHASTIC N-FLATION

In simple versions of N-flation, one has N identical
participator fields, and inflation emerges as a cooperative
phenomenon. We assume that the overall potential is the
sum of the individual fields’ potential terms, and that cross
terms are absent. Each field only feels the ‘‘slope’’ of its
own potential, but the corresponding friction term in the
field’s equation of motion is still proportional to H, and
thus grows with N. Interestingly, a similar scaling also
applies to stochastic inflation, which occurs when the
inflaton evolution is dominated by quantum fluctuations,
rather than semiclassical rolling [11–13]. The individual
fields have fluctuations of order H, so this amplitude will
grow relative to the semiclassical evolution as N is
increased.
Let us begin by looking at N fields with identical poten-

tial terms and initial VEVs. Assuming slow roll,

H2 ¼ 1

3M2
p

X
I

VIð�IÞ ¼ 1

3M2
p

N ~V; (4)

where ~V ¼ VIð�IÞ is the potential for any one of the fields.
The amplitude of the quantum fluctuations of the Ith field
is

��I;q ¼ ��q ¼ H

2�
; (5)

where the first equality reflects our assumption of identical
fields. From Eq. (4)

��q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

12�2

N ~V

M2
p

vuut : (6)

Conversely, the distance traveled by �I in a single Hubble
time is

��c ¼ j _�Ij 1H ¼ V0
I

3H

1

H
¼ M2

pV
0
I

N ~V
; (7)

where V 0
I ¼ @V=@�I ¼ @VI=@�I. The defining condition
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for the stochastic inflation is that ��c < ��q [11,12].

Forming the ratio of these terms gives

��q

��c

¼
ffiffiffiffiffiffiffiffiffiffiffi
1

12�2

s �
N ~V

M2
p

�
3=2 1

V 0
I

; (8)

and stochastic inflation therefore occurs whenever the
above expression is larger than unity. This ratio increases
with N if everything else is held fixed. This is to be
expected, since boosting N lifts the overall energy density,
and thus the amplitude of the quantum fluctuations.
Conversely, the semiclassical rolling slows with N, as we
are increasing H while holding V0

I constant.
The above discussion holds for a generic potential, but

now consider N quadratic potentials with identical masses,
VI ¼ m2�2

I =2. Assisted inflation can be described in terms
of an effective single field, ’ which, for quadratic poten-

tials is �I ¼ ’=
ffiffiffiffi
N

p
and [21,22]

��q

��c

¼
ffiffiffiffiffiffiffiffiffiffiffi
N

96�2

s
N�2

I

M2
p

m

Mp

¼
ffiffiffiffiffiffiffiffiffiffiffi
N

96�2

s
’2

M2
p

m

Mp

: (9)

Interestingly, this expression retains an explicit depen-
dence on N, whereas N-flation ends at a fixed value of
’, independently of N. Before proceeding, let us consider
some specific numbers. The principal virtue of N-flation is
that we can build a GUT-scale inflation scenario without
invoking trans-Planckian VEVs. Consequently, if �I �
Mp the critical value of N at which the fields can move

stochastically is

N ¼ ð96�2Þ1=3
�
Mp

m

�
2=3 � 10

�
Mp

m

�
2=3

: (10)

The ratio m=Mp is fixed via the amplitude of the perturba-

tion spectrum, and is around 2� 10�4 [21,22].
Consequently, we might see the onset of stochastic motion
in the fields if N �Oð104Þ. This is an order of magnitude
larger than the number of fields one expects in N-flation,
on the basis of the likely number of two-cycles (from
which the N axions are derived) one can find in a realistic
Calabi-Yau [21,22], but is much less than the absolute
upper limit on N given by Eq. (2). To satisfy this require-
ment, we need H2 � Nm2=6 (assuming �I ¼ Mp), in

which case

N &
ffiffiffi
6

p Mp

m
� 105: (11)

The theoretical upper limit on N is roughly an order of
magnitude larger than the value required for the individual
fields to move stochastically.3 Conversely, slow roll ends

when ’ � ffiffiffi
2

p
Mp or � � ffiffiffiffiffiffiffiffiffi

2=N
p

Mp. For self-consistency,

we expect the N fields to be moving semiclassically at this
point, so we can derive a very weak upper bound on N by

setting ’ � ffiffiffi
2

p
Mp in (9), namely N & 24�2M2

p=m
2 �

1010, far above even the weak bound of Eq. (2). Since the
last 60 e-folds occur at values of ’ a few times larger thanffiffiffi
2

p
Mp, we need not worry that the fields are moving

stochastically over astrophysically interesting scales.
With a single field, the onset of stochastic inflation is

synonymous with the amplitude of the density fluctuations
exceeding unity [32]. For N-flation the density fluctuations
have an amplitude [21,22]

P1=2
R ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

96�2

s
’2

M2
p

m

Mp

; (12)

which is
ffiffiffiffi
N

p
smaller than the critical ratio for the onset of

stochastic motion by the individual fields, so at the thresh-

old for stochastic motion, P1=2
R � 1=

ffiffiffiffi
N

p � 1. In this case

stochastic inflation is not synonymous with eternal infla-
tion. As described above, in one Hubble time each field
makes a random jump of ���q with undergoing semi-

classical evolution ��c. For a given field, the sign of ��q

is random, while the semiclassical motion always points in
the downhill direction. The average field thus has a sto-

chastic fluctuation ��q=
ffiffiffiffi
N

p
, since this is the mean of N

signed, random variables. Consequently, the collective
motion of the ensemble of fields remains deterministic,
and the density of the universe will decrease monotonically

with time unless ��q *
ffiffiffiffi
N

p
��c. In this case the density

fluctuation is boosted to order unity, and the average den-
sity can increase inside a given Hubble patch, so inflation is

not just stochastic but eternal. Since H / �1=2, we are in
the intermediate range where inflation is stochastic but not
eternal, ��q=��c diminishes with time. In this case the

stochastic motion of the individual fields will eventually
become subdominant and for any reasonable value ofN the
inflationary dynamics will be well-described by the semi-
classical motion alone.
From a practical perspective, a period of stochastic

inflation in a simple multifield model need not modify
the observable properties of the universe. Certainly in the
case described above, the stochastic motion would cease

well before P1=2
R � 10�5 unless N is very large. However,

since the stochastic motion necessarily increases the vari-
ance in the individual field values this phase may have an
impact on the likely initial spread in the values the �I,
which can have an impact on the inflationary observables
in N-flation. However, there is no clear expectation for the
likely initial values of the�I and without this the impact of
any stochastic evolution cannot be evaluated.
On the other hand, if the individual potential terms do

not all have a single well-defined minimum, any phase
where one of more of the individual fields moves stochas-
tically could have a substantial impact on the inflationary

3Huang et. al. [1,30] has argued that choatic eternal inflation
with large N fields is ruled out by the so-called ‘‘weak gravity
conjecture’’ introduced in [31].
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phenomenology. For instance, in the case of N-flation, the
N fields are actually axions and thus have periodic poten-
tials. The individual m2�2

I terms arise from assuming that
each field is close to it minimum, when measured relative
to the scale on which the underlying potential is periodic,
and then Taylor expanding. However, if we imagine an
initial state when the N fields (or even some subset of
them) are close to the maxima of their cosine potentials
two effects will occur. The first is that these fields will have
a small ��c, since the corresponding V

0
I will be very small

in the vicinity of an extremum, making it more likely that
these fields move stochastically even if other fields are
dominated by the semiclassical rolling. Secondly, with
fields moving stochastically near the maxima of these
potentials, in individual Hubble domains in which these
fields do evolve away from the peaks the fields will then
roll towards different minima. In eternal inflation each
patch in which the stochastic motion ceases would be
identified as a ‘‘pocket universe’’ and this scenario thus
produces pockets with many different vacua, depending on
the symmetry breaking pattern of the individual axions.
However, if enough fields are rolling semiclassically, H is
strictly decreasing, and inflation is not future-eternal. In
this case we can end inflation globally, and count the
number and type of distinct domains created during the
stochastic phase. Consequently we now have a toy model
that initially resembles an eternally inflating universe, but
in which there is a natural late-time cutoff which removes
the infinities which otherwise can prevent one calculating
the relative creation rates for different types of pocket. This
system may thus prove useful for testing different ‘‘mea-
sures’’ for eternal inflation [13,15–20], and we will exam-
ine this issue in a separate publication. Conversely, once
inflation has ended, these different domains will eventually
merge and the late-time universe (in the absence of a
cosmological constant term) will be composed of domains
with different vacua, separated by domain walls.

III. ONE-LOOP QUANTUM CORRECTIONS

In the previous section, we considered stochastic field
evolution in cosmological scenarios with many degrees of
freedom. We now assume the field evolution is well-
described by the semiclassical equations of motion, and
compute loop corrections to the perturbation spectrum.
Scalar loop corrections to the inflationary spectrum in
single field models have been widely discussed [29,33–
37]. Likewise, the correction from graviton loops was
computed in [38].4 Weinberg [29] looks at loop corrections
to a single inflaton in the presence of many massless

spectator fields, and we now generalize this result to mod-
els with N participator fields. For clarity, we present our
results in this section, and discuss technical aspects of the
calculation in Appendix A.
We previously made the distinction between single field

inflation with N spectator fields, and assisted scenarios
with N participator fields, of which N-flation is the most
interesting example. The field dynamics differs between
these cases, since only the participator fields have nonzero
VEV and contribute to the vacuum energy that drives
inflation. However, both classes of field can contribute
loop corrections to the 2-point function or perturbation
spectrum—and we will see that the forms of these contri-
butions are different. The immediate concern is that loop
corrections result in a new ‘‘species problem,’’ as pointed
out in [7,21,39]. Generically, if we insist that quantum
corrections to the Planck scale are small, we need
�Nð�UV=MpÞ2 to be small, where �UV is some UV cutoff

scale. Having computed the loop corrections to the 2-point
correlation function, we can then determine whether these
also provide an constraint on N, as a function of �UV=Mp.

Surprisingly, with N participator fields, there is no bound
on N. On the other hand, with N spectator fields, we obtain
slightly weaker bounds on N as compared to the standard
arguments. In what follows we look at the two limiting
cases, firstly N-spectator fields with a single inflaton and
then N participator fields. One could easily generalize our
result to the case where one had a mix of both spectator and
participator fields.

A. One-loop corrections of N spectator fields

Consider inflation driven by a single field �, with N
spectator fields, �I where I runs from 1 to N,

S ¼
Z

dx4
ffiffiffi
g

p �
M2

p

2
R� 1

2
ð@�Þ2 þ Vð�Þ �X

I

1

2
ð@�IÞ2

�
:

(13)

In the discussion below, repeated indices are not summed
over unless explicitly specified. Unlike the N-flation case,
the spectator fields remain invariant under the shift �I !
�I þ �I. Any initial kinetic energy possessed by these
fields decays away rapidly, since �i / ð _�iÞ2 / a�6. Thus
the only contribution to the background energy density is
the inflaton potential, Vð�Þ. This situation has been dis-
cussed byWeinberg [29], who found that the one-loop two-
vertex quantum corrections modify the power spectrum
equation (24) by a term of order ðH=MpÞ4 lnk per field.

Thus, forN �I fields
5 the first order correction to the power

spectrum is

4In this work we are primarily interested with the scaling
behavior of the loops as one increases the number of fields.
Since there are only 2 graviton modes, loops involving gravitons
cannot scale with the number of fields N (even though individu-
ally they are of the same order), and hence we neglect them.

5The numerical factor in [29] differs from that of Eq. (14). As
we explain in Appendix A, there is an extra contribution, related
to the contour in the time integral needed to pick up the ‘‘in’’
vacuum. We thank Steven Weinberg for a useful discussion of
this point.
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Pð1Þ
k ¼ 1

4ð2�Þ3 N
�

6

H4

M4
p

� lnk: (14)

The one-loop corrected power spectrum is then

Pk ! 1

4ð2�Þ3
1

�

H2

M2
p

�
1þ

�
c1 þ N

�

6
�

�
H2

M2
p

lnk

�
; (15)

where c1 ¼ �2�=3 is the one-vertex self-correction term
which we compute in the appendices. What about the one-
loop one-vertex loops of the � fields around the inflaton?
As we explained in detail in Appendix A and later in
Sec. III B, there is no non-scale-free �I one-vertex correc-
tion to the � propagator, and hence Weinberg’s computa-
tion is complete modulo the inflaton self-correction.

Requiring that the one-loop corrections do not dominate
the ‘‘tree-level’’ two-point correlation, we obtain the bound

N <
M2

p

H2

1

�
: (16)

For successful slow-roll inflation � � 1, so this bound is
necessarily weaker than that obtained from gradient energy
considerations. Interestingly, the ‘‘tree-level’’ power spec-
trum for the tensor modes for single scalar field inflation is

Pgw ¼ H2

M2
p

: (17)

Hence any measurement of Pgw would effectively put an

observational upper bound on N,

N < 1=Pgw: (18)

B. One-loop corrections with N participator fields

We now turn to the case with N participator fields,
N-flation, which is based on the action of Eq. (1), and
we perturb each individual field,

�I ! ��I þQI; (19)

where ��I is the homogeneous background solution and QI

is the perturbation. In the discussion below, upper case
Roman letters I; J; . . . label the fields, and we have a flat
target space XI ¼ XI with the summation convention

XIYI ¼
X
I

XIYI: (20)

The power spectrum produced by N uncoupled inflating
fields is [40]

Pk ¼ 1

N2

X
I

�
H
_�I

�
2hQIQIi; (21)

The 1=N2 factor in front reminds us that the total power
spectrum is not simply a sum of the individual power
spectra of the fields; the power spectrum is itself the
expectation value of a set of random variables. In general,

hQIQIi ¼ hQIQIi0 þ hQIQIi1 þ hQIQIi2 . . . ; (22)

where the numerical subscript denotes the order of the
expansion, or equivalently, the number of vertices. The
uncorrected power spectrum is simply

hQIQIi0 ¼ 1

2ð2�Þ3 H
2; (23)

leading to the primordial power spectrum,

Pk ¼ 1

4ð2�Þ3
H2

M2
pN�I

: (24)

Our goal is to compute the one-loop corrections to the
power spectrum for each field hQIQIi1-loop generated by

all N fields. To compute the one-loop correction, we use
(A1), with the appropriate interaction Hamiltonian Hint for
each field.6 The three-point interaction Hamiltonian is, to
leading order in slow roll [33],

Hð3Þ
int ðtÞ ¼

Z
d3x

�
a3

4H

X
I;J

_�IQI
_QJ

_QJ

þ a3

2H

X
I;J

_�I@
�2 _QI

_QJ@
2QJ

�
: (25)

Application of Eq. (A4) leads to three sets of diagrams
generated by the two interaction terms and their cross-
interaction, the first two diagrams of Fig. 1 where each
vertex corresponds to and interaction via one of the terms
above. We also need the four-point action, Eq. (B6) derived
in Appendix B,

FIG. 1. Feynman diagrams for the three- and four-point one-loop correction for the I field correlator. With N participator fields, the
first two terms apparently scale as N, due to the summation of J, but each loop is suppressed by �=N, arising from the extra coupling.
At leading order in slow roll, the third term only has contributions from the self-interaction I ¼ J term, so the corrections do not blow
up as N becomes large. Here we have denoted I fields by solid lines, while J fields are denoted by dotted lines.

6All the fields below are the taken to be Heisenberg fields
unless otherwise noted.
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Hð4Þ
int ðtÞ ¼

Z
d3xa3

�
1

4Ha2
X
I;J

@iQJ@iQJ@
�2ð@j _QI@jQI

þ _QI@
2QIÞ þ 1

4H

X
J;I

_QJ
_QJ@

�2ð@i _QI@jQI

þ _QI@
2QIÞ þ 3

4
@�2

X
I;J

ð@j _QJ@jQJ

þ _QJ@
2QJÞ@�2ð@j _QI@jQI þ _QI@

2QIÞ
þ 1

4
�2;j@

2�2;j þ
X
I

_QI@iQI�2;i

�
; (26)

where �j
2 is given in Eq. (B7) and repeated lower roman

indices i; j; � � � are summed using the Euclidean metric;
aibi ¼

P
i;j�ijaibj. At first order this interaction generates

the third diagram in Fig. 1 via Eq. (A3). For simplicity, we
ignore the self-interaction term of the two-vertex term, as
we expect that its correction to be of the same order as the
other N � 1 corrections [41,42].

Note that in deriving the above expression we have made
use of the substitution H int ¼ �Lint, where Lint is the
Lagrangian density computed to the appropriate order in
the perturbation. This substitution is trivial with nonder-
ivative interactions, but it is more subtle in the presence of
derivative interactions. However, in Appendix C we show
that we are effectively ignoring a correction that is at most
of order Oð�Þ,

H int ¼ �Lint þOð�Þ; (27)

which can be discarded to leading order in slow-roll.
Each of the field QI can be expanded in Fourier modes

and their respective creation/annihilation operators,

QIðx; tÞ¼
Z
d3keik�x½aIðkÞUI

kðtÞþayI ð�kÞUI�
k ðtÞ	; (28)

where the functions UI
kðtÞ are solutions of the equations of

motion obtain from varying the second order action,
Eq. (B4), with respect to the field QI. The aIðkÞ satisfy
the usual commutation relations,

½aIðkÞ; ayJ ðk0Þ	 ¼ �ðk� k0Þ�I
J: (29)

With these ingredients, we make the final simplifying
assumption that the fields are identical, which means that
we simply need to compute the one-loop correction from
one of the J terms in Eq. (25) and then multiply them by
N � 1 to get the total correction per field I. We leave the
details of this computation to Appendix A.

It turns out that the only the two-vertex diagrams and the
one-vertex self-interaction diagram contribute the physical
logs while non–self-interaction diagrams of the one-vertex
loops contribute polynomial ultraviolet divergences which
we assume are absorbed by renormalization. This is a
consequence of the symmetry of the original action where
the potentials are uncoupled and the kinetic terms are
SOðNÞ symmetric. This can be understood as follows.

The diagrams in Fig. 2 have metric ‘‘graviton’’ propagators
and loops hidden inside them—the higher order interac-
tions that appear perturbatively are mediated by gravity.
However, we have chosen a gauge where the metric per-
turbation vanishes. If we choose a different gauge
(Newtonian gauge [43] for example) these interactions
are manifest, and each one-vertex diagram receives con-
tribution from terms like

where the wiggly lines represent the graviton lines, the
solid lines are the field perturbation lines and the ellipses
denote terms that are higher order in metric perturbation or
the slow-roll parameters. The first ‘‘balloon’’ diagram di-
verges polynomially; the loop that runs around itself does
not possess a scale since it is not directly connected to an
external leg. Both vertices of the second term must obey
the symmetry of the original action, which forces I ¼ J. It
is clear from this perspective why only the self-interaction
one-vertex loops can contribute to physical observables.7

After regularizing the results and assuming that we can
always find suitable counterterms to cancel the gravita-
tional backreaction and UV divergences from loops inde-
pendent of external momenta, the correction of J loops to
the I propagator is given by Eqs. (A16) and (A28). The
total correction is thus

hQIQIi1-loop ¼ 1

2ð2�Þ3
H4

M4
p

�
c1 þ Nc2

_�2
I

M2
pH

2

�
lnk; (30)

where c1 ¼ �2�=3 and c2 ¼ ð2017=240Þ�, which arise
from the one-vertex self-interaction and the two-vertex
loops, respectively. We have set N � 1 ! N, since N 

1, so the two-vertex self-interaction is not important.
During N-flation, each participator field is corrected by
its N � 1 counterparts in the two-vertex loop, and by itself
in the one-vertex loop. However, in Eq. (30), the two-
vertex corrections are suppressed by the individual
‘‘slow-roll’’ parameter,

�I � 1

2

_�2
I

ðHMpÞ2
: (31)

Since _�2
I is the velocity of a single field, whileH

2 is related
to the overall density, this quantity is reduced relative to its
value in the single field case by a factor of N. We can think
of �I as the square of the coupling strength of each three-
point vertex in the interaction Hamiltonian equation (25).
The total correction to the power spectrum is obtained by
inserting in Eqs. (23) and (30) into (21),

7We thank Dan Kabat for a very useful discussion on this
point.
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Pk ¼ 1

4N2ð2�Þ3
X
I

1

�I

H2

M2
p

�
1þ ðc1 þ 2c2N�IÞ H

2

M2
p

lnk

�
:

(32)

Now for slow-roll,

� � � _H

H2
¼ N

1

2

_�2
I

H2M2
p

¼ N�I � 1; (33)

and hence the power spectrum can be rewritten as

Pk ¼ 1

4ð2�Þ3
H2

M2
p

1

�

�
1þ ðc1 þ 2c2�Þ H

2

M2
p

lnk

�
; (34)

which is equivalent to the power spectrum of a single scalar
field inflation ’ with its one-loop self-correction [42].

The lack of any N-dependence in this bound is some-
what surprising. In fact, we will now show that this non-
appearance is true to all orders in loops, provided slow roll
can be assumed. The pairwise SOðNÞ symmetry XIXI in
the kinetic term of the action is preserved when we expand
the action to higher orders.8 Consequently, the index struc-
ture of terms in Hint is always fully pairwise e.g.
_�IQIQ

JQJ, Q
IQIQ

JQJ or _�I _�JQIQJQ
KQK etc. since

the interactions must preserve this same symmetry. When
computing the one-loop diagram, we have to contract
through the loop to obtain the physical log contribution,
in the sense that we have to contract the external lines with
at least one of the interacting fields in the loop. We have
already argued above and in the Appendix A that there can
be no cross-coupling between I and J fields in the four-
point interaction, at least at lowest order in slow-roll.

Interaction terms like _�J
_�K@

�2ðQIQIÞQJQK do exist
and can contribute a log divergence, however, these are

higher order in slow-roll thanks to the extra _� terms and so
their contribution to the one-loop correction will be �=N
suppressed.

Let us now turn to the diagrams generated by the three-
point interaction and the even vertex loops. For our coher-
ent field argument to be true, the leading 2n-vertex cor-
rection must be of the order ðN�IÞn � �n. We can now
count the number of diagrams to find the factors of N,

remembering that each time a _�I / ffiffiffiffiffi
�I

p
coupling appears,

we get a factor of
ffiffiffiffiffiffiffiffiffi
1=N

p
from the coherent field relation

Eq. (33). Consider the simplest diagram which we have
calculated in the Appendix: a two-vertex loop with identi-

cal interaction term _�IQIQ
JQJ at both vertices. We now

want to count the factors of N and �I for the correction to
the QI propagator. Since we have to contract through the
loop, we can only contract the QJ of one interaction to the

QJ of the other interaction (else we will form a discon-
nected diagram if we contract the J fields at the same space
point). Hence, by counting sums, we get a factor of N from
the J contraction and a factor of �I from the couplings, for
a total correction of N�I ¼ �, equivalent to the correction
for a single coherent field as we have shown in the above.
Next, consider a more complicated interaction term

_�I _�J _�KQIQJQK. Since the fields and couplings have to

appear pairwise, there is no Oð _�2Þ interaction. There are
two ways to contract through the loop, i.e. via QJ and QK,
so we get two factors of N. However, the three factors of
_�2 give us the coupling term �I�J�K, and Eq. (33) yields
the correction termN2�3i ¼�3=N, which is 1=N suppressed
compared to the previous case, and hence contributes even
less. Adding loops will add more factors of �I into the
interaction and thus provide further 1=N suppressions—it
is easy to see that the extra factors of N coming from the
extra loops will never scale more than the suppression that
comes from �I ¼ �=N. The point here is clear: since the
field labels have to appear pairwise, we cannot have three-

point interactions like _�IQ
IQJQK that could have given us

an �N� correction that has no coherent field analog. This
argument does not depend on the number of loops, since it
depends solely on the interaction terms.
In fact, we can write the N fields in terms of a single

scalar field model, where the inflaton is the radial field.
Assume that each individual field’s potential is ð1=2Þm2

I�
2
I

and that they have identical masses mI ¼ m. We can then
rewrite the fields in polar coordinates, c 2 ¼ P

I�
2
I , in

which case the Lagrangian becomes [21]

L ¼ 1
2ð@c Þ2 � 1

2m
2c 2 þ 1

2c
2ð@�Þ2; (35)

where hc 2i � ðN�IÞ�1ðH=MpÞ2. The angular terms thus

have large values and damp out quickly, dropping out of
the inflationary dynamics. Consequently, the set of N
coherent fields can be recast as theory with a single scalar
field, and we are thus unable to derive a bound on N.
One might worry that the direct coupling term c 2ð@!IÞ2

with ð@�Þ2 ¼ Pð@�IÞ2, will generate N � 1 loop correc-
tions that are not scale-free. However, wewill sketch below
that this interaction can, at the most, generate scale-free
loops and hence is harmless. Consider the perturbed fields

c ! �c þQ; (36)

�I ! ��I þ!I: (37)

Using the symmetry of the interaction, one can show that

the leading three-vertex interactions are ��IQQ!I and
�cQ!I!

I while the leading four-vertex interaction is
QQ!I!

I, each with various permutations of derivatives.
The first three-vertex term can at the most generate a single
term, since the attractor solution drives the background
angle fields to a fixed trajectory and hence we can always

8The flat target space i.e. GIJr��Ir��J with GIJ diagonal is
crucial here. The pairwise symmetry will not hold if GIJ is not
diagonal, and we cannot write down the theory as a single
equivalent coherent scalar field. Another way of seeing this
that one can always redefine the fields so that the target space
is flat at the cost of generating couplings, both direct and
gravitational, in the potential.
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pick �I ¼ ð1; 0; 0; . . . ; 0Þ. For the latter three-vertex term,
we have to contract through 4 instances of!I, but it can be
shown that the propagator for !i / a�3, and hence the
loops are quickly redshifted away. Meanwhile it is clear
from our discussion above that the four-point interaction
can at most generate scale-free terms. For example, the
lowest order diagram is the one-loop one-vertex diagram;
since the external legs areQ’s and the!I can only contract
with itself this is scale-free.9

IV. DISCUSSION

In this paper we explore modifications to the dynamics
of inflationary models in the presence of N light scalar
degrees of freedom. We make a distinction between spec-
tator fields, which do not contribute to the background
energy density, and participator fields, whose potential
terms contribute to the inflationary background. As sum-
marized in the introduction, a number of very general
arguments place finite upper bounds on N, which typically
take the formN � M2

p=H
2. We first consider the dynamics

of stochastic inflation in the presence of large number of
light fields, and show that when N is large there is a
distinction between stochastic and eternal inflation which
does not apply in the single field case. In particular, with a
large number of participator fields we show that there is a
regime where the individual field motion is dominated by
quantum fluctuations and thus stochastic, while the overall
evolution of the universe is deterministic. Moreover, if the
stochastic fields have symmetry breaking potentials, then
one can create a large number of apparent ‘‘pocket’’ uni-
verses, while retaining the ability to end inflation globally,
and controlling the divergences characteristic of scenarios
in which inflation is genuinely eternal.

Second, we explore loop corrections to the 2-point cor-
relation function that provides the inflationary perturbation
spectrum. Since any light field can run round a loop, these
will typically scale with N. We analyze two subcases—a
single inflaton with N spectator fields, and N participator
fields. In the former case, we find an explicit bound, but
one which is weaker (by one over a factor that must be
small during slow roll) than the simple form described
above, namely

N &
M2

p

H2

1

�
: (38)

On the other hand, with N participator fields (N-flation
type scenarios), the loop correction is small and indepen-
dent of N. We can understand this result by recasting the
action in terms of a composite single scalar field. Finally, in
the course of this work, we have had need to look closely at
the computation of loop corrections in the in-in formalism.
These calculations raise a number of subtle issues, and we
give details of our approach in the Appendices.

One might whether bounds on N actually rule out other-
wise realistic fundamental theories. Within string theory,
Vafa [44] argued that T and S dualities ensure that the
volume of scalar moduli space is finite, and that there is a
strict upper bound on the number of matter fields. We are
not aware of explicit stringy constructions which would
saturate the large N bounds described above in any rea-
sonable compactification of string theory and with a finite
nonzero Newton constant.
As we have noted, many independent arguments put

limits on the allowed value of N. For example, Ref. [45]
notes that if N is too large, the inflaton can decay into a
large number of species during reheating, which may cause
phenomenological problems in the later universe, while
[46] suggests that validity of the perturbative expansion
itself provides a constraint on N. We have chosen to work
in the simplest models of multifield inflation, where the
fields have uncoupled potentials. One can multifield hybrid
inflation [47] with large number of coupled fields, and it
would be interesting to ask if such models which are not
ruled out by radiative corrections to their potentials but by
the loop corrections to their power spectrum. Also, while
higher correlation functions themselves do not seem to
impose any bound on N [48], one could check whether
this was also true of their quantum corrections.
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APPENDIX A: THE ‘‘IN-IN’’ FORMALISM AND
ONE-LOOP CORRECTIONS TO TWO-POINT

CORRELATION FUNCTIONS FOR MULTIFIELD
MODELS

In this appendix, we review the canonical quantization
approach to the Schwinger-Keldysh ‘‘in-in’’ formalism
[24,25] and use it to compute the one-loop correction10

to the Ith field two-point correlation function. There are
two types of loops: a two-vertex loop of the type consid-
ered by Weinberg [29], and a one-vertex loop of the type
considered by Seery [42] which we calculate below.
The Schwinger-Keldysh ‘‘in-in’’ formalism [24,25], was

first applied to cosmology by Jordan [26] and Calzetta and

9The analog in the�I field picture will be the balloon diagram. 10See also [49] for a discussion of beyond one-loop effects.
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Hu [27]. This formalism was reintroduced into the compu-
tation of cosmological correlations by Maldacena [28] and
extended beyond tree-level by Weinberg [29]. We follow
Weinberg’s notation and methods, with some comments on
its relationship with the functional method of [26,27]. The
correlation that we want to compute is

hWðtÞi¼ hðTe�i
R

t

�1HintðtÞdtÞyWðtÞðTe�i
R

t

�1HintðtÞdtÞi; (A1)

whereWðtÞ is some product of fields,Hint is the interaction
Hamiltonian, both which are constructed out of Heisenberg
(free) fields and T is the time-ordering symbol. The expec-
tation is taken over the true in vacuum.

One can use the Dyson expansion for the time evolution
operator, together with the Baker-Campbell-Hausdorf for-
mula to express Eq. (A1) in what may appear to be a more
convenient form [29];

hWðtÞi ¼ X1
N¼0

iN
Z t

�1
dtN

Z tN

�1
dtN�1 . . .

Z t2

�1
dt1

� h½Hintðt1Þ; ½Hintðt2Þ; . . . ½HintðtNÞ; WðtÞ	 . . .		i:
(A2)

While technically equivalent, for these computations this
form proves problematic. To perform calculations one
assumes that at very early times the vacuum state is the
bare vacuum, that is, that the interactions disappear.
Operationally, one implements this by deforming the
time contour in Eq. (A1) off the real axis into the lower
half plane to include a small amount of evolution in
imaginary time, killing off the interactions in the far past
(�1 ! �1ð1þ i�Þ). Unfortunately, in Eq. (A2) this
scheme can not be easily implemented. Contours entering
from the right and the left side of Eq. (A1) are treated
identically when deriving Eq. (A2). However, once the
vacuum prescription has been specified these contours
are in fact complex conjugates of each other, and can no
longer be freely interchanged.11 In the rest of this work, we
work directly with Eq. (A1), expanding it to the desired
order.

At first order we have, using hermiticity,

hQIðtÞQIðtÞi¼�2=
Z 	

�1�
d	1hHð4Þ

int ðt1ÞQIðtÞQIðtÞi1; (A3)

where we have introduced the shorthand1� � 1ð1� i�Þ.
Notice that Eq. (A3) is manifestly real. This reality is not
surprising: we are computing correlation functions and not
transition amplitudes as noted in [26,27]. At second order

we have, again using hermiticity,

hQIðtÞQIðtÞi ¼ �2<
Z 	

�1�
dt2

Z 	2

�1�
dt1

� hHð3Þ
int ðt1ÞHð3Þ

int ðt2ÞQIðtÞQIðtÞi2
þ

Z 	

�1�
dt1

Z 	

�1þ
dt2

� hHð3Þ
int ðt1ÞQIðtÞQIðtÞHð3Þ

int ðt2Þi2; (A4)

which is also real. Note the time integral contour of the
second term.
At tree-level, the two-point correlation function,

hQI
kQ

I
ki, is simply the power spectrum UI

kU
I�
k . This sug-

gests that instead of Wick contracting Eq. (A4) into
Feynman propagators, we should contract them into
Wightman functions instead. Let us see how this works
by first defining the contraction

QI
kQ

J
p � QI

kQ
J
p � :QI

kQ
J
p:; (A5)

where :QI
kQ

J
p: is the usual normal ordered product and

Z
d3kQI

kt ¼ QIðx; tÞ

¼
Z

d3keik�x½aIðkÞUI
kðtÞ þ ayI ð�kÞUI�

k ðtÞ	

¼
Z

d3kðQIþ
k ðtÞ þQI��kðtÞÞ: (A6)

The propagator is now [51]

hQI
kQ

J
pi ¼ h½QIþ

k ; QJ�
p 	i ¼ UI

kU
J�
p �I

J�
3ðkþ pÞ: (A7)

With the contraction, Eq. (A5), it is straightforward to
prove that the correlations of Eqs. (A3) and (A4) are a
sum of all possible contractions into both connected and
disconnected pieces as per the usual Wick’s Theorem in
standard quantum field theory. We ignore the disconnected
pieces, i.e. the ‘‘vacuum fluctuation’’ pieces, in which
vertices are connected only to other vertices and no exter-
nal lines. Since we are computing correlation functions,12

the pieces automatically cancel [29].
As an aside, we note here that in original ‘‘in-in’’

formalism of Schwinger-Keldysh (and see also
[26,27,53]), the original fields are split into þ forward
time fields and � backward time fields each with their
own generating functional. One can then compute all four
possible Green’s functions for the fields ðþ;þÞ, ð�;�Þ,
ðþ;�Þ, ð�;þÞ, and then all the possible contractions of the
correlation will be one of the four above. In other words,

11The conclusions of [29,34] are robust, other than with respect
to the coefficient of the N spectator loop correction, as discussed
in Sec. III. Musso [50] has developed a diagrammatic formalism
for correlation functions in the ‘‘in-in’’ formalism. However,
since this is based primarily on Eq. (A2), one would need to
check it carefully before employing it for an explicit calculation.

12Whereas when we compute transition amplitudes, they con-
tribute an overall phase [52].
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the doubling of the fields into þ and � sets provides a
convenient book-keeping method for keeping track of the
contours. In our formalism, we have a single contraction
Eq. (A5), but we pay for this simplicity by with having to
explicitly keep track of the contours of the integrals we
must perform.

Our strategy is as follows:
(i) Expand Eq. (A1) to the desired order keeping careful

track of the vacuum prescription contours.
(ii) Insert the interaction Hamiltonian Hint and expand

all fields using Eq. (28).
(iii) Expand using Wick’s theorem and the contraction

defined in Eq. (A5) discarding disconnected
diagrams.

(iv) Perform the integral over time(s) leaving only inte-
grals over the internal momenta.

(v) Regularize the remaining integrals to obtain the final
answer.

One should note that these loops contain both UVand IR
divergences, unlike the case of [29]. The presence of the IR
divergences means that our use of dimensional regulariza-
tion will yield incorrect finite terms. However, we are only
interested in the lnq dependence, which is correctly com-
puted by dimensional regularization. In this paper, we are
concerned with large-N effects, but a clear understanding
of the mechanism which regulates these logs is clearly of
critical importance, and we plan to pursue this topic in a
future publication.13

1. Two-vertex loop

The two-vertex loop is generated by a three-point inter-
action term [33],

Hð3Þ
int ðtÞ ¼

Z
d3x

X
IJ

�
a3

4

ffiffiffiffiffiffiffi
2�I

p
QI

_QJ
_QJ

þ a3

2

ffiffiffiffiffiffiffi
2�I

p
@�2 _QI

_QJ@
2QJ

�
; (A8)

with the coupling term,

�I � 1

2

_�2
I

H2
; (A9)

where here, and in all subsequent calculation in this ap-
pendix, we have dropped all factors of Mp to simplify

notation. We have also dropped the sums over the J and
I since all the fields are identical—most of the diagrams
have identical amplitudes and we will sum them later.
For the two-vertex terms generated by Eq. (A8), there

are two types of vertices, and we have to compute the
contributions from all the possible combinations of two
vertices and internal loops (see Fig. 1), giving us a total of
six diagrams. In the following, we sketch the derivation for
the first diagram of Fig. 1 with QI

_QJ
_QJ vertices at both

ends—the other diagrams are computed similarly. Using
the first term of Eq. (A8) in Eq. (A4), and Wick expanding
everything with the contraction of Eq. (A5), we get

Z
d3xeiq�ðx�x0Þhvac; injQIðx; 	ÞQIðx; 	Þjvac; ini2 ¼ �8ð2�Þ9X

J

<
�Z 	

�1�
d	2

Z 	2

�1�
d	1

a2ð	1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Ið	1Þ

p
4

a2ð	2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Ið	2Þ

p
4

�UI
qð	IÞUI�

q ð	ÞUI�
q ð	ÞUI�

q ð	Þ
Z

d3k
Z

d3k00 _UJ
kð	1Þ

� _UJ�
k ð	2Þ _UJ

k0 ð	1Þ _UJ�
k0 ð	2Þ�3ðqþ kþ k0Þ �

Z 	

�1þ
d	2

Z 	

�1�
d	1

� a2ð	1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Ið	1Þ

p
4

a2ð	2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Ið	2Þ

p
4

UI
qð	1ÞUI�

q ð	ÞUI�
q ð	2ÞUI

qð	Þ

�
Z

d3k
Z

d3k00 _UJ
kð	1Þ _UJ�

k ð	2Þ _UJ�
k0 ð	1Þ _UJ�

k0 ð	2Þ�3ðqþ kþ k0Þ
�
;

(A10)

where we have dropped all disconnected terms. An overdot
in this expression denotes a derivative with respect to
conformal time, 	.

We now integrate over the times first, since the inter-
actions of Eq. (A8) satisfy the late-time convergence con-

ditions.14 In near de Sitter space H � const, and the mode
functions Qk

i can be approximated by

QI
kð	Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

2ð2�Þ3k3
s

ð1þ ik	Þe�ik	: (A11)

Although in general the couplings �Ið	Þ are not constant,
since they are changing only slowly we make the further

13One can in principle impose a horizon cutoff, as suggested by
Lyth in Ref. [54] and applied in [55]. Boyanovsky et al. [56–59]
have suggested that the IR divergences are regulated by the slow-
roll limit. However, their approach requires one to analytically
continue a combination of the slow-roll parameters, which are
physical, and in principle measurable, quantities.

14See also [60]. If we switch the order of integration, we end up
swapping an ultraviolet divergence in the integrals over internal
momenta for a divergence in 	.
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simplifying assumption that they are roughly constant at
late times. Plugging Eq. (A11) into Eq. (A10), and then
integrating over the times, we obtainZ
d3xeiq�ðx�x0Þhvac; injQIðx; 	ÞQIðx; 	Þjvac; ini2

¼ H4

16ð2�Þ3
X
J

Z
d3kd3k0�3ðqþ kþ k0Þ

�
�I

�
5

4

kk0

q7K

þ 3

4

kk0

q6K2
þ kk0ðK þ qÞ2

q6K4

�
þOðq	Þ þ . . .

�
; (A12)

where we have assumed identical fields hence �I ¼ �J and
used K � kþ k0 þ q.

Considering only scales that are larger than the Hubble
horizon q	 � 1 allows us to also drop the second to last
term in Eq. (A12). The rest of the 2-vertex diagrams can be
computed identically, and the final answer we obtain isZ

d3xeiq�ðx�x0Þhvac; injQIðx; 	ÞQIðx0; 	Þjvac; ini2

¼ H4

2ð2�Þ3 N
Z

d3k
Z

d3k0�ðkþ k0 þ qÞ �I
8

�
1

K

�
39

4

kk0

q7

þ 5

8

k0

q5k
� k0

q4k2
þ 31

4

k0

q3k3

�
þ 1

K2

�
51

4

kk0

q6
þ 31

2

k0

k3q2

þ 5

8

k0

q4k
þ 3

4

k0

q3k2

�
þ 1

K3

�
3
kk0

q5
þ k0

q2k2
� 2k0

qk3

�

þ 1

K4

�
3

2

k0

kq2
� 1

2

kk0

q4
� 2

k0

k2q

��
: (A13)

Our task now is to compute the physical logs from
Eq. (A13). From simple dimensional analysis, they take
the form

Z
d3kd3k0�3ðqþ kþ k0Þ kmk0l

ðqþ kþ k0Þn
! q3þlþm�nþ�Fðl;m;nÞ lnqþ polynomial divergences:

(A14)

To obtain the coefficient Fðl;m;nÞ, we use the identity

q
Z

d3kd3k0�3ðqþ kþ k0Þfðq; k; k0Þ

¼ 2�
Z 1

0
kdk

Z kþq

jk�qj
k0dk0fðq; k; k0Þ: (A15)

We can extract the coefficients of physical logs from the
above expression using l’Hôpital’s rule. We find the limit
for both terms going to infinity by differentiating the right
hand side of the above identity and Eq. (A14) as many
times as needed to tease out the log divergences, and
comparing the result to the same operation applied to the
right hand side of Eq. (A14).

Dropping all other polynomially divergent terms and the
log IR divergences, each term in Eq. (A13) contribute the

following:

Fð1;1;1Þ ¼ ��

15
; Fð1;1;2Þ ¼ �

3
; Fð1;�3;2Þ ¼ �;

Fð1;�3;3Þ ¼ 2�; Fð1;�1;4Þ ¼ 0; Fð1;�2;2Þ ¼ �;

Fð1;1;4Þ ¼ �

2
; Fð1;1;3Þ ¼ 2�

3
; Fð1;�2;3Þ ¼ 0;

Fð1;�1;1Þ ¼ �2�

3
; Fð1;�2;1Þ ¼ �; Fð1;�3;1Þ ¼ 0;

Fð1;�1;2Þ ¼ �:

Given identical fields, such that �I ¼ �J, then putting
together everything give us the total contribution from
the two-vertex one-loop diagram:Z

d3xeiq�ðx�x0Þhvac; injQIðx; 	ÞQIðx; 	Þjvac; ini2

¼ H4N�I
2ð2�Þ3q3

��
2017

120

�
� lnq

�
þ . . . ; (A16)

where ‘‘. . .’’ denotes scale-free polynomial divergences.

2. One-vertex loop

On the other hand, the one-vertex loop is generated by a
four-point interaction term derived in Appendix B,

Hð4Þ
int ðtÞ ¼

Z
d3xa3

X
IJ

�
1

4Ha2
@iQJ@iQJ@

�2ð@j _QI@jQI

þ _QI@
2QIÞ þ 1

4H
_QJ

_QJ@
�2ð@i _QI@jQI

þ _QI@
2QIÞ þ 3

4H
@�2ð@j _QJ@jQJ

þ _QJ@
2QJÞ@�2ð@j _QI@jQI þ _QI@

2QIÞ
þ 1

4
�2;j@

2�2;j þ _QI�2;i@iQI

�
; (A17)

where,

1
2�2;j ’ @�4ð@j@k _QI@kQI þ @j _QI@2QI � @2 _QI@jQI

� @m _QI@j@mQIÞ: (A18)

The four-point interaction (A17) is explicitly independent
of the background potential15 V. This means that the one-
vertex one-loop correction to a field I from all other fields
J � I is the same for whether or not J are spectators or
participating fields. Each four-point term has the form
QIQIQJQJ, meaning that depending on the external lines,
we can contract it with either the J or I fields, thus each
term will effectively generate two different diagrams.
Fortunately, only the self-interaction term, i.e. I ¼ J

contracted with I external lines, contributes a physical

15The dynamics of the field depends on the potentials and their
mode functions, i.e. their Green’s functions will differ, but the
coupling terms have the same structure.
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log. In the UV, all other terms diverge polynomially and we
assume that they can be absorbed by renormalization.
Heuristically, this is because the interactions are secretly
mediated by gravitons and this, combined with the sym-
metry of the action, prevents any non-self-interaction loops
from contributing, as described in Sec. III. From a dia-
grammatic perspective, to yield a log divergence, the final
momenta integrand must possess a scale. That is, it must
have the form �k
=ðk� qÞ� for some 
 2 Q and � 2
Zþ, where q and k are the external and internal momenta,
respectively. However, note that the fields operated by @�2

is always identically paired i.e. they appear as @�2ðQIQIÞ
and never @�2ðQIQJÞ. Hence if I � J, the integrand can
only possess momentum factors like 1=ðk2Þ or 1=ðqþ
q0Þ2, which only contribute polynomial divergences. For
example, a four-point term with an interaction (dropping
time derivatives as they do not affect the final result)
QJ@

�2ðQIQIÞQJ for a hQIQIi correlator will yield the
diagrams shown in Fig. 2 if I � J, which is simply a
vacuum fluctuation diagram multiplied by a propagator.

We now turn our attention to the self-interaction term,
where I ¼ J interaction terms are contracted with I exter-
nal lines. This calculation is operationally the same as that
done by Seery [42] for the single scalar field case using
different techniques. Fourier transforming Eq. (A17) and
switching to conformal time, the interaction Hamiltonian

Hð4Þ
int becomes

Hð4Þ
int ¼ ð2�Þ3

Z 	

�1
d	0

X
IJ

�
a

4H

�ðk;pÞ
ðkþ pÞ2

_QI
kQ

I
p
_QJ
a
_QJ
b

� �ðkþ pþ aþ bÞ � a

4H
a � b �ðk;pÞ

ðkþ pÞ2
� _QI

kQ
I
pQ

J
aQ

J
b�ðkþ pþ aþ bÞ

þ a2
�
3

4

�ðk;pÞ
ðpþ kÞ2

�ða;bÞ
ðaþ bÞ2 þ

zðk;pÞ � zða;bÞ
ðkþ pÞ4ðaþ bÞ2

þ 2
zðk;pÞ � b
ðkþ pÞ4

�
_QI
kQ

I
p
_QJ
aQ

J
b�ðkþ pþ aþ bÞ

�
;

(A19)

where overdot again denotes derivative with respect to
conformal time. We use the notation of [42],

z ðk;pÞ ¼ �ðk;pÞk� �ðp;kÞp; (A20)

�ðk;pÞ ¼ k � pþ p � p: (A21)

After some tedious but straightforward calculation remi-
niscent of the previous section, and considering modes
well outside the horizon, q	 ! 0, we find that the one-
vertex self-correction is

hQIð	ÞQIð	Þi1 ¼ ð2�Þ3
Z

d3k½As þ Bs þ Cs	; (A22)

with the following contributions

As ¼ � H4

32ð2�Þ6q7 q � k
��

6q2

k3
� 5

k

�
k2 þ q � k
ðkþ qÞ2

þ 10

k

q2 þ k � q
ðkþ qÞ2

�
; (A23)

Bs ¼ � H4

32ð2�Þ6q5
�
1

k

k2 þ q � k
ðkþ qÞ2 þ 5k

q2
q2 þ k � q
ðkþ qÞ2

�
;

(A24)

and

Cs ¼ � H4

8ð2�Þ6q5
�
5k

q2
fðk;q;�k;�qÞ

þ ð2q2 � k2Þ
k3

fðq;k;�q;�kÞ

þ 6

k
fðk;q;�q;�kÞ

�
; (A25)

where

fðk;p; a;bÞ ¼
�
3

4

�ðk;pÞ
ðpþ kÞ2

�ða;bÞ
ðaþ bÞ2 þ

zðk;pÞ � zða;bÞ
ðkþ pÞ4ðaþ bÞ2

þ zðk;pÞ � b
ðkþ pÞ4 þ zða;bÞ � p

ðkþ pÞ4
�

� �ðkþ pþ aþ bÞ: (A26)

The integral in Eq. (A22) is divergent and so it needs to
be regularized. After regularization we obtain

As ¼ � H4

2ð2�Þ3q3
5�

16
lnq; Bs ¼ � H4

2ð2�Þ3q3
�

48
lnq;

Cs ¼ � H4

2ð2�Þ3q3
�

3
lnq; (A27)

yielding the following lnq contribution

hQIð	ÞQIð	Þi1 ¼ � H4

2ð2�Þ3q3
2�

3
lnqþ . . . ; (A28)

which is our final answer.
Finally, we sketch the technique we used to extract the

logq terms from Eq. (A22). The key idea is to write the
integrals like

FIG. 2. The non–self-interaction four point loops,
hQIðxÞQIðx0Þ@�2ðQIðzÞQIðzÞÞQJðzÞQJðzÞi, factor into a vacuum
fluctuation piece times a propagator as shown above. The ellip-
ses indicate contractions which lead to polynomial divergences.
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Z
d3k

f1; ki; kikjg
k2
ðk� qÞ2� ; (A29)

(where 
 is a half integer and � 2 f1; 2; 3g) as a sum of
terms of the form

fðqiÞ
Z

d3k
1

k2
�nðk� qÞ2��m
: (A30)

We can then use standard techniques (e.g. [52]) to evaluate
the integrals, in combination with the following trick.
Define

hf1; ki; kikjgi
;� �
Z

ddk
f1; ki; kikjg

ðk2Þ
ðk� qÞ2� ; (A31)

h1i
;� ¼ I
;�: (A32)

Now since ki is integrated out, the only vector quantity left
is qi so the following must be true

hkii
;� ¼ B
;�q
i; hkikji
;� ¼ C
;�q

iqj þD
;��
ijq2;

(A33)

where B
;�, C
;� and D
;� are coefficients that may con-

tain ultraviolet divergent components. We can then dot
both sides of Eq. (A33) with q’s and complete the square
to eliminate the numerator ðq � kÞ terms. For example (for
the B term),

B
;�q
2 ¼ �1

2hðq� kÞ2i
;� � 1
2hk2 þ q2i
;�; (A34)

and the first term cancels one of the powers of ðk� qÞ
while the second term cancels out one power of k2. This
leaves us with

B
;� ¼ � 1

2q2
I
;��1 � 1

2
I
;� � 1

2q2
I
�1;�; (A35)

We can iterate this trick until we remove all terms with
powers of ðq � kÞ in the numerator or cancel all the ðk� qÞ
terms in the denominator, resulting in integrals that are
polynomially divergent and hence can be discarded. The
remaining integrals are in the form of Eq. (A30) and can be
easily regularized. The C
;� and D
;� terms can be simi-

larly computed by dotting twice with q’s.

APPENDIX B: MULTIFIELD 3-POINTAND
4-POINT ACTION

In this paper, we make use of the Arnowitt-Deser-Misner
(ADM) formalism [61] to expand the action Eq. (1) to 4th
order in perturbations. The derivation is straightforward if
rather tedious (see, for example, Refs. [33,42] for a de-
tailed application of this formalism), so we simply collect
the results. The background N-field action is

S ¼
Z

d4x
ffiffiffi
g

p �
R

2
þX

I

�
� 1

2
ð@�IÞ2 þ VIð�IÞ

��
; (B1)

the ADM metric is

ds2 ¼ �N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; (B2)

and we choose to work in the spatially flat gauge so hij ¼
a2ðtÞ�ij. In other words our metric perturbation has been

set to zero by a gauge choice. In addition, we focus on the
scalar perturbations, and ignore vector and tensor pieces.
This means that the diagrams we computed do not have
graviton propagators or loops. In this gauge the fields have
nonzero perturbation

�i ! �I þQI: (B3)

Field indices are summed over when contracted, XIYI ¼P
IXIYI and V ¼ P

IVIð�IÞ, with no cross-coupling terms
between the fields.
The quadratic action is (exactly) [33]

S2 ¼ 1

2

Z
dtd3xa3

�
_Q2
I � a�2ð@QIÞ2

�
�
V;IJ � 1

a3
d

dt

�
a3

H
_�I

_�J

��
QIQJ

�
: (B4)

The third order action is, to leading order in slow roll [33],

S3 ¼
Z

dtd3xa3
�
� 1

4H
_�JQJ

_QI _QI

� 1

2H
_�J@�2 _QJ

_QI@2QI þ 1

a3
�L

�QJ

��������1

�
� _�J

4H
@�2ðQI@2QIÞ �

_�J

8H
QIQI

��
; (B5)

where the �L=�QJ is the first order equation of motion.
Finally, the fourth order action is, to leading order in

slow roll,

S4 ¼
Z

dtd3xa3
�
3

4
ð@�2ð@j _QI@jQI þ _QI@2QIÞÞ2

� 1

4
�2;j@

2�2;j þ �2ð@i _QI@iQI þ _QI@2QIÞ

� _QI�2;i@iQI

�
; (B6)

where the auxiliary fields �2 and �2;j are, to leading order,

1
2�2;j ’ @�4ð@j@k _QI@kQI þ @j _QI@2QI � @2 _QI@jQI

� @m _QI@j@mQIÞ; (B7)

@2�2 ¼ � 1

4a2H
@iQ

I@iQI � 3

2
@�2ð@j _QI@jQI þ _QI@2QIÞ

� 1

4H
_QI _QI: (B8)

Note that the 4-point action Eq. (B6) will generate N2

nontrivial diagrams, since there are two sums over the field
indices. Note also here that this expression reduces to those
of [42] in the single field limit.
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APPENDIX C: QUANTIZATION OF THEORIES
WITH DERIVATIVE INTERACTIONS

In this appendix, we describe the procedure we use to
canonically quantize the classical theory, as we encounter
Lagrangians with interactions containing time-derivatives
of the fields. A path-integral formalism is given in [62]. For
theories with up to 2nd order in time-derivatives, a treat-
ment is given in [63]. In the problem we are considering,
we encounter interactions up to 3rd order in time-
derivatives, so we extend [63] at least to the next to leading
order in slow-roll. Extension to all orders is straightforward
which we will leave for future work. A path-integral ap-
proach is pursued by Seery [42].

We follow the usual procedure in canonically quantizing
a classical theory specified by a Lagrangian density,
LðQ; _QÞ. That is, we define the momenta conjugate to
the field Q by;

� ¼ @L

@ _Q
; (C1)

and construct the Hamiltonian density,H , as the Legendre
transform of the Lagrangian density;

H ¼ � _Q�L; (C2)

where _Q is expressed in terms of �. We then move to an
interaction picture by separating the Hamiltonian into its
quadratic part H 0 and higher order part H int and replace
� in H int with the interaction picture �I given by

_Q ¼ �I ¼ @H 0

@�

���������¼�I

: (C3)

The question we want to address here is, what is H int?
Naively, one might guess that H int ¼ �Lint, where

Lint ¼ L�L0 and L0 is the quadratic part of L. If the
only time derivatives of the field are in a canonical kinetic
term, this is certainly the case. However, when time de-
rivatives are present in the interaction terms, these can
modify the relation between � and _Q, and the construction
of the Hamiltonian then generates extra interactions.
Fortunately, at the order we are working the additional
terms generated are either subleading in slow roll, or higher
order in the fluctuations. To see this, note that the
Lagrangians we consider have the schematic form

L ¼ 1
2
_Q2 � VðQÞ þ ð ffiffiffi

�
p

f2 þ f3Þ _Qþ 1
2ð

ffiffiffi
�

p
g1 þ g2Þ _Q2

þ 1
3h1

_Q3 þOð�Q3Þ þOð�Q4Þ þOðQ5Þ (C4)

where � is the usual slow-roll epsilon and the subscripts of
fm and gm denote a term of orderm in fluctuations,Q. The
terms containing no time derivatives are gathered into
VðQÞ. To proceed, we assume that jQj � j _Qj � j�j. A
straightforward calculation then shows that

H ¼
_Q2

2
þ VðQÞ � ð ffiffiffi

�
p

f2 þ f3Þ _Q� 1

2
ð ffiffiffi

�
p

g1 þ g2Þ _Q2

� 1

3
h1 _Q3 þ �

�
f2g1 _Qþ 1

2
g21

_Q2

�
þOð�Q3Þ

þOð�Q4Þ þOðQ5Þ: (C5)

¼ H 0 �LI þOð�Q3Þ þOð�Q4Þ þOðQ5Þ: (C6)

So, to leading order in slow roll and to fourth order in
fluctuations, it is safe to takeH int ¼ �Lint, the correction
being at the most of Oð�Þ and thus subleading during
inflation.
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