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With applications in astroparticle physics in mind, we generalize a method for the solution of the

nonlinear, space-homogeneous Boltzmann equation with an isotropic distribution function to arbitrary

matrix elements. The method is based on the expansion of the scattering kernel in terms of two cosines of

the ‘‘scattering angles.’’ The scattering functions used by previous authors in particle physics for matrix

elements in the Fermi approximation are retrieved as lowest order results in this expansion. The method is

designed for the unified treatment of reactive mixtures of particles obeying different scattering laws,

including the quantum statistical terms for blocking or stimulated emission, in possibly large networks of

Boltzmann equations. Although our notation is the relativistic one, as it is used in astroparticle physics, the

results can also be applied in the classical case.
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I. INTRODUCTION

Nonequilibrium processes in astroparticle physics, such
as big bang nucleosynthesis (BBN), neutrino decoupling
and more speculative ones, like baryogenesis through lep-
togenesis or the freeze-out of hypothetical relic particles
[1–7], are usually computed through the solution of the
corresponding coupled system of Boltzmann equations [8–
12] describing the time evolution of the one-particle dis-
tribution functions fiðt; kÞ. Usually, in cosmology, it is
anticipated that the relevant particle distribution functions
are in exact kinetic equilibrium and of Maxwell-
Boltzmann type. These assumptions, together with others,
allow the Boltzmann equation to be linearized and inte-
grated, which leads to coupled sets of chemical rate equa-
tions (mostly themselves dubbed Boltzmann equations in
this context). This procedure drastically simplifies the
numerical computation of the particle abundances, such
that even the approximate solution of very large networks
of Boltzmann equations, as in the case of BBN, becomes
possible. However, in doing so, one loses the spectral
information contained in the definition of the distribution
functions and other fundamental properties of the
Boltzmann equation are neglected as well. It is well known
that the solution of the full Boltzmann equations can lead
to relevant corrections to the equilibrium results in several
cases [13–15]. In the era of precision cosmology the in-
clusion of such nonequilibrium effects gains in importance.
Regarding the use of classical kinetic theory for the de-
scription of phenomena in the (very) early Universe there
are concerns, originating in the belief that these calcula-
tions should be performed in the framework of nonequi-
librium quantum field theory. These concerns are
supported by recent results, revealing differences between
the two approaches for simple toy models, at least in

extreme nonequilibrium situations; see e.g. [16–18].
However, it seems natural to attempt to include quantum
effects in modified effective kinetic equations. Boltzmann
equations will continue to play an important role in cos-
mology at least at the relatively low energies of neutrino
decoupling or nucleosynthesis, where the standard calcu-
lations give already quite good results.
In general, a network of Boltzmann equations can be

written as

L½fi� ¼ X
l

Cil½f1; . . . ; fi; . . . ; fN�; (1)

where there is one equation for each of the N participating
particle species (i ¼ 1 . . .N) and one collision term Cil for
each interaction with particles of the same and of other
species. L denotes the Liouville operator divided by the
relativistic on-shell energy Ei

k of a species i particle,
1 most

commonly in Minkowski space-time,

L½fi�ðkÞ ¼ @fiðt; kÞ
@t

; (2)

or in Robertson-Walker space-time,

L½fi�ðkÞ ¼ @fiðt; kÞ
@t

�Hk
@fiðt; kÞ

@k
; (3)

with Hubble rate H ¼ _a=a. By writing the collision inte-
grals as Cil½f1; . . . ; fi; . . . ; fN�, we have formally taken the
possibility of multiparticle scattering processes into ac-
count. Usually only decays, inverse decays and 2� 2
scattering processes, aþ b $ Aþ B, are considered. For
the latter ones the collision integral reads
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1In our notation L and Cil are not Lorentz-invariant, but
Ei
kL½fi� and Ei

kC
il are.
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Cal½fafbfAfB�ðkÞ ¼ 1

2Ea
k

ZZZ d3p

ð2�Þ32Eb
p

d3q

ð2�Þ32EA
q

d3r

ð2�Þ32EB
r

ð2�Þ4�4ðkþ p� q� rÞjMj2

� ½ð1� �afak Þð1� �bfbpÞfAqfBr � fakf
b
pð1� �AfAq Þð1� �BfBr Þ�; (4)

where we have used the shorthand notation fik ¼ fiðt; kÞ
and �i to specify the quantum statistics of particle species i,
i.e. �i ¼ þ1 for Fermi-Dirac, �i ¼ �1 for Bose-Einstein
and �i ¼ 0 for Maxwell-Boltzmann statistics. jMj2 de-
notes the invariant matrix element squared and averaged
over initial and final spin states. Note that we take jMj2 to
include possible symmetrization factors of 1=2 for identi-
cal particles in the initial or final state. There is a vast
number of different methods for the solution of the
Boltzmann equation (mostly applied in different fields of
physics), out of which only a few exploit the homogeneity
and isotropy as imposed by the cosmological principle. So-
called direct integration methods, where the collision term
(4) is integrated numerically, seem to be most advanta-
geous because they are characterized by high precision.
This is desirable for applications in cosmology since one
wants to keep track of only small deviations from equilib-
rium. The direct numerical solution by means of these
deterministic methods is numerically expensive, mainly
because of the multiple integrals in the collision terms.
Currently, for networks involving a few species, it is fea-
sible only subsequent to the successful reduction of those
integrals exploiting the isotropy and homogeneity of the
distribution functions.

In the present paper a technique for this reduction of the
collision integral is presented which generalizes previous
results in high energy and astrophysics [13,19] for matrix
elements in the Fermi approximation to (in principle)
arbitrary matrix elements, relying on a series expansion
of the matrix element. The resulting reduced Boltzmann
equation contains only a twofold integral over the magni-
tudes of the postcollisional momenta. The method is ap-
plicable to Boltzmann equations with and without quantum
statistical terms and can be used independently of the
dispersion relation; i.e. it can be used for massive and
massless relativistic particles as well as for nonrelativistic
ones. The loss and gain terms can be treated collectively or
independently. Thus the method represents an approach to
treat reactive mixtures of all kinds of particles with differ-
ent interactions, in a unified manner.

The outline is as follows: In Sec. II we show how the
nine-dimensional collision integral for 2� 2 scattering
processes can be reduced to a two-dimensional one, inte-
grating out the energy and momentum conserving � func-
tions. (Collision integrals for decays and inverse decays
can be integrated in the same way.) In doing so, a certain
angular integral over the matrix element arises. In Sec. III
we establish a simple numerical model for the reduced
Boltzmann equation. The integral of Sec. II is solved by
expanding the matrix element in terms of the cosines of
two ‘‘scattering angles’’; see Sec. IV. In Sec. V we derive a

formula, suitable for numerical integration of the full
matrix element, which we employ in the last section to
demonstrate the convergence of the series towards the
exact result for a simple example. We conclude in Sec. VII.

II. REDUCTION OF THE COLLISION INTEGRAL

Omitting the superscripts denoting the particle species2

in Eq. (4) we can write the collision integral as

C½f�ðkÞ¼ 1

2Ek

Z
ð2�Þ4�ðEkþEp�Eq�ErÞ

��3ðkþp�q�rÞjMj2F½f� Y
v¼p;q;r

d3v

ð2�Þ32Ev

;

(5)

where we introduced

F½f� ¼ ð1� �kfkÞð1� �pfpÞfqfr
� fkfpð1� �qfqÞð1� �rfrÞ: (6)

Ev denotes the relativistic energy of the particles ‘‘v’’ on

the mass shell, i.e. Ev ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þm2

v

p
, with three-momentum

v and mass mv. We write the three-dimensional � function
as the Fourier transform of unity and switch to spherical
coordinates:

�3ðkþ p� q� rÞ ¼
Z

ei�ðkþp�q�rÞ d3�

ð2�Þ3 :
The collision term (5) then becomes

C½f�ðkÞ ¼ 1

64�3Ek

Z
�ðEk þ Ep � Eq � ErÞ

� F½f�Dðk; p; q; rÞpdp
Ep

qdq

Eq

rdr

Er

: (7)

Here we have defined D as

Dðk; p; q; rÞ ¼ pqr

8�2

Z
d�p

Z
d�q

Z
d�r

� �3ðkþ p� q� rÞjMj2

¼ pqr

64�5

Z
�2d�

Z
ei�kd��

Z
ei�pd�p

�
Z

e�i�qd�q

Z
e�i�rd�rjMj2: (8)

Note that this definition renders Dðk; p; q; rÞ a dimension-

2From here on we will always use the momenta k, p, q and r in
connection with only one particle species, such that it serves as a
label for the species at the same time. We also use the convention
v ¼ jvj if the distinction from the four-momentum is clear from
the context.
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less quantity. Because of the presence of the � function we
expect that the result is nonzero only if qþ r > jk� pj
and kþ p > jq� rj, because the equation kþ p ¼ qþ r
does not have a solution otherwise, for whatever combina-
tion of the solid angles �p, �q and �r with respect to k.

Therefore, the result will be proportional to3

�ðk; p; q; rÞ � �ðqþ r� jk� pjÞ�ðkþ p� jq� rjÞ
¼ �ðminðkþ p; qþ rÞ

�maxðjk� pj; jq� rjÞÞ: (9)

Since this factor is either 0 or 1, we can always multiply the
intermediate results by this term without changing the final
one.

After computing Dðk; p; q; rÞ we can proceed with the
integration of the remaining energy � function in Eq. (7):

C½f�ðkÞ ¼ 1

64�3Ek

ZZ
�ðEp �mpÞF½f�

�Dðk; p; q; rÞqdq
Eq

rdr

Er

; (10)

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p �m2

p

q
and Ep ¼ Eq þ Er � Ek. The

Heaviside functions prevent us from integrating over com-
binations of q and r which are kinematically forbidden.
Thus we have reduced the collision integral to a two-
dimensional one, suitable for numerical integration.
However, all of the work is now hidden in the definition
of D ¼ Dðk; p; q; rÞ which is characteristic for the scatter-
ing model, i.e. for the matrix element of the underlying
theory for the scattering process under consideration. For
completeness we present the analogous calculation for
C1$2-like collision integrals in Appendix A.

The computation of D is easily carried out for matrix
elements squared with simple angular dependence such as
the constant [jMj2 ¼ const], for matrix elements in the
Fermi approximation [jMj2 / ðk � pÞðq � rÞ; ðk � pÞ, in-
cluding renamings of the momenta therein] and for reso-
nant processes in the narrow width approximation
[jMj2 / �ðs�m2

XÞ, where mX is the mass of the particle
in the intermediate state]. However, in particle physics, one
encounters matrix elements squared with a more compli-
cated structure, such as products of tree-level s-, t- and
u-channel contributions, for which the integrals D are in
general unknown.

III. A SIMPLE NUMERICAL MODEL

In this section we establish a simple numerical model to
benefit from the reduced form of the collision integral. For
simplicity we assume a single particle species undergoing
2� 2 scattering processes only. The system (1) then ac-
quires the form

L½f� ¼ C½f�; (11)

withC½f� from Eq. (10) and L½f� from either Eq. (3) or (2).
In case the Liouville operator of the system is of the first

kind with the extra term

�Hk
@fiðt; kÞ

@k
; (12)

as compared to Eq. (2), which accounts for the expansion
of the Universe,4 we first introduce the transformed varia-
bles

x ¼ MaðtÞ; ~k ¼ kaðtÞ; (13)

with some suitable mass scale M and cosmic scale factor
aðtÞ. The Liouville operator in these new coordinates has
the simpler form

L½f� ¼ Hx
@fðx; ~kÞ

@x
: (14)

In what follows we omit the tilde over the transformed
momenta and time, but it is important to remember that, in
this case, the collision integrals need to be expressed in
terms of the transformed variables as well.
Now we divide the physical relevant part of the positive

real axis of momenta; i.e. we consider only momenta up to
a maximum of kmax, into a set ofM disjoint (not necessarily
equidistant) intervals �ki and choose a ki for each interval
with ki 2 �ki (i ¼ 1 . . .M).
Then we make the approximationZ

�ki

fðt; kÞdk ’ fðt; kiÞ�ki � fi�ki: (15)

By integrating the left-hand side of (11) over the interval
�kl we obtain

Ll ¼
Z
�kl

@fk
@t

dk ’ @fl
@t

�kl

or Ll ¼
Z
�kl

Hx
@fk
@x

dk ’ Hx
@fl
@x

�kl: (16)

For the right-hand side, we find

Cl ¼ 1

64�3Ekl

XM
i;j

Ep�mp;p�kmax

½ð1� �flÞð1� �fpÞfifj

� flfpð1� �fiÞð1� �fjÞ�Dðkl; p; ki; kjÞ

� ki�ki
Eki

kj�kj
Ekj

; (17)

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEki þ Ekj � EklÞ2 �m2

p

q
.

This way, we turned the reduced Boltzmann equation
into a coupled set of M ordinary differential equations for
the discrete variables fl:

3Throughout we use the Heaviside step function� in the half-
maximum convention (which will become relevant later).

4It is this term which prevents the Maxwell-Jüttner distribution
function, in general, from being an exact equilibrium solution for
the Boltzmann equation in Robertson-Walker space-time.
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Ll ¼ Cl ðl ¼ 1 . . .MÞ: (18)

Because of the finite momentum cutoff kmax, this method
is not conservative; i.e. energy and total particle number
are not conserved inherently. In order to make the method
energy and particle number conserving, the cutoff has to be
chosen high enough.

The number of equations, or grid points M, depends on
the specific problem and the required accuracy. In any case
Eq. (18) will represent a large system of differential equa-
tions. The amount of numerical work for the evaluation of
the collision integral is of order OðM3Þ.

Note that this straightforward discretization of the
Boltzmann equation serves for illustration purposes
mainly. The details of possible numerical implications
can be more difficult.

D can in principle be computed numerically (see Sec. V)
and tabulated once and for all on the grid. For cosmological
problems, however, the momenta remain to be scaled
according to the time-dependent connection (13), so that
D needs to be reevaluated in every time step. (A possible
exception is the one of ultrarelativistic particles for which
the scale invariance ofD can be exploited.) This shows that
the entire method depends on analytic expressions for D.

IV. Dnm EXPANSION OF THE SCATTERING
KERNEL

In this section a method is presented for the computation
of D for matrix elements which can be expanded into a
convergent series in the cosines of two scattering angles.
Subsequent to this expansion of the matrix element, the
angle integrals can be carried out analytically for the
individual terms. As will be shown, the resulting (angle-
integrated) series will be pointwise absolute convergent if
the series of the coefficients in the expansion is pointwise
absolute convergent. Hence, the truncated series can serve
as an approximation of the exact value of D in this case.

A. Expansion of the kernel

The matrix element squared jMj2 will in general de-
pend on Lorentz-invariant combinations of the four-
momenta of the in- and outgoing particles, usually the
Mandelstam variables s, t, and u:

s ¼ ðkþ pÞ2;
t ¼ ðk� qÞ2 ¼ m2

k þm2
q � 2EkEq þ 2jkjjqj cosð�kqÞ;

u ¼ ðk� rÞ2 ¼ m2
k þm2

r � 2EkEr þ 2jkjjrj cosð�krÞ:
(19)

In the following we take t and u as the independent
variables and s is expressed by5

s ¼ X
i¼k;p;q;r

m2
i � t� u: (20)

In order to evaluate Eq. (8) for arbitrary matrix elements
we expand jMj2 in terms of cosð�kqÞ and cosð�krÞ:

jMj2 ¼ X1
n¼0

X1
m¼0

Anmðcos�kqÞnðcos�krÞm: (21)

Note that the coefficients Anm can depend on the magni-
tudes of the momenta. Upon integration of Eq. (8) we can
then write

Dðk; p; q; rÞ ¼ X1
n¼0

X1
m¼0

Anmðk; p; q; rÞDnmðk; p; q; rÞ;

(22)

assuming that the series converges for all relevant k, p, q
and r (the momenta are still restricted by energy
conservation).
In order to give a meaning to Eq. (22) we need to

compute the integral

Dnmðk; p; q; rÞ ¼ pqr

8�2

Z
d�p

Z
d�q

Z
d�r

� �3ðkþ p� q� rÞðcos�kqÞnðcos�krÞm

¼ pqr

64�5

Z
�2d�

Z
ei�kd��

Z
ei�pd�p

�
Z

e�i�qðcos�kqÞnd�q

�
Z

e�i�rðcos�krÞmd�r: (23)

Because of this definition the Dnm’s are dimensionless,
scale-invariant functions; i.e. Dnmð�k; �p; �q; �rÞ ¼
Dnmðk; p; q; rÞ for any � � 0. They are fully generic as
they do not depend on the matrix element. From the first
line of Eq. (23) we can infer that, for given k, p, q, and r,
the lowest order function D0;0ðk; p; q; rÞ represents an
upper bound for all higher order functions Dnmðk; p; q; rÞ.
Before investigating further the general solution, we

compute Dnm for this simplest case, corresponding to
jMj2 ¼ 1, for which only the zeroth-order term D0;0 is
needed.
We can evaluate all solid angle integrals which jMj2

does not depend on, in Eq. (23), using

Z
e�i�pd�p ¼ 4�

�p
sinð�pÞ: (24)

Thus D0;0 simplifies to6

5It can be advantageous to use different variables, in which
case the results of this section can be adapted easily.

6Without loss of generality we assume k; q; r > 0 in the
following. The cases k ¼ 0, q ¼ 0, and r ¼ 0 can be understood
in the limiting sense.
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D0;0ðk; p; q; rÞ ¼ 4

k�

Z 1

0
sinð�kÞ sinð�pÞ sinð�qÞ

� sinð�rÞ��2d�: (25)

Using the addition theorems for sine and cosine, the result
for this integral is found to be

D0;0ðk; p; q; rÞ ¼ 1

4k
ðjk� pþ qþ rj � jkþ p� q� rj

þ jkþ pþ q� rj þ jk� p� q� rj
þ jkþ p� qþ rj � jk� p� qþ rj
� jk� pþ q� rj � jkþ pþ qþ rjÞ;

(26)

or equivalently

D0;0ðk;p;q; rÞ ¼ 1

2k
ðRðk�pþ qþ rÞ

�Rðkþp� q� rÞ þRðkþpþ q� rÞ
þRðk�p� q� rÞ þRðkþp� qþ rÞ
�Rðk�p� qþ rÞ �Rðk�pþ q� rÞ
�Rðkþpþ qþ rÞÞ; (27)

where we introduced the ramp function:

RðxÞ ¼ x�ðxÞ ¼
�
x for x > 0
0 for x � 0

�
: (28)

Now, we multiply Eq. (27) by the term�ðk; p; q; rÞ from
Eq. (9), which we can always do, and infer that ðk� pþ
qþ rÞ � 0, ðkþ p� qþ rÞ � 0, ðkþ pþ q� rÞ � 0
and ðk� p� q� rÞ � 0 for all values of k, p, q and r
for which the prefactor is nonzero (none of the momenta
can be greater than the sum of the other three). Obviously,
the term (kþ pþ qþ r) is always positive. Introducing
the abbreviations

c1 ¼ kþ p� q� r;

c2 ¼ k� pþ q� r;

c3 ¼ k� p� qþ r and

R1 ¼ Rðc1Þ; R2 ¼ Rðc2Þ; R3 ¼ Rðc3Þ (29)

for the remaining combinations with indefinite sign, we
find for Eq. (27) the compact form:

D0;0ðk; p; q; rÞ ¼ 1

2k
�ðk; p; q; rÞð�R1 � R2 � R3 þ 2kÞ:

(30)

From this it is obvious thatD0;0ðk; p; q; rÞ � 1 everywhere.
Since the smallest value, with all of the Ri’s being positive,
is �ðk; p; q; rÞð�kþ pþ qþ rÞ=ð2kÞ � 0, it is also ob-
vious thatD0;0ðk; p; q; rÞ � 0. Remembering the note from
above, we conclude that jDnmðk;p;q;rÞj�D0;0ðk;p;q;rÞ�
1 for all k, p, q and r. This property guarantees pointwise
absolute convergence of the series Eq. (22) if the series of
the coefficients in the expansion (21),

X1
n¼0

X1
m¼0

Anmðk; p; q; rÞ;

is pointwise absolute convergent.
In case of massless particles Eq. (30) can be simplified

further to (using energy conservation)

D0;0ðk;p;q;rÞ ¼ 1

k
�ðk;p;q; rÞðk�Rðq� kÞ�Rðr� kÞÞ

¼ 1

2k
�ðk;p;q;rÞðqþ r�jq� kj� jr� kjÞ:

(31)

B. The integrals Dnm

We now turn to the computation of Dnm for general n
and m. In Eq. (23) the Fourier integralsZ

e�i�qðcos�kqÞnd�q ¼
Z

e�i�qðk̂ q̂Þnd�q (32)

on the unit sphere can be expressed as a finite series of
spherical Bessel functions of the first kind (see Appendix B
for the derivation):Z
e�i��ðk̂�̂Þnd��̂¼4�ð�iÞn Xbn=2c

�¼0

an;�
jn��ð��Þ
ð2��Þ� ðk̂�̂Þn�2�;

(33)

with numeric coefficients

an;� ¼ ð�1Þ�n!
�!ðn� 2�Þ! : (34)

Inserting Eq. (33) into Eq. (23) we find

Dnm ¼ pqr

�2

Z
d��2

Xbn=2c
�¼0

Xbm=2c

�¼0

ð�iÞnþman;�am;�ð2q�Þ��

� ð2r�Þ��j0ðp�Þjn��ðq�Þjm��ðr�Þ
�
Z

ei�kðcos�k�Þnþm�2ð�þ�Þd��; (35)

where the inner integral is again of type (33), such that we
arrive at

Dnm ¼ 4pqr

�

Xbn=2c
�¼0

Xbm=2c

�¼0

Xbðnþm=2Þ�ð�þ�Þc

l¼0

ð�1Þ�þ�

� an;�am;�anþm�2ð�þ�Þ;lð2qÞ��ð2rÞ��ð2kÞ�l

� Ið�þ �þ l; nþm� 2ð�þ �Þ � l; 0; n

� �;m� �; k; p; q; rÞ; (36)

with

Iðn; l1; l2; l3; l4; k; p; q; rÞ ¼
Z 1

0
�2�njl1ðk�Þjl2ðp�Þ

� jl3ðq�Þjl4ðr�Þd�: (37)

Unfortunately, the remaining integral over four spherical
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Bessel functions is known to represent a mathematical
problem itself. Because of the rapidly oscillating integrand
it is also difficult to access by numerical methods.

From Rayleigh’s formula (B4) it can be inferred that the
integrand of Eq. (37) can always be decomposed into
products of four sine and cosine functions and an inverse
power of �:

��mtrig1ðk�Þtrig2ðp�Þtrig3ðq�Þtrig4ðr�Þ; (38)

where trigiðx�Þ is either sinðx�Þ or cosðx�Þ. However, it has
a nonintegrable singularity at � ¼ 0 if the number of sines
exceeds m. In principle, the problem can be circumvented
by performing a Laurent series expansion of the integrand
in Eq. (38) and subtracting the divergent part. The finite
part can then be computed for all possible combinations of
the indices. Since we expect a finite overall result for
Eq. (36), the different divergent parts in the sum need to
cancel.

Here, we make a different approach which is based on an
explicit expression for the integral

Ið0; l1; l2; l3; l4; k; p; q; rÞ ¼
Z 1

0
�2jl1ðk�Þjl2ðp�Þ

� jl3ðq�Þjl4ðr�Þd�; (39)

which is valid, provided that there exists an integer number
L which satisfies the conditions

jl1 � l2j � L � l1 þ l2 ^ jl3 � l4j � L � l3 þ l4;

l1 þ l2 þ L and l3 þ l4 þ L even:

(40)

In order to bring the integrals Ið�þ �þ l;nþm�
2ð�þ �Þ � l; 0; n� �;m� �; k; p; q; rÞ into the form of
Eq. (39), we apply the recurrence relation for spherical
Bessel functions [20]:

jnðzÞ ¼ z

2nþ 1
ðjn�1ðzÞ þ jnþ1ðzÞÞ: (41)

Applying this relation r times with respect to jnðx�Þ yields

a sequence of spherical Bessel functions of order n� r,
n� rþ 2 . . . nþ r� 2, nþ r and an overall prefactor
ðx�Þr. Therefore, we apply Eq. (41) l times with respect
to jnþm�2ð�þ�Þ�lðk�Þ, � times with respect to jn��ðq�Þ
and � times with respect to jm��ðr�Þ in Eq. (35). This

leads to a set of integrals of type Ið0; l1; l2; l3; l4; k; p; q; rÞ,
where 0 � nþm� 2ð�þ �þ lÞ � l1 � nþm�
2ð�þ �Þ, l2 ¼ 0, 0 � n� 2� � l3 � n and 0 �
m� 2� � l4 � m. These integrals can be evaluated ac-
cording to Ref. [21] if the conditions (40) on the indices are
met.
Since different authors found different, relevant expres-

sions for integrals involving three Bessel functions [22–
24], we repeat here the derivation for integrals involving
four spherical Bessel functions from the former ones.
With help of the closure relation for spherical Bessel

functions (B5), integrals of the form (39) can be reduced to
integrals of three spherical Bessel functions:

Ið0; l1; l2; l3; l4;k;p;q;rÞ¼ 2

�

Z 1

0
d��2

Z 1

0
z2jl1ðkzÞ

� jLð�zÞjl2ðpzÞdz
Z 1

0
z02jl1ðqz0Þ

� jLð�z0Þjl2ðrz0Þdz0

¼ 2

�

Z 1

0
d��2Iðl1;L;l2;k;�;pÞ

� Iðl3;L; l4;q;�;rÞ; (42)

defining

Iðl1; l2; l3; k; p; qÞ ¼
Z 1

0
�2jl1ðk�Þjl2ðp�Þjl3ðq�Þd�:

(43)

Inserting the expression (B7) for Iðl1; l2; l3; k; p; qÞ found
by Mehrem, Londergan, and Macfarlane [21] and perform-
ing the integration (after inserting the explicit representa-
tion (B8) for the Legendre polynomials) yields

Ið0; l1; l2; l3; l4;k;p;q;rÞ¼ ð�1ÞL�i
l1�l2þl3�l4

8kpqr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l2þ1Þð2l4þ1Þ

q
�ðk;p;q;rÞ

�
k

p

�
l2
�
q

r

�
l4 l1 l2 L

0 0 0

 !�1 l3 l4 L

0 0 0

 !�1

�Xl2
n¼0

Xl4
n0¼0

��
2l2

2n

��
2l4

2n0

��
1=2 Xl1þl2�n

l¼jl1�l2þnj

Xl3þl4�n0

l0¼jl3�l4þn0j
ð2lþ1Þð2l0 þ1Þ l1 l2�n l

0 0 0

 !
l3 l4�n0 l0

0 0 0

 !

� L n l

0 0 0

 !
L n0 l0

0 0 0

 !�
l1 l2 L

n l l2�n

��
l3 l4 L

n0 l0 l4�n0

�
Jðk;p;q;r;n;n0; l; l0Þ

knqn
0 ; (44)

where

j1 j2 j3
m1 m2 m3

� �
and

�
j1 j2 j3
j4 j5 j6

�
(45)

denote the Wigner 3j and 6j symbols, respectively (these

are purely numeric factors related to the Clebsch-Gordan
coefficients and Racah’s W coefficients, respectively [25])
and with
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Jðk; p; q; r; n; n0; l; l0Þ ¼ Xbl=2c
s¼0

Xbl0=2c
t¼0

Al;sAl0;tð2kÞ2s�lð2qÞ2t�l0
Xl�2s

	¼0

Xl0�2t


¼0

ð l� 2s	 Þð l0 � 2t
 Þðk2 � p2Þl�2s�	ðq2 � r2Þl0�2t�


�Unþn0þ2	þ2
þ2sþ2t�l�l0þ1ðk; p; q; rÞ; (46)

where we have defined

U�ðk;p;q;rÞ¼minðkþp;qþrÞ��maxðjp�kj;jr�qjÞ�
�

:

(47)

The expected prefactor�ðk; p; q; rÞ in Eq. (44) stems from
the integration of the Heaviside step function in Eq. (B7).

From Eq. (B7) the result (44) also inherits the restric-
tions on the indices of the Bessel functions jl1 � l2j � L �
l1 þ l2 ^ jl3 � l4j � L � l3 þ l4. Note that, in general,
Eq. (44) can be evaluated for different values of L and

with different mappings of the indices l1, l2, l3 and l4,
leading to different equivalent results.
All sums in Eqs. (36), (44), and (46) are finite, so they

can be used to determine the functions Dnm. In order to
demonstrate the usefulness of this result we apply it ex-
plicitly to the cases of D0;0 and D2;0. Evaluating (36) for
n ¼ m ¼ 0 we find

D0;0 ¼ 4pqr

�
Ið0; 0; 0; 0; 0; k; p; q; rÞ: (48)

Applying Eq. (44) leads immediately to

D0;0 ¼ �ðk; p; q; rÞU1ðk; q; p; rÞ
2k

¼ �ðk; p; q; rÞðminðpþ r; kþ qÞ �maxðj � qþ kj; j � rþ pjÞÞ
2k

: (49)

Distinguishing the eight cases with sgnðciÞ ¼ �1, this can
be shown to be equivalent to Eq. (30).

A more sophisticated example is D2;0. Again, from
Eq. (36), we find

D2;0 ¼ 8pqr

�

�
1

2
Ið0; 2; 0; 2; 0; k; p; q; rÞ

� Ið�1; 1; 0; 2; 0; k; p; q; rÞ
2k

þ Ið�1; 0; 0; 1; 0; k; p; q; rÞ
2q

�
: (50)

We apply the recurrence relation (41) to the second and
third terms with respect to j1ðk�Þ and j1ðq�Þ, respectively.
This leads to

D2;0 ¼ 8pqr

�

�
1

6
Ið0; 0; 0; 0; 0; k; p; q; rÞ

þ 1

3
Ið0; 2; 0; 2; 0; k; p; q; rÞ

�
: (51)

The terms involving Ið0; 0; 0; 2; 0; k; p; q; rÞ did cancel ex-
actly and both of the remaining integrals can be evaluated
according to Eq. (44) (with the unique choice of L ¼ 0 and
L ¼ 2 for the first and the second integral, respectively),
giving after some algebra:

D2;0 ¼ �ðk; p; q; rÞ
8q2k3

ððk2 þ q2Þ2U1ðk; q; p; rÞ

� 2ðk2 þ q2ÞU3ðk; q; p; rÞ þU5ðk; q; p; rÞÞ: (52)

Equation (52) as well as all other functions
Dnmðk; p; q; rÞ can be brought into the compact form

Dn;mðk;p;q;rÞ¼A
�ðk;p;q;rÞ
knþmþ1qnrm

ðB1R1þB2R2þB3R3þCÞ:

(53)

We computed the numeric prefactor A and the momentum-
dependent coefficients B1ðk; p; q; rÞ, B2ðk; p; q; rÞ,
B3ðk; p; q; rÞ and Cðk; p; q; rÞ for nþm � 16. They are
listed in Appendix C for Dnm with nþm � 5.7 The co-
efficients Bi and C are homogeneous multivariate polyno-
mials of degree 2ðnþmÞ and 2ðnþmÞ þ 1 in k, p, q, and
r. The number of elementary operations, necessary to
evaluate Dnm, increases with increasing n and m; however,
their shape permits considerable optimization, especially
when many Dnm’s are to be computed. In addition, when
dealing with networks of Boltzmann equations, they can be
used for all matrix elements in the system.
Figures 1 and 2 show D2;0ð2:0; p ¼ qi þ r� 2:0; qi; rÞ

plotted against r (all momenta are in relative units) for
various values of qi. For r > k the graph of D2;0 becomes
constant. This can be understood by the observation that
U�ðk; qþ r� k; q; rÞ is independent of r for r > k. The
same relation holds for all other Dn;0’s (and a correspond-
ing one for D0;m). Figures 3 and 4 show similar plots for
D4;3 which do not have this property. Figure 5 shows a
surface plot of D4;3 for fixed k, as a function of q and r,
D4;3ð2:0; p ¼ qþ r� 2:0; q; rÞ.
In general the shape of the graphs varies strongly with

varying indices n and m. All functions possess a kink at
r ¼ k, because

7They become too lengthy for greater indices to be presented
here.

SOLVING THE HOMOGENEOUS BOLTZMANN EQUATION . . . PHYSICAL REVIEW D 79, 063502 (2009)

063502-7



Dn;mðk;p¼ qþ r� k;q; rÞ ¼ A
�ðk;p;q; rÞ
knþmþ1qnrm

ð2B2Rðk� rÞ

þ 2B3Rðk� qÞ þCÞ; (54)

and the properties Dnmðk; p; q; rÞ ¼ 0 for r < k� q
[�ðk; p; q; rÞ¼p¼qþr�k �ðqþ r� kÞ ¼ �ðpÞ] and
limr!0þDnmðk; p; q; rÞ ¼ 0 for k, p and q are held con-
stant. The latter can be inferred from jDnmðk; p; q; rÞj �
D0;0ðk; p; q; rÞ and limr!0þD0;0ðk; p; q; rÞ ¼ 0, which is
obvious from Eq. (49). Similar relations hold for the q
dependence (with k and r fixed) and in the case of massive
particles.

V. NUMERICAL INTEGRATION OF D

In this section we derive a formula for Dðk; p; q; rÞ,
suitable for numerical integration of arbitrary matrix ele-
ments. This method is independent of the one presented in
the previous section and can be used to test the accuracy of
results obtained by truncating the Dnm expansion. Again,
we assume that the angular dependence of jMj2 is given in
terms of cosð�kqÞ and cosð�krÞ, i.e. in terms of the momen-
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FIG. 1. D2;0ð2:0; p ¼ qi þ r� 2:0; qi; rÞ for qi � k. The flat-
tening for r > k is common to all Dn;0. All momenta are in
relative units.
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FIG. 2. This plot continues Fig. 1, D2;0ð2:0; p ¼ qi þ r�
2:0; qi; rÞ for qi > k.
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FIG. 3. D4;3ð2:0; p ¼ qi þ r� 2:0; qi; rÞ for qi � k. The kink
at r ¼ k is common to all Dnmðk; qþ r� k; q; rÞ. For r < k� q
we have Dnm ¼ 0. All momenta are in relative units.
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FIG. 4. D4;3ð2:0; p ¼ qi þ r� 2:0; qi; rÞ for qi > k.
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FIG. 5. D4;3ð2:0; p ¼ qþ r� 2:0; q; rÞ. Figures 3 and 4 cor-
respond to cuts with q ¼ const (the thick line corresponds to
q9 ¼ 1:8).
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tum transfer t and u. A possible dependence on s can be
expressed in terms of t and u exploiting energy and mo-
mentum conservation [Eq. (20)].

We orientate the coordinate system such that the z axis
points in the direction of k. We can then write

cosð��vÞ ¼ �̂ � v̂ ¼ cos�� cos�v

þ sin�� sin�v cosð�� ��vÞ;
cosð�kqÞ ¼ cos�q;

cosð�krÞ ¼ cos�r: (55)

Using Eq. (33) for the �p integration we can write Eq. (8)

as

Dðk; p; q; rÞ ¼ pqr

16�4

Z
d3�ei�k

sinð�pÞ
�p

�
Z

e�i�qd�q

Z
e�i�rd�rjMj2: (56)

We can then perform the integration over �q and �r

since jMj2 does not depend on these angles:

Z
e�i�rd�rjMj2 ¼

Z 1

�1
e�i�r cos�� cos�rd cos�r

Z 2�

0
e�i�r sin�� sin�r cosð����rÞjMj2d�r

¼
Z 1

�1
e�i�r cos�� cos�r jMj2d cos�r

Z �

0
2 cosð�r sin�� sin�r cosð�rÞÞd�r

¼ 2�
Z 1

�1
e�i�r cos�� cos�rJ0ð�r sin�� sin�rÞjMj2d cos�r; (57)

where we have taken into account the fact that the inner
integral does not depend on ��, since the integration is
over 2� and the odd symmetry of the imaginary part of this
integral with respect to �r. The remaining integral was
recognized as the integral definition of J0, the Bessel
function of the first kind of order zero; see e.g. [20].

Inserting Eq. (57) into Eq. (56) gives

Dðk; p; q; rÞ ¼ pqr

4�2

Z 1

0
�2 sinð�pÞ

�p
Iðk; p; q; r; �Þd�;

(58)

with

Iðk; p; q; r; �Þ ¼
Z

ei�k cos��d��

Z 1

�1
d cos�qe

�i�q cos�� cos�q

�
Z 1

�1
d cos�re

�i�r cos�� cos�r

� J0ð�q sin�� sin�qÞ
� J0ð�r sin�� sin�rÞjMj2: (59)

For the product of the two Bessel functions we may use the
relation (B3). Inserting it into Eq. (59) and interchanging
the order of integration, we find

Iðk; p; q; r; �Þ ¼ 2�
Z 1

�1

Z 1

�1
d cos�qd cos�rjMj2

� I0ðk; p; q; r; �; �q; �rÞ; (60)

with

I0ðk; p; q; r; �; �q; �rÞ ¼ 1

�

Z �

0

Z �

0
ei�ðk�q cos�q�r cos�rÞ cos��

� J0ð� sin��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq sin�qÞ2 þ ðr sin�rÞ2 � 2qr sin�q sin�r cosðxÞ

q
Þ sin��dxd��: (61)

Again interchanging the order of the integrals and exploiting the odd symmetry of the imaginary part of the exponential,
we get

I0ðk; p; q; r; �; �q; �rÞ ¼ 1

�

Z �

0

Z �

0
cosð�ðk� q cos�q � r cos�rÞ cos��Þ

� J0ð� sin��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq sin�qÞ2 þ ðr sin�rÞ2 � 2qr sin�q sin�r cosðxÞ

q
Þ sin��d��dx: (62)

Now, we apply the integral (B2) to arrive at

I0ðk; p; q; r; �; �q; �rÞ ¼ 2

�

Z �

0

sinð� ffiffiffiffiffiffiffiffiffi
fðxÞp Þ

�
ffiffiffiffiffiffiffiffiffi
fðxÞp dx; (63)

with (omitting the dependence on the other variables for
brevity)

fðcosxÞ ¼ ðk� q cos�q � r cos�rÞ2 þ ðq sin�qÞ2
þ ðr sin�rÞ2 � 2qr sin�q sin�r cosx; (64)

considering 0 � �q and �r � � as parameters. If we inter-
pret x as the polar angle enclosed by q and r, we can write

SOLVING THE HOMOGENEOUS BOLTZMANN EQUATION . . . PHYSICAL REVIEW D 79, 063502 (2009)

063502-9



fðcosxÞ ¼ ðk� qÞ2 þ ðk� rÞ2 � ðq� rÞ2 � k2 þ q2 þ r2

¼ ðk� qÞ2 þ ðk� rÞ2 � ðq� rÞ2 � k2 þ q2 þ r2

þ ðEk þEp �Eq �ErÞ2
¼ sþ tþ u�X

i

m2
i þp2; (65)

under the assumption of energy and momentum
conservation.

Since qr sin�q sin�r � 0 for all �q and �r, the function

fðxÞ takes its minimum for cosx ¼ 1:

fð1Þ ¼ ðk� q cos�q � r cos�rÞ2 þ ðq sin�q � r sin�rÞ2
� 0: (66)

I0 is therefore well defined.
Inserting both (60) and (63) into Eq. (58) and again

exchanging the order of integration, we find

Dðk;p;q; rÞ ¼ pqr

�2

Z 1

�1

Z 1

�1
dcos�qdcos�rjMj2

�
Z �

0
dx
Z 1

0
�2 sinð�pÞ

�p

sinð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðcosxÞp Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðcosxÞp d�:

(67)

In the rightmost integral we recognize the closure relation
for spherical Bessel functions (B5) for n ¼ 0.

This leads to

Dðk;p;q;rÞ¼ qr

2�p

Z 1

�1

Z 1

�1
dcos�qdcos�rjMj2I00; (68)

where we defined

I00 ¼
Z �

0
�ðp�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðcosxÞ

q
Þdx ¼

Z 1

�1

�ðp� ffiffiffiffiffiffiffiffiffi
fðyÞp Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2
p dy

¼ 2p�ðFð�q; �rÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð�q; �rÞ

q ; (69)

with

Fð�q;�rÞ ¼ ðp2 � fð1ÞÞðfð�1Þ �p2Þ
¼ ð2qr sin�q sin�rÞ2 � ½ðk� qcos�q � rcos�rÞ2

þ ðq sin�qÞ2 þ ðr sin�rÞ2 �p2�2: (70)

Because of Eq. (65) the � function in Eq. (69) ensures
energy and momentum conservation.

The final expression for D reads

Dðk; p; q; rÞ ¼ qr

�

Z
A

jMj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð�q; �rÞ

q d cos�qd cos�r; (71)

where the domain of integration A is given by�1 � cos�q,

cos�r � 1 and Fð�q; �rÞ> 0. Note that the term

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð�q; �rÞ

q
is absent in an analogous but erroneous

[26] expression in [1].

The expression (71) for D has only a two-dimensional
integral and is by far superior to Eq. (56) with respect to
numerical integration. The integrand may have singular
points at the boundary of A. Hence the routines for nu-
merical integration must be chosen adequately. Usually, for
a numerical method, it is sufficient to know Dðk; p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEq þ Er � EkÞ2 �m2

p

q
; q; rÞ for a finite set of momenta

fki; qj; rlg on a grid. Therefore it is possible, in principle, to
tabulate D through numerical integration of Eq. (71). As
pointed out above, for applications in cosmology, this
relation is only of restricted use, since the momenta or,
equivalently, the particle masses are scaled in each step of
the time evolution, so that the values ofDðki; p; qj; rlÞ need
to be recomputed permanently.8

VI. CONVERGENCE OF THE METHOD

To demonstrate the application and convergence of the
method described above, we apply it to a (hypothetical)
matrix element involving tree-level t- and u-channel con-
tributions. We compare the approximate analytical result
according to the truncated series expansion of Sec. IV with
the exact numerical result from the previous section.
Without specifying a theory we take the matrix element

to be (for simplicity we assume that all in- and outgoing
particles are massless)

jMj2 ¼
�

g

mX
2 � t

þ g

mX
2 � u

�
2

¼
�
g

2kq

1

ða� cos�qÞ þ
g

2kr

1

ðb� cos�rÞ
�
2
; (72)

with a ¼ 1þmX
2=ð2kqÞ> 1, b ¼ 1þmX

2=ð2krÞ> 1
and some massmX of the intermediate state and a coupling
g with mass dimension 2.
A Taylor series expansion in cos�q and cos�r leads to

jMj2 ¼ g2

4k2q2
1

a2

�
1þ 2 cos�q

a
þ � � �

�
þ g2

4k2r2
1

b2

�
�
1þ 2 cos�r

b
þ � � �

�
þ g2

2k2qr

1

ab

�
1þ cos�q

a

þ cos�r
b

þ ðcos�qÞ2
a2

þ cos�r cos�q
ab

þ ðcos�rÞ2
b2

þ � � �
�
: (73)

8Also note that the numerical evaluation of the twofolded
integral (71), with the required precision for the solution of
the Boltzmann equation, itself can be challenging, depending
on the matrix element. The memory consumption for the storage
of D is bounded from above by M3 � 8 bytes for double
precision, where M	Oð100Þ is the dimension of the system;
see Eq. (17). The true amount of necessary memory (and CPU
power) is smaller and depends on the masses, since D can be
nonzero only if

R
A d cos�qd cos�r > 0.
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The angle-integrated matrix element Dðk; p; q; rÞ is found
by substituting every appearance of ðcos�qÞnðcos�rÞm by

Dnm:

jMj2 ¼ g2

4k2q2
1

a2

�
1þ 2D1;0

a
þ � � �

�
þ g2

4k2r2
1

b2

�
�
1þ 2D0;1

b
þ � � �

�
þ g2

2k2qr

1

ab

�
1þD1;0

a

þD0;1

b
þD2;0

a2
þD1;1

ab
þD0;2

b2
þ � � �

�
: (74)

Setting cos�q ¼ 1 and cos�r ¼ 1 yields the series of co-

efficients which converges to

jMj2jcos�q¼cos�r¼1 ¼
�
g

2kq

1

ða� 1Þ þ
g

2kr

1

ðb� 1Þ
�
2
:

(75)

According to what has been said below Eq. (30) about the
convergence of the series, jMj2jcos�q¼cos�r¼1�
D0;0ðk; p; q; rÞ represents an upper bound to Dðk; p; q; rÞ.
This property can be used as a convergence test for the
series in general. On the other hand, in the low energy
limit, Eq. (72) can be expanded in terms of inverse powers
of mX

2:

jMj2 ’ g2

m4
X

�
4þ 4

t

mX
2
þ 4

u

mX
2
þ 5

t2

mX
4

þ 2
tu

mX
4
þ 5

u2

mX
4

�
: (76)

This corresponds to the Fermi approximation and includes
only ðcos�qÞnðcos�rÞm terms with nþm � 2 at this order

(i.e. these terms can be integrated as in the previous
literature).
Figures 6 and 7 show the graphs of the exact numerical

result [Eq. (71)], the graphs for the ‘‘Fermi approxima-
tion’’ [Eq. (76)], the graphs of the theoretical upper bound
[Eq. (75)] and the graphs corresponding to successive
approximations according to Eq. (74) for two sets of
parameters. Figures 6 and 7 show that for parameters, for
which the expansion in inverse powers of mX

2 naturally
fails, the approximation by the truncated Dnm expansion
gives quite good results.
The rate of convergence of successive Di’s towards the

exact result depends on the momenta since the coefficients
in the expansion (73) are momentum-dependent. In this
case it becomes worse for mX

2=ð2kqÞ 
 1 and
mX

2=ð2krÞ 
 1.

VII. CONCLUSION

In state-of-the-art computations in astroparticle physics,
usually all species apart from the neutrinos, which experi-
ence only weak interactions, are assumed to be in exact
kinetic equilibrium, and heterogeneous (at best) networks
of Boltzmann and rate equations are solved instead of the
full system of kinetic equations. The number of species
involved in realistic systems is large and requires a unified
treatment of the different particles and interactions.
A method for the solution of the space-homogeneous

Boltzmann equation (with isotropic distribution function)
for general scattering laws was presented here. Thereafter
the straightforward discrete version of the equation was
presented. In doing so, it was assumed that the collision
integral can be reduced to a twofold one by integration of
the angular part. To perform this integration two methods
were presented. The first one relies on the expansion of the
matrix element in terms of cosines of two scattering angles.
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FIG. 6. Dðk; qþ r� k; q; rÞ with mX ¼ 20:0, k ¼ 15:0, and
q ¼ 10:0. Exact numerical result Dnum, the result in large mX

limit DFermi, and successive analytic approximations D0 . . .D6

(Dnþm corresponds to an expansion of jMj2 up to order nþm
in the cosines).
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limit DFermi, and successive analytic approximations
D0; D2 . . .D8.
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For the separate terms in this expansion the full angular
integration was carried out. The functions D0;0, D0;1 and
D0;2, corresponding to matrix elements in the Fermi ap-
proximation, were used in previous papers to compute
nonequilibrium corrections to the neutrino-distribution
functions and have been obtained in the lowest order of
the expansion. In this case existing implementations might
profit from our more compact notation. The second method
results in a twofold integral suitable for numerical integra-
tion. Although it will be of restricted practical importance
in cosmology, it is useful to test the quality of the approxi-
mation obtained by the first method.

Our starting point was the relativistic form of the
Boltzmann equation, as encountered in astroparticle phys-
ics. Nevertheless, the method can be used for the non-
relativistic equation as well. In any case, it allows for the
full angular integration of the scattering kernel, reducing
the collision integral from effective dimension 5 to dimen-
sion 2. The only prerequisite is that the matrix element can
be expanded into a series of the scattering angles and that
this series converges rapidly enough. The quantum statis-
tical terms for blocking and stimulated emission can be
carried along.

In the introduction we mentioned that, at high densities
and temperatures, modifications of the Boltzmann equation
might become necessary (if these are sufficient at all). One
such modification, which has been suggested on various
occasions, is the inclusion of higher order scattering pro-
cesses. Since the representation of the angular integral in
terms of spherical Bessel functions (35) and (36) and the
integral (44), by means of Eq. (42), can be generalized for
higher order processes (in which case more than four
Bessel functions appear in the integrals), the method,
described above, can in principle be used to reduce the
corresponding collision integrals from dimension 3ðn� 1Þ
to n� 2 (n is the number of particles involved).

The functions Dnm, though of very simple structure, can
become lengthy for higher orders. Moreover, due to the
presence of very different relaxation time scales the system
of ordinary differential equations, corresponding to the
numerical method presented in Sec. III, tends to behave
stiffly. Therefore, in possible implementations, careful op-
timization for efficiency and stability is necessary.

Let us add that the expansion of the scattering kernel in
terms of the cosines of the angles is not a new idea. For
example, in Ref. [27] an expansion of the scattering kernel
has been combined with a moment method for the non-
relativistic, inhomogeneous Boltzmann equation. The ex-
pansion of generic kernels with full integration of the
angular part, in the space-homogeneous and isotropic
case, seems to be new, however.
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APPENDIX A: REDUCTION OF C1$2-LIKE
COLLISION INTEGRALS

For collision integrals describing the evolution of decay-
ing particles the angle-integrated matrix element can be
defined similarly to Eq. (23). In this case the matrix ele-
ment is a constant and only the zeroth-order integral,
corresponding to jMj2 ¼ 1, has to be computed. The
collision integral reads

C1$2½f�ðkÞ ¼ 1

2Ek

Z
ð2�Þ4�4ðk� q� rÞjMj2F0½f�

� d3q

ð2�Þ32Eq

d3r

ð2�Þ32Er

; (A1)

with F0½f� ¼ ð1� �kfkÞfqfr � fkð1� �qfqÞð1� �rfrÞ.
Performing the same steps as in the main text, we derive

C1$2½f�ðkÞ ¼ 1

32�Ek

Z
�ðEq �mqÞF0½f�D0ðk; q; rÞ rdr

Er

;

(A2)

where Eq ¼ Ek � Er, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
q �m2

q

q
and we have defined

the function D0 as

D0ðk; q; rÞ ¼ qr

8�4

Z
�2d�

Z
ei�kd��

Z
e�i�qd�q

�
Z

e�i�rd�rjMj2: (A3)

For jMj2 ¼ 1 we find

D0ðk; q; rÞ ¼ 8

�k

Z 1

0
sinð�kÞ sinð�qÞ sinð�rÞ d�

�

¼ 2

k
�ðk� jq� rjÞ�ððqþ rÞ � kÞ: (A4)

The expressions for particles created in decays are
analogous.

APPENDIX B: RELATIONS INVOLVING BESSEL
FUNCTIONS OF INTEGER AND FRACTIONAL

ORDER

For the reader’s convenience we collect some facts about
Bessel functions of the first kind Jn and spherical Bessel
functions of the first kind jn. They are related by

jnðzÞ ¼
ffiffiffiffiffi
�

2z

r
Jnþ1=2ðzÞ: (B1)

In the main text we employ the following integral of Bessel
functions from Ref. [28]:

Z �

0
cosð� cos�ÞJ0ð� sin�Þ sin�d� ¼ 2

sinð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p ;

(B2)

and for the product of two Bessel functions:
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J0ð�ÞJ0ð�Þ ¼ 1

�

Z �

0
J0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2 � 2�� cosðxÞ

q
Þdx:
(B3)

Using Rayleigh’s formula, the spherical Bessel func-
tions can be computed iteratively from the sinc function:

jnðzÞ ¼ zn
�
� 1

z

d

dz

�
n sinðzÞ

z
: (B4)

They satisfy the closure relation [29]

2z2

�

Z 1

0
�2jnð�zÞjnð�z0Þd� ¼ �ðz� z0Þ: (B5)

Several authors have derived expressions or algorithms for
the computation of integrals involving products of three
spherical Bessel functions [22–24]:

Iðl1; l2; l3; k; p; qÞ ¼
Z 1

0
�2jl1ðk�Þjl2ðp�Þjl3ðq�Þd�:

(B6)

Here we cite the explicit result, found by Mehrem,
Londergan, and Macfarlane [21] by relating
Iðl1; l2; l3; k; p; qÞ to known integrals of three spherical
harmonics:

Iðl1; l2; l3; k; p; qÞ ¼ ��ðq� jk� pjÞ�ðkþ p� qÞil1þl2�l3

4kpq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l3 þ 1

p ðk=qÞl3 l1 l2 l3

0 0 0

 !�1 Xl3
n¼0

ð 2l32n Þ1=2ðp=kÞn

� Xl1þl3�n

l¼jl1�ðl3�nÞj
ð2lþ 1Þ l1 l3 � n l

0 0 0

 !
l2 n l

0 0 0

 !�
l1 l2 l3

n l3 � n l

�
Pl

�
k2 þ p2 � q2

2kp

�
; (B7)

where Pl denotes the Legendre polynomials with explicit
representation [20]

PlðxÞ ¼
Xbl=2c
i¼0

ð�1Þið2l� 2iÞ!
2li!ðl� iÞ!ðl� 2iÞ! x

l�2i: (B8)

Wigner’s 3j symbol is related to the Clebsch-Gordan co-
efficients by [25]

j1 j2 j3
m1 m2 m3

� �
� ð�1Þj1�j2�m3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j3 þ 1
p hj1m1j2m2jj3 �m3i:

(B9)

Wigner’s 3j symbols are equal to zero, unless m1 þm2 þ
m3 ¼ 0, jmij � ji and jj1 � j2j � j3 � j1 þ j2.

Wigner’s 6j symbols are related to Racah’s W coeffi-
cients by�

j1 j2 j3
j4 j5 j6

�
¼ ð�1Þj1þj2þj4þj5Wðj1j2j5j4; j3j6Þ:

(B10)

In the main text, Eq. (33), we use an expansion into
spherical Bessel functions [30,31]. We start with the ex-
pression (given in [31]):

Z
Sd�1

eiðxj�̂ÞPnð�̂Þd��̂ ¼
�
i

2

�
n Xbn=2c
�¼0

ð�1Þk�ðd=2Þ
�!�ðn� �þ d=2Þ

� ~jn��þd=2�1ðxÞð��PnÞðxÞ;
(B11)

where x; �̂ 2 Rd, with ð�̂j�̂Þ ¼ 1, ~j
ðzÞ ¼ �ð
þ 1Þ�
ð2zÞ
J
ðzÞ and the integration is over the (d� 1) sphere

Sd�1. Pn is a homogeneous polynomial of degree n on
Rd and ð: j; Þ denotes the inner product. For d ¼ 3, we find

Z
eix�̂Pnð�̂Þd��̂ ¼

�
i

2

�
n Xbn=2c
�¼0

ð�1Þ�
�!

�
2

x

�
n��

jn��ðxÞ

� ð��PnÞðxÞ: (B12)

Choosing Pnð�Þ ¼ ðk̂ �̂Þn we get with ð��PnÞ�
ðxÞ ¼ n!=ðn� 2�Þ! � ðk̂xÞn�2�:

Z
eix�̂ðk̂ �̂Þnd��̂ ¼ in

Xbn=2c
�¼0

ð�1Þ�n!
�!ðn� 2�Þ!

jn��ðxÞ
ð2xÞ�

�ðk̂ x̂Þn�2�: (B13)

Substituting x ! ��� reproduces Eq. (33).

APPENDIX C: THE INTEGRALS Dnm

The functions Dnmðk; p; q; rÞ can all be written in the
form

Dn;mðk;p;q;rÞ¼A
�ðk;p;q;rÞ
knþmþ1qnrm

ðB1R1þB2R2þB3R3þCÞ:

(C1)

In the following we list the coefficients A, B1 and C, which
themselves depend on the momenta, for Dnm with nþ
m � 5 and n � m (Dn;m with n > m can be derived from
Dm;n by interchanging q and r). The expressions B2 (B3)
are found by substituting in B1 the term c1 by c2 (c3) and fi
by fq!�q

i (fr!�r
i ) for all i. (Ri and ci are defined as in the

main text.)

D0;0ðk; p; q; rÞ:
A ¼ 1=2; C ¼ 2k; B1 ¼ �1; (C2)
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D0;1ðk; p; q; rÞ:
A ¼ �1=12;

C ¼ �4k3;

B1 ¼ f2c1 � c1
2 þ f1;

½f1 ¼ 6kr; f2 ¼ 3k� 3r�; (C3)

D0;2ðk; p; q; rÞ:
A ¼ 1

120
;

C ¼ 8k3ð2k2 þ 5r2Þ;
B1 ¼ f2c1 þ f3c1

2 þ f4c1
3 � 3c1

4 þ f1;

½f1 ¼ �60k2r2; f2 ¼ �60krðk� rÞ; f3 ¼ �20r2 � 20k2 þ 60kr; f4 ¼ �15rþ 15k�; (C4)

D0;3ðk;p;q;rÞ:
A¼� 1

560
;

C¼�16k5ð2k2þ 7r2Þ;
B1 ¼ f2c1þf3c1

2þf4c1
3þf5c1

4þf6c1
5� 5c1

6þf1;

½f1 ¼ 280r3k3; f2 ¼ 420k2r2ðk� rÞ; f3 ¼ 140krð2k� rÞðk� 2rÞ;
f4 ¼ 70ðk� rÞðr2� 5krþ k2Þ; f5 ¼�42ð2k� rÞðk� 2rÞ;f6 ¼�35rþ 35k�; (C5)

D0;4ðk; p; q; rÞ:
A ¼ 1

10080
;

C ¼ 32k5ð36k2r2 þ 63r4 þ 8k4Þ;
B1 ¼ f2c1 þ f3c1

2 þ f4c1
3 þ f5c1

4 þ f6c1
5 þ f7c1

6 þ f8c1
7 � 35c1

8 þ f1;

½f1 ¼ �5040k4r4; f2 ¼ �10080k3r3ðk� rÞ; f3 ¼ �3360k2r2ð3r2 þ 3k2 � 7krÞ;
f4 ¼ �2520krðk� rÞð2r2 � 7krþ 2k2Þ; f5 ¼ 10080k3r� 1008r4 þ 10080kr3 � 1008k4 � 19656k2r2;

f6 ¼ 840ðk� rÞð2r2 � 7krþ 2k2Þ; f7 ¼ 2520kr� 1080k2 � 1080r2; f8 ¼ �315rþ 315k�; (C6)

D0;5ðk; p; q; rÞ:
A ¼ � 1

44352
;

C ¼ �64k7ð44k2r2 þ 8k4 þ 99r4Þ;
B1 ¼ f2c1 þ f3c1

2 þ f4c1
3 þ f5c1

4 þ f6c1
5 þ f7c1

6 þ f8c1
7 þ f9c1

8 þ f10c1
9 � 63c1

10 þ f1;

½f1 ¼ 22176r5k5; f2 ¼ 55440k4r4ðk� rÞ; f3 ¼ 18480k3r3ð4r2 � 9krþ 4k2Þ; f4 ¼ 55440k2r2ðk� rÞðr2 � 3krþ k2Þ;
f5 ¼ 11088krð�14k3rþ 2r4 � 14kr3 þ 25k2r2 þ 2k4Þ; f6 ¼ 1848ðk� rÞð2r4 � 28kr3 þ 67k2r2 � 28k3rþ 2k4Þ;
f7 ¼ �99000k2r2 � 7920k4 � 7920r4 þ 55440kr3 þ 55440k3r; f8 ¼ 6930ðk� rÞðr2 � 3krþ k2Þ;
f9 ¼ �3080k2 � 3080r2 þ 6930kr; f10 ¼ �693rþ 693k�; (C7)
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D1;1ðk; p; q; rÞ:
A ¼ 1

120
;

C ¼ 4k3ð3k2 þ 5p2 � 5q2 � 5r2Þ;
B1 ¼ f2c1 þ f3c1

2 þ f4c1
3 � c1

4 þ f1;

½f1 ¼ �60k2qr; f2 ¼ �30kð�2qrþ kqþ krÞ; f3 ¼ 20kqþ 20kr� 20qr� 10k2; f4 ¼ �5q� 5rþ 5k�; (C8)

D1;2ðk; p; q; rÞ:
A ¼ � 1

1680
;

C ¼ �16k5ð�14q2 þ 14p2 þ 7r2 þ 4k2Þ;
B1 ¼ f2c1 þ f3c1

2 þ f4c1
3 þ f5c1

4 þ f6c1
5 � 3c1

6 þ f1;

½f1 ¼ 840qr2k3; f2 ¼ 420k2rðkr� 3qrþ 2kqÞ; f3 ¼ 140kð2rk2 þ 6r2q� 3r2kþ 2qk2 � 8rqkÞ;
f4 ¼ �280qk2 þ 630rqkþ 70k3 � 280rk2 � 210r2qþ 210r2k; f5 ¼ 126kr� 126qr� 42r2 � 56k2 þ 126kq;

f6 ¼ 21k� 21r� 21q�; (C9)

D1;3ðk; p; q; rÞ:
A ¼ 1

10080
;

C ¼ 16k5ð54k2p2 � 63q2r2 � 54q2k2 � 63r4 þ 27k2r2 þ 63p2r2 þ 10k4Þ;
B1 ¼ f2c1 þ f3c1

2 þ f4c1
3 þ f5c1

4 þ f6c1
5 þ f7c1

6 þ f8c1
7 � 5c1

8 þ f1;

½f1 ¼ �5040r3k4q; f2 ¼ �2520k3r2ðkr� 4qrþ 3kqÞ; f3 ¼ �840k2rð�4r2kþ 12r2qþ 3rk2 � 18rqkþ 6qk2Þ;
f4 ¼ �1260kð�4r3qþ 11kqr2 � 7k2qrþ qk3 � 3k2r2 þ k3rþ 2kr3Þ;
f5 ¼ 6048kqr2 þ 1764k3rþ 1008kr3 þ 1764qk3 � 1008r3q� 252k4 � 6804k2qr� 2772k2r2;

f6 ¼ 1008r2kþ 2520rqk� 1008r2q� 1134qk2 � 1134rk2 � 168r3 þ 294k3;

f7 ¼ 360kr� 360qr� 144r2 þ 360kq� 162k2; f8 ¼ 45k� 45q� 45r�; (C10)

D1;4ðk; p; q; rÞ:
A ¼ � 1

221760
;

C ¼ �64k7ð99r4 þ 88k2r2 þ 396p2r2 � 396q2r2 þ 176k2p2 � 176q2k2 þ 24k4Þ;
B1 ¼ f2c1 þ f3c1

2 þ f4c1
3 þ f5c1

4 þ f6c1
5 þ f7c1

6 þ f8c1
7 þ f9c1

8 þ f10c1
9 � 35c1

10 þ f1;

½f1 ¼ 110880r4qk5; f2 ¼ 55440k4r3ð�5qrþ krþ 4kqÞ; f3 ¼ 18480k3r2ð20r2q� 5r2k� 32rqkþ 4rk2 þ 12qk2Þ;
f4 ¼ 18480k2rð5kr3 � 15r3q� 8k2r2 þ 41kqr2 � 30k2qrþ 3k3rþ 6qk3Þ;
f5 ¼ 3696kð�15r4kþ 30r4q� 66k3qrþ 6qk4 � 141kr3qþ 6k4r� 30k3r2 þ 171k2qr2 þ 41k2r3Þ;
f6 ¼ 18480r4k� 40656k4rþ 240240k3qrþ 105336k3r2 þ 184800kr3q� 18480r4q� 86856k2r3 þ 3696k5

� 40656qk4 � 382536k2qr2;

f7 ¼ �2640r4 � 126720k2qr� 26400r3qþ 118800kqr2 � 5808k4 þ 34320k3rþ 34320qk3 þ 26400kr3

� 54648k2r2;

f8 ¼ 14850r2k� 14850r2q� 15840rk2 þ 34650rqk� 15840qk2 þ 4290k3 � 3300r3;

f9 ¼ �1760k2 þ 3850kq� 1650r2 � 3850qrþ 3850kr; f10 ¼ �385r� 385qþ 385k�; (C11)
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D2;2ðk; p; q; rÞ:
A ¼ 1

3360
;

C ¼ 16k5ð28q2r2 þ 7r4 þ 22k2p2 þ 7p4 þ 2q2k2 þ 3k4 � 14p2r2 � 14p2q2 þ 2k2r2 þ 7q4Þ;
B1 ¼ f2c1 þ f3c1

2 þ f4c1
3 þ f5c1

4 þ f6c1
5 þ f7c1

6 þ f8c1
7 � c1

8 þ f1;

½f1 ¼ �1680q2k4r2; f2 ¼ �1680k3qrð�2qrþ kqþ krÞ; f3 ¼ �560k2ðkr� 3qrþ kqÞð�2qrþ kqþ krÞ;
f4 ¼ �140kð12qr� 5kr� 5kqþ 2k2Þð�qrþ krþ kqÞ;
f5 ¼ �336q2r2 þ 1008kqr2 þ 1008kq2r� 476q2k2 þ 336k3r� 1344k2qrþ 336qk3 � 476k2r2 � 56k4;

f6 ¼ 56ð�q� rþ kÞð3qr� 3kqþ k2 � 3krÞ; f7 ¼ �72qr� 24q2 � 24r2 � 32k2 þ 72kqþ 72kr;

f8 ¼ �9q� 9rþ 9k�; (C12)

D2;3ðk;p;q; rÞ:
A¼� 1

221760
;

C¼�32k7ð297p4 þ 198p2r2 � 22q2k2 þ 297q4 þ 66k2r2 þ 462k2p2 � 495r4 þ 396q2r2 þ 41k4 � 594p2q2Þ;
B1 ¼ f2c1 þ f3c1

2 þ f4c1
3 þ f5c1

4 þ f6c1
5 þ f7c1

6 þ f8c1
7 þ f9c1

8 þ f10c1
9 � 15c1

10 þ f1;

½f1 ¼ 110880q2r3k5; f2 ¼ 55440k4qr2ð�5qrþ 3kqþ 2krÞ;
f3 ¼ 18480k3rð20q2r2 þ 6k2qrþ 6q2k2 � 21kq2r� 12kqr2 þ 2k2r2Þ;
f4 ¼ 27720k2ð2k3qrþ 17kq2r2 � 8k2qr2 � 10q2r3 þ q2k3 þ k3r2 þ 9kr3q� 2k2r3 � 8k2q2rÞ;
f5 ¼ 5544kð9k2r3 � 8k3r2 þ 20q2r3 þ 45k2qr2 þ 2k4r� 57kq2r2 � 18k3qr� 29kr3qþ 2qk4 � 8q2k3 þ 41k2q2rÞ;
f6 ¼ 110880kq2r2 � 152460k2qr2 þ 99792k3qrþ 37884q2k3 � 18480q2r3 � 130284k2q2r� 16632k4rþ 41580k3r2

� 26796k2r3 þ 55440kr3qþ 1848k5 � 16632qk4;

f7 ¼�21780k2r2 � 2376k4 � 7920r3qþ 14256qk3 � 53856k2qrþ 39600kq2r� 18612q2k2 þ 47520kqr2 þ 7920kr3

� 15840q2r2 þ 14256k3r;

f8 ¼ 198ð�q� rþ kÞð�25kqþ 25qrþ 9k2 � 25krþ 5r2Þ;
f9 ¼�660r2 � 748k2 � 550q2 þ 1650krþ 1650kq� 1650qr;f10 ¼�165qþ 165k� 165r�: (C13)

The Dnm’s do not possess any singularities inside the
domain of integration, which is an almost essential feature
for the numerical solution of the Boltzmann equation.
Note, however, that the expressions given here are opti-
mized neither for numerical efficiency nor for stability. Not
all of the terms Bi need to be computed in every step since
Ri ¼ RðciÞ ¼ 0 for ci � 0, and quantities such as powers

of the momenta, which appear several times, need to be
computed only once for all Dnm’s. In an implementation
according to the model presented in Sec. III theDnm’s need
to be computed only once for all matrix elements in the
system (with the possible exception of C and the ci terms
including p, which is determined by energy conservation).
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[27] G. Kügerl and F. Schürrer, Phys. Rev. A 39, 1429 (1989).
[28] I. S. Gradshteyn and I.M. Ryzhik, Table of Integrals,

Series, and Products (Academic Press, San Diego,
2000), 6th ed.

[29] G. N.A. Watson, Treatise on the Theory of Bessel
Functions (Cambridge University Press, Cambridge,
England, 1966).
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