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We consider the metric perturbations around a stationary rotating Nambu-Goto string in Minkowski

spacetime. By solving the linearized Einstein equations, we study the effects of azimuthal frame-dragging

around the rotation axis and linear frame-dragging along the rotation axis, the Newtonian logarithmic

potential, and the angular deficit around the string as the potential mode. We also investigate gravitational

waves propagating off the string and propagating along the string, and show that the stationary rotating

string emits gravitational waves toward the directions specified by discrete angles from the rotation axis.

Waveforms, polarizations, and amplitudes which depend on the direction are shown explicitly.
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I. INTRODUCTION

The phase transition of vacuum in the early universe is
one of the most important topics of cosmology and ele-
mentary particle physics. It is well known that topological
defects are necessarily created due to the spontaneous
symmetry breaking of vacuum states [1] (see also [2–4]).
Among the several types of topological defects, cosmic
strings are possible to survive until the present stage of the
Universe and to be observed by the gravitational effects.
Alternatively, it is pointed out that fundamental strings
and/or D-strings can play a role of cosmic strings [5–9].
There is no doubt that detection of cosmic strings in the
present stage of the Universe is important and challenging
work.

The gravitational waves from cosmic strings is one of
the targets of ongoing experiments for searching gravita-
tional waves due to recent technological advances, e.g.,
LIGO, LISA, VIRGO, TAMA300, GEO600, and so on
[10–14], and also theoretical research has been established.
For example, there are many works on the gravitational
waves produced by oscillating loop cosmic strings [15,16],
by an infinitely long string with a helicoidal standing wave
[17], and by colliding wiggles on a straight string [18,19].
Damour and Vilenkin [20,21] discussed the gravitational
wave bursts from cusps of the cosmic string.

A conical spacetime generated around a straight string
makes undistorted double images of a distant source. The
gravitational lensing caused by the cosmic strings is
studied extensively [22]. Recently, a variety of gravita-
tional lensing, weak lensing [23], lensing by string loops
[24], and lensing by strings with small-scale structure, [25]
was studied.

It is known that reconnection probability for gauge
theory strings is essentially 1 [26]. Such the strings evolve
in a scale invariant way (see [3] and references therein). In
contrast, regarding the cosmic strings in the framework of
the superstring theory, the reconnection probability is sup-
pressed sufficiently <1[6–9]. Evolution of such strings
may differ from that of gauge strings. If the strings are
practically stable, we could expect that they survive finally
in the stationary states in the present stage of the Universe.
Starting from the pioneering work by Burden and Tassie

[27], there are many works on the stationary rotating
strings [28,29]. In our previous study [30], we reformulate
the stationary rotating strings as an example of the
cohomogeneity-one strings [31,32]. Because of the geo-
metrical symmetry of the strings, it is easy to treat them as
gravitational sources in the frame work of general relativ-
ity. In this paper, we investigate the gravitational fields
around a stationary rotating string by solving the linearized
Einstein equations toward detection of the strings in the
Universe. The Newtonian logarithmic potential and angu-
lar deficit are obtained as the potential mode. Furthermore,
two effects of frame-dragging are shown: azimuthal drag-
ging around the rotation axis and linear dragging along the
rotation axis. We also study the gravitational waves prop-
agating off the strings and propagating along the strings
(travelling waves). Characteristic properties of waveforms,
polarization, and directions of emission are also discussed.
This paper is organized as follows. In Sec. II, we briefly

review the stationary rotating strings following Ref. [30].
In Sec. III, we formulate linear perturbations of the metric
around a stationary rotating string. We obtain solutions to
the linearized Einstein equations explicitly then discuss a
potential mode in Sec. IV, and the gravitational wave
modes in Sec. V. The traveling wave modes are discussed
in Sec. VI. Finally, we summarize in Sec. VII. We use the
sign convention �þþþ for the metric, and units in
which c ¼ G ¼ 1.
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II. SOLUTIONS OF STATIONARY ROTATING
STRINGS

A. Stationary rotating Nambu-Goto strings in
Minkowski spacetime

We consider cosmic strings which are described by the
Nambu-Goto action,

SNG ¼ ��
Z
�
d2�

ffiffiffiffiffiffiffiffi��
p

; (2.1)

where � is a timelike two-dimensional world surface
embedded in a target spacetime M with the metric g��,

�að�0 ¼ �; �1 ¼ �Þ are coordinates on �, � is the deter-
minant of the induced metric �ab on �, and a constant �
denotes the string tension. Varying the action (2.1) by the
coordinates of M, x�ð� ¼ 0; 1; 2; 3Þ, we obtain the
Nambu-Goto equations:

1ffiffiffiffiffiffiffiffi��
p @að ffiffiffiffiffiffiffiffi��

p
�ab@bx

�Þ þ ��
���

ab@ax
�@bx

� ¼ 0; (2.2)

where ��
�� is the Christoffel symbol associated with g��.

When the world surface of a string � is tangent to a
Killing vector field in a target spacetime M, i.e.,
cohomogeneity-one string, the Nambu-Goto equation
(2.2) can be reduced to a geodesic equation in an appro-
priate three-dimensional metric [28,30,31]. Here, we con-
centrate on stationary rotating strings, which belong to a
class of the cohomogeneity-one strings. We briefly review
the solutions of stationary rotating strings in Minkowski
spacetime according to [30].

In Minkowski spacetime with the metric by the cylin-
drical coordinate system,

ds2 ¼ g��dx
�dx� ¼ �dt2 þ d�2 þ �2d’2 þ dz2;

(2.3)

the Killing vector field 	 which describes the stationary
rotation around the z axis with a constant angular velocity
� is

	 ¼ @t þ�@’: (2.4)

We consider a world surface � of a stationary rotating
string which is tangent to 	. The solutions are character-
ized by two dimensionless parameters l and q, and explicit
forms are given by

tð�Þ ¼ �;

�ð�Þ2 ¼ 1
2fð�2

max þ �2
minÞ � ð�2

max � �2
minÞ cosð2��Þg;

’ð�;�Þ ¼ ��þ �’ð�Þ; zð�Þ ¼ q�; (2.5)

where �’ð�Þ is implicitly given by

2l

�2
tanð �’ð�Þ � ’0 þ lj�j�Þ

¼ ð�2
max þ �2

minÞ tan
�
j�j�þ 


4

�
� ð�2

max � �2
minÞ;
(2.6)

and �min, �max are defined by

�2
min ¼

1

2�2
ð1þ l2 � q2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ lþ qÞð1þ l� qÞð1� lþ qÞð1� l� qÞ

q
Þ;

�2
max ¼ 1

2�2
ð1þ l2 � q2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ lþ qÞð1þ l� qÞð1� lþ qÞð1� l� qÞ

q
Þ:

(2.7)

The constant ’0 has been fixed for convenience as

tan’0 ¼ ��2�2
min

l
; (2.8)

in order that �’ ¼ 0 when � ¼ 0:
The range of l and q are limited for the stationary

rotating strings as

jlj þ jqj � 1: (2.9)

We do not consider the case q ¼ 0 in which the Killing
vector 	 becomes null at the end points of the stationary
string. Changes of sign of parameters l, q, and � can be
interpreted as reflection of the space and time. Then, we
consider, hereafter, the case

l � 0; q > 0; �> 0; and lþ q � 1:

(2.10)

In the stationary rotating string solutions (2.5), (2.6),
(2.7), and (2.8), we use the parameters � and � which
respect the Killing vector 	, i.e., 	 ¼ @

@� . In contrast, using

the conformal flat gauge, which is normally used, Burden
gave a clear expression for the solutions [33].
We show here typical shapes of stationary rotating

strings. First we consider the case lþ q ¼ 1 (q � 0).
The solutions are given by

� ¼
ffiffi
l

p
�

; ’ ¼ �ðtþ zÞ: (2.11)

In this case, a snapshot of string becomes a helix as shown
in Fig. 1; we call these ‘‘helical strings.’’
Second we consider the case l ¼ 0, q � 0. The solution

can be described by
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x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
�

sin

�
�z

q

�
cos�t;

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
�

sin

�
�z

q

�
sin�t;

(2.12)

where x :¼ � cos’, y :¼ � sin’. The strings, we call ‘‘pla-
nar’’, are confined in a rotating plane. Snapshots of the
planar strings are shown in the first row of Fig. 2.

Third we consider the case lþ q � 1 (l � 0, q � 0).
We show the shapes of strings in Fig. 2 for l ¼ 1=5, 1=3,
and 1=2, respectively.

If l is a rational number, projection of the string on the
x-y plane becomes a closed curve. For l ¼ a=b (a, b are
relatively prime integer), the closed curve consists of Nl

elements, where Nl is defined by

Nl ¼ 2b

GCD½2b; ðb� aÞ� : (2.13)

Here,GCD½a; b� denotes the greatest common divisor of a,
b. The curve wraps around the center in the x-y plane Ml

times until the curve returns to the starting point, whereMl

is given by

Ml ¼ 1� l

2
Nl; (2.14)

that is,

�’ð�þ Nl�pÞ ¼ �’ð�Þ þ 2
Ml; (2.15)

where �p :¼ 
=� is the periodicity of � given by (2.5).

The strings with rational l are periodic in z with the period

Zp ¼ 
Nlq=�: (2.16)

FIG. 2 (color online). Three-dimensional snapshots and projections of string are shown in the case l ¼ 0, 1=5, 1=3, and 1=2 as the
same as Fig. 1.

FIG. 1. Helical strings: lþ q ¼ 1 (q � 0). The three-
dimensional snapshots are given in the left panel, and the
projection of strings to the x-y plane are given in the middle.
The dashed circle in the middle figure represents the light
cylinder � ¼ 1=�. The parameters on the l-q plane are plotted
in the right panel.
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B. Energy, momentum, and angular momentum

The string energy-momentum tensor T�� is given by [3]

ffiffiffiffiffiffiffi�g
p

T��ðx�Þ ¼ ��
Z

d2����ð�cÞ�ð4Þðx� � x�ð�cÞÞ;
(2.17)

��� ¼ ffiffiffiffiffiffiffiffi��
p

�ab@ax
�@bx

�; (2.18)

where x�ð�cÞ is the solution of �. In the inertial reference
system (2.3), the explicit form of ���ð�cÞ, which depend
only on �, are shown in the Appendix.

We define the string energy E, the angular momentum J,
and the momentum along the rotation axis P. We consider
infinitely long strings with periodic structure, i.e., l is
assumed to be a rational number, then we define E, J,
and P for one period, z� zþ Zp as

E :¼
Z �max

�min

d�
Z 2


0
d’

Z Zp

0
dz

ffiffiffiffiffiffiffi�g
p

Tt
�ð�@tÞ�

¼ �
Z Nl�p

0
d��t

tð�Þ; (2.19)

J :¼
Z �max

�min

d�
Z 2


0
d’

Z Zp

0
dz

ffiffiffiffiffiffiffi�g
p

Tt
�ð@’Þ�

¼ ��
Z Nl�p

0
d��t

’ð�Þ; (2.20)

P :¼
Z �max

�min

d�
Z 2


0
d’

Z Zp

0
dz

ffiffiffiffiffiffiffi�g
p

Tt
�ð@zÞ�

¼ ��
Z Nl�p

0
d��t

zð�Þ: (2.21)

We calculate these quantities as

E ¼ 
�

j�jNlð1� l2Þ; (2.22)

J ¼ 
�

2�j�jNlð1� l2 � q2Þ; (2.23)

P ¼ �
�

�
Nllq: (2.24)

Here, we take care of the sign of �, l, and q in (2.22),
(2.23), and (2.24). We can also define the averaged values
of these quantities per unit length of z as

hEi :¼ E=Zp ¼ �
1� l2

jqj ; (2.25)

hJi :¼ J=Zp ¼ �

�

1� l2 � q2

2jqj ; (2.26)

hPi :¼ P=Zp ¼ ��lsignð�qÞ: (2.27)

These quantities are applicable also for the strings with
irrational l.

The effective line density ~�, and effective tension ~T for
the stationary rotating strings are defined [3] in the refer-
ence system where the averaged value of momentum hPi
vanishes. We obtain these quantities explicitly as

~� ¼ �

2jqj ½1� l2 þ q2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q� lÞð1� qþ lÞð1þ q� lÞð1þ qþ lÞ

q
�;

~T ¼ �

2jqj ½1� l2 þ q2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q� lÞð1� qþ lÞð1þ q� lÞð1þ qþ lÞ

q
�:

(2.28)

In general, it holds that ~� ~T ¼ �2 and ~� � ~T . In the case
of helical strings, there exists no inertial reference system
such that hPi vanishes because a single wave moves with
the velocity of light along the rotation axis.

III. GRAVITATIONAL PERTURBATIONS

A. Mode decomposition

We consider metric perturbations h�� produced by a

stationary rotating string in the Minkowski spacetime
with the metric ���. We solve the linearized Einstein

equations

hc �� ¼ �16
T��; (3.1)

where T�� are given by (2.17), and c �� is defined by

c �� ¼ h�� � 1
2���h




: (3.2)

We have used the Lorenz gauge condition @�c �� ¼ 0 in

(3.1).
We assume, here and henceforth, the parameter l to be a

rational number. In this case, the stationary rotating string
solutions (2.5) have periodicity in z with the period Zp

given by (2.16). Then, T�� in (2.17) have the following

periodicities:

T��ðt; �; ’; zÞ ¼ T��ðtþ 2
=�; �; ’; zÞ; (3.3)

T��ðt; �; ’; zÞ ¼ T��ðt; �; ’þ 2
; zÞ; (3.4)

T��ðt; �; ’; zÞ ¼ T��ðt; �; ’; zþ ZpÞ: (3.5)

Thus, we can expand T�� in a Fourier series as

T��ðt;�;’;zÞ¼
X1

n¼�1

X1
m¼�1

X1
s¼�1

e�i!nteim’eiksz ~Tðn;m;sÞ
�� ð�Þ;

(3.6)

where
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!n :¼ �n; ks :¼ 2


Zp

s ¼ 2

Nl

�

q
s; (3.7)

and n, m, s are integers.
By using (2.17), we obtain the Fourier coefficients as

~Tðn;m;sÞ
�� ð�Þ ¼ �

ð2
Þ2Zp

Z 2
=�

0
dt

Z 2


0
d’

Z Zp

0
dz

� ei!nte�im’e�ikszT��ðt; �; ’; zÞ (3.8)

¼ ���nm

2
Zp

Z Nl�p

0
d�e�iðksq�þm �’ð�ÞÞ

� 1

�
���ð�Þ�ð�� �stð�ÞÞ; (3.9)

where �stð�Þ is the string solution given by (2.5). Because
of �nm in (3.9), nonvanishing coefficients are specified by

ðn;mÞ ¼ ðn; sÞ, then we introduce ~Tðn;sÞ
�� :¼ ~Tðn;n;sÞ

�� .
We can also expand the metric perturbations c �� related

to (3.6) in a Fourier series as

c ��ðt; �; ’; zÞ ¼
X1

n¼�1

X1
s¼�1

e�i!ntein’eiksz ~c ðn;sÞ
�� ð�Þ:

(3.10)

Using (3.6) and (3.10), we can reduce (3.1) to a set of the
ordinary differential equations with respect to � for each
Fourier mode labeled by ðn; sÞ.

Ten components of linearized Einstein equations (3.1)
are classified into three types: scalar type (m ¼ n), vector
type (m ¼ n� 1), and tensor type (m ¼ n� 2). Equations
for these types have the following form:

scalar type : Lðn;sÞ
n

~c ðn;sÞ
S ð�Þ þ 16
 ~Tðn;sÞ

S ð�Þ ¼ 0;

(3.11)

vector type : Lðn;sÞ
n�1

~c ðn;sÞ
V� ð�Þ þ 16
 ~Tðn;sÞ

V� ð�Þ ¼ 0;

(3.12)

tensor type : Lðn;sÞ
n�2

~c ðn;sÞ
T� ð�Þ þ 16
 ~Tðn;sÞ

T� ð�Þ ¼ 0;

(3.13)

where the differential operator Lðn;sÞ
m with respect to � is

defined by

L ðn;sÞ
m ¼ 1

�

d

d�

�
�

d

d�

�
þ

�
�2
ns �m2

�2

�
(3.14)

with

�2
ns :¼ !2

n � k2s : (3.15)

The members of ð ~c ðn;sÞ
S ; ~c ðn;sÞ

V� ; ~c ðn;sÞ
T� Þ and

ð ~Tðn;sÞ
S ; ~Tðn;sÞ

V� ; ~Tðn;sÞ
T� Þ are defined by

~c ðn;sÞ
S ¼ f ~c ðn;sÞ

tt ; ~c ðn;sÞ
zz ; ~c ðn;sÞ

tz ; ð ~c ðn;sÞ
�� þ ~c ðn;sÞ

’’ =�2Þg;
~c ðn;sÞ
V� ¼ fð ~c ðn;sÞ

t� � i ~c ðn;sÞ
t’ =�Þ; ð ~c ðn;sÞ

�z � i ~c ðn;sÞ
’z =�Þg;

~c ðn;sÞ
T� ¼ fð ~c ðn;sÞ

�� � ~c ðn;sÞ
’’ =�2 � 2i ~c ðn;sÞ

�’ =�Þg; (3.16)

and

~Tðn;sÞ
S ¼ f ~Tðn;sÞ

tt ; ~Tðn;sÞ
zz ; ~Tðn;sÞ

tz ; ð ~Tðn;sÞ
�� þ ~Tðn;sÞ

’’ =�2Þg;
~Tðn;sÞ
V� ¼ fð ~Tðn;sÞ

t� � i ~Tðn;sÞ
t’ =�Þ; ð ~Tðn;sÞ

�z � i ~Tðn;sÞ
’z =�Þg;

~Tðn;sÞ
T� ¼ fð ~Tðn;sÞ

�� � ~Tðn;sÞ
’’ =�2 � 2i ~Tðn;sÞ

�’ =�Þg; (3.17)

respectively.
At the infinity, because m2=�2 ! 0, (3.15) means the

dispersion relation of the gravitational waves, where �ns

and ks can be regarded as the radial and the z-axis compo-
nents of the wave vector, respectively.

B. Green’s function method

All of Eqs. (3.11), (3.12), and (3.13) have the same form
of

L ðn;sÞ
m

~c ðn;sÞð�Þ þ 16
 ~Tðn;sÞð�Þ ¼ 0; (3.18)

where the indices S, V� , T� are suppressed. The ordi-
nary differential equations (3.18) of the Sturm-Liouville
type are formally solvable by using Green’s function
method. (See [34], for example.)
Introducing Green’s function Gns

m ð�; �0Þ which satisfies

L ðn;sÞ
m Gns

m ð�; �0Þ ¼ � 1

�
�ð�� �0Þ; (3.19)

we can express the solutions ~c ðn;sÞ of (3.18) as

~c ðn;sÞð�Þ ¼
Z 1

0
d�0Gns

m ð�; �0Þ16
�0 ~Tðn;sÞð�0Þ: (3.20)

Using (3.9) for the scalar, vector, and tensor types of ~Tðn;sÞ,
we can write ~c ðn;sÞ as

~c ðn;sÞð�Þ ¼ � 8�

qNl�p

Z Nl�p

0
d�Gns

m ð�; �stð�ÞÞ�ð�Þ

� expð�iksq�� in �’ð�ÞÞ; (3.21)

where � :¼ f�S;�V�;�T�g in the right-hand side takes
the same combination of ��� as (3.17). The coefficients
~c ðn;sÞ should satisfy

~c ð�n;�sÞð�Þ ¼ ð ~c ðn;sÞð�ÞÞ�; (3.22)

so that the metric perturbations h�� are real, where �
means the complex conjugate.

C. Nonvanishing ðn; sÞ modes

For the stationary rotating strings with rational l, the
product Gns

m ð�; �stð�ÞÞ�ð�Þ in (3.21) is periodic in � with
the period �p as
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Gns
m ð�; �stð�þ �pÞÞ�ð�þ �pÞ ¼ Gns

m ð�; �stð�ÞÞ�ð�Þ;
(3.23)

because of the periodicity of �stð�Þ in (2.5). At the same
time, from (2.15) the exponential factor in (3.21) varies as

expð�iksqð�þ Nl�pÞ � in �’ð�þ Nl�pÞÞ (3.24)

¼ expð�iksq�� in �’ð�ÞÞ expð�2
iðsþ nMlÞÞ: (3.25)

Here, we introduce a function �ð�Þ by
�ð�Þ ¼ ðksq�þ n �’ð�ÞÞ=Lns; (3.26)

where

Lns :¼ sþ nMl (3.27)

is an integer specified by mode indices n and s for a
stationary rotating string. The function �ð�Þ is monotonic
in � and varies as

�ð�þ Nl�pÞ ¼ �ð�Þ þ 2
: (3.28)

Then, Eq. (3.21) leads to

~c ðn;sÞð�Þ /
Z Nl�p

0
d�Gns

m ð�; �stð�ÞÞ�ð�Þ
� expð�iLns�ð�ÞÞ

¼
Z 2


0
d�

d�

d�
Gns

m ð�; �stð�ð�ÞÞÞ�ð�ð�ÞÞ
� expð�iLns�Þ; (3.29)

where we have changed the integration variable � by �.
Since d �’=d� is periodic with the period �p, d�=d� is

also periodic in � with the same period. Therefore, we can
see that d�=d�, �stð�ð�ÞÞ, and �ð�ð�ÞÞ have a period-
icity in�with the period 2
=Nl, and then, we can obtain a
Fourier series

d�

d�
Gns

m ð�; �stð�ð�ÞÞÞ�ð�ð�ÞÞ ¼ X
j

aj expðijNl�Þ;

(3.30)

where aj are Fourier coefficients labeled by an integer j.

Inserting this into (3.29) we have

~c ðn;sÞð�Þ /
Z 2


0
d�

X
j

aj expðiðjNl � LnsÞ�Þ: (3.31)

Therefore, for the combination ðn; sÞ of nonvanishing
~c ðn;sÞð�Þ, there should exist an integer j which satisfies

Lns ¼ sþ nMl ¼ jNl: (3.32)

Especially, in the case of helical strings, lþ q ¼ 1, q �
0, because Gns

m ð�; �stð�ÞÞ�ð�stð�ÞÞ in (3.21) is constant
with respect to �, the nonvanishing ðn; sÞ modes is speci-
fied by the condition

Lns ¼ sþ nMl ¼ 0: (3.33)

D. Explicit forms of Green’s functions

We obtain the explicit form of Green’s functions Gns
m

here.We consider three cases with respect to the sign of �2
ns

defined by (3.15).
First, we consider the case �2

ns < 0. If we require the
regularity both at the center and at the infinity, the operator
(3.14) with negative �2

ns allows damping solutions to (3.18)
with the length scale j��1

ns j. Green’s functions in this case
have the form

Gns
m ð�; �0Þ ¼ Imðj�nsj�ÞKmðj�nsj�0Þ�ð�0 � �Þ

þ Kmðj�nsj�ÞImðj�nsj�0Þ�ð�� �0Þ; (3.34)

where the functions �ðxÞ is the Heaviside step function, and
ImðxÞ and KmðxÞ are the modified Bessel functions,

ImðxÞ ¼ i�mJmðixÞ; KmðxÞ ¼ ð
=2Þimþ1Hð1Þ
m ðixÞ;

(3.35)

and Jm and Hð1Þ
m are the Bessel function and the Hankel

function of the first kind, respectively.
Next, in the case �2

ns ¼ 0, because the scale vanishes in
the operator (3.14), the solutions to (3.18) have long tails.
Green’s functions are

Gns
m ð�; �0Þ ¼

��flnð�0=�0Þ�ð�0 � �Þ þ lnð�=�0Þ�ð�� �0Þg form ¼ 0;
1

2jmj fð�=�0Þjmj�ð�0 � �Þ þ ð�0=�Þjmj�ð�� �0Þg form � 0:
(3.36)

In the case of m ¼ 0, we have introduced a constant �0 as
the boundary instead of the infinity such that Gns

0 ! 0 in
the limit � ! �0.

Finally, in the case �2
ns > 0, the operator (3.14) allows

wave solutions to (3.18). The scale ��1
ns gives the wave

length of the solutions. Green’s functions take the form of

Gns
m ð�; �0Þ ¼ 


2
ifJmð�ns�ÞHmð�ns�

0Þ�ð�0 � �Þ
þHmð�ns�ÞJmð�ns�

0Þ�ð�� �0Þg: (3.37)

Here, Hm are defined by

HmðxÞ ¼
�
Hð1Þ

m ðxÞ for!n > 0;
�Hð2Þ

m ðxÞ for!n < 0;
(3.38)

where Hð1Þ
m and Hð2Þ

m denote the Hankel functions of first
and second kind, respectively. This definition guarantees
that the solutions describe the outgoing waves at the in-
finity in any case of !n.
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E. Potential mode and wave modes

In the previous subsection, Green’s functions are con-
structed in three different cases: �2

ns < 0, �2
ns ¼ 0, and

�2
ns > 0, respectively. These three cases correspond to the

regions on the n-s plane as

jsj>
��������
qNl

2
n

�������� for �2
ns < 0; (3.39)

jsj ¼
��������
qNl

2
n

�������� for �2
ns ¼ 0; (3.40)

jsj<
��������
qNl

2
n

�������� for �2
ns > 0; (3.41)

which are shown in Fig. 3.
The two lines which denote �2

ns ¼ 0 in the n-s plane are
given by

s ¼ �qNl

2
n: (3.42)

The inclinations of the lines, which depend on l and q, have
the maximum absolute valueMl when q ¼ 1� l for given
l.

Here, we divide the metric perturbation into four parts,
namely, short range force modes hShort�� , stationary potential

mode hPot��, traveling wave modes hTW�� , and gravitational

wave modes hGW�� as

h�� ¼ hShort�� þ hPot�� þ hTW�� þ hGW�� ; (3.43)

where

hShort�� ðt; �; ’; zÞ :¼ X
n>0

jsj>ðqNl=2Þn

½expð�i!ntþ in’

þ ikszÞ~hðn;sÞ�� ð�Þ þ ðc:c:Þ�; (3.44)

hPot��ðt; �; ’; zÞ :¼ ~hð0;0Þ�� ð�Þ; (3.45)

hTW�� ðt; �; ’; zÞ :¼
X
n>0

jsj¼ðqNl=2Þn

½expð�i!ntþ in’

þ ikszÞ~hðn;sÞ�� ð�Þ þ ðc:c:Þ�; (3.46)

hGW�� ðt; �; ’; zÞ :¼
X
n>0

jsj<ðqNl=2Þn

½expð�i!ntþ in’

þ ikszÞ~hðn;sÞ�� ð�Þ þ ðc:c:Þ� (3.47)

[(c.c.) denotes complex conjugate]. The summations in
(3.44), (3.46), and (3.47) are taken over pairs ðn; sÞ which
satisfy the condition (3.32) or (3.33). These ðn; sÞ are
shown in Fig. 4 as dots in the n-s plane.
The modes in �2

ns < 0 ðjsj> ðqNl=2ÞnÞ, given by
Green’s function (3.34), describe the gravitational field in
a short range around the string, and exponentially decrease
in the region � 	 1=j�j; we name these ‘‘short-range
modes.’’ Since a distant observer hardly accesses the
short-range modes, we do not discuss these further.
The mode of ðn; sÞ ¼ ð0; 0Þ is clearly time independent.

The metric components of this mode represents the
Newtonian potential, the angular deficit, and the effects
of frame-dragging. The modes in �2

ns ¼ 0 describe waves
propagating along the z axis, i.e., along the rotating string.
These waves are named ‘‘traveling waves’’ following
Ref. [35]. The modes in �2

ns > 0 are gravitational waves
propagating toward distant observers from the string. The
facts noted above will be in successive sections.

FIG. 3. Three cases of �2
ns in the n-s plane.

FIG. 4 (color online). The pairs ðn; sÞ of nonvanishing modes specified by (3.32) are shown by dots for l ¼ 0 and l ¼ 1=3 cases, as
examples. The dots in the shadowed regions are short-range modes, while the dots in the unshaded region represent the gravitational
wave modes. The dots on the border, thick broken lines, are traveling wave modes, and ðn; sÞ ¼ ð0; 0Þ is the gravitational potential
mode.
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IV. POTENTIAL MODE

The mode ðn; sÞ ¼ ð0; 0Þ describes time-independent

long-range potential. The components ~c ð0;0Þ
�� given by

(3.21) have the following form:

~c ð0;0Þ
S ð�Þ ¼ � 8�

qNl�p

Z Nl�p

0
d�G00

0 ð�; �stð�ÞÞ�Sð�Þ;

~c ð0;0Þ
V� ð�Þ ¼ � 8�

qNl�p

Z Nl�p

0
d�G00

�1ð�; �stð�ÞÞ�V�ð�Þ;

~c ð0;0Þ
T� ð�Þ ¼ � 8�

qNl�p

Z Nl�p

0
d�G00

�2ð�; �stð�ÞÞ�T�ð�Þ;
(4.1)

where Green’s functions are given by (3.36). After some

calculations, explicit forms of hPot��ð�Þ ¼ hð0;0Þ�� ð�Þ in the far
region are given as

hPottt ¼ hPotzz ¼ � 4�

q
ð1� l2 � q2Þ ln

�
�

�0

�
; (4.2)

hPottz ¼ �8�l ln

�
�

�0

�
; (4.3)

hPot�� ¼ � 4�

q
ð1� l2 þ q2Þ ln

�
�

�0

�

��

q
ðð1� l2 � q2Þ2 � 4l2q2Þ 1

ð��Þ2 ; (4.4)

hPot’’

�2
¼ � 4�

q
ð1� l2 þ q2Þ ln

�
�

�0

�

þ�

q
ðð1� l2 � q2Þ2 � 4l2q2Þ 1

ð��Þ2 ; (4.5)

hPott’

�
¼ � 2�

q
ð1� l2 � q2Þ 1

��
; (4.6)

hPotz’

�
¼ �4�l

1

��
; (4.7)

hPott� ¼ hPotz� ¼ hPot�’=� ¼ 0: (4.8)

Although we assume l to be a rational number, the ex-
pressions of hPot�� given above are also valid for irrational l.

It is found that hPott’ denotes the azimuthal frame-

dragging caused by the angular momentum of the string,
and hPottz does dragging along the z axis caused by the linear
momentum along the rotation axis of the string. In the case
of planar strings, l ¼ 0, we see that hPi ¼ 0 from (2.27)
and that there is no dragging along the z axis from (4.3). If
we transform the inertial reference frame ðt; �; ’; zÞ !
ð~t; ~�; ~’; ~zÞ by the Lorentz boost such that hPi ¼ 0 as shown
in Ref. [30], the dragging along z axis disappears. In this
frame, the logarithmic terms of hPot�� give the metric in the

form

ds2 ¼ �ð1þ 4ð ~�� ~T Þ lnð~�=�0ÞÞd~t2

þ ð1� 4ð ~�� ~T Þ lnð~�=�0ÞÞd~z2

þ ð1� 4ð ~�þ ~T Þ lnð~�=�0ÞÞðd~�2 þ ~�2d~’2Þ: (4.9)

Using the coordinate transformation,

r ¼ ð1þ 2ð ~�þ ~T Þð1� lnð~�=�0ÞÞ~�;
� ¼ ð1� 2ð ~�þ ~T ÞÞ~’;

(4.10)

and ignoring Oðð ~�þ ~T Þ2Þ terms, the metric of the ~t ¼
const and ~z ¼ const surface becomes flat metric

ds2 ¼ dr2 þ r2d�2: (4.11)

Since the range of � is 0 � �< 2
ð1� 2ð ~�þ ~T ÞÞ, the
flat surface is the conical space with angular deficit

4
ð ~�þ ~T Þ [3].
Alternatively, using the coordinate

�r ¼ ð1þ 4 ~T ð1� lnð~�=�0ÞÞ~�; �� ¼ ð1� 4 ~T Þ~’;
(4.12)

we rewrite the metric (4.9) as

ds2 ¼ �ð1þ 2�ð~�ÞÞd~t2
þ ð1� 2�ð~�ÞÞðd�r2 þ �r2d ��2 þ d~z2Þ (4.13)

where

�ð~�Þ ¼ 2ð ~�� ~T Þ lnð~�=�0Þ: (4.14)

This metric means that the stationary rotating string pro-
duces the Newtonian logarithmic potential� around it [3].
In general, the stationary rotating string in the frame of

hPi ¼ 0 yields the logarithmic potential, the angular defi-
cit, and the azimuthal frame-dragging in ’. It should be
noted, as an exceptional case, that the dragging along the
rotation axis, the z axis, can not be erased for the helical
strings because there is no reference frame such that hPi ¼
0. In addition, the Newtonian potential vanishes, and the
angular deficit, 8
�, is the same value as the straight
string.

V. GRAVITATIONALWAVE MODES

In this section, we consider the metric perturbations
propagating away from a string to a distant observer, i.e.,
the gravitational wave modes hGW�� given in (3.47), where

the summation is taken over all ðn; sÞ satisfying (3.32) and
(3.41). Fourier components of metric perturbations
~hðn;sÞ�� ð�Þ, equivalently ~c ðn;sÞ

�� ð�Þ, are given by (3.21) where

Green’s functions are (3.37).
First, we define the physical modes of polarization, plus

modes and cross modes. Next, we show that the gravita-

OGAWA, ISHIHARA, KOZAKI, AND NAKANO PHYSICAL REVIEW D 79, 063501 (2009)

063501-8



tional waves can be emitted to several discrete directions.
Finally, we present waveforms of the gravitational waves
emitted to the possible directions by using numerical
calculations.

A. Plus modes and cross modes

Here, we fix the gauge freedom of propagating modes in
the vacuum. We use the transverse traceless (TT) gauge
conditions:

hTTt� ¼ 0; @ihTTij ¼ 0; hTTii ¼ 0: (5.1)

The metric perturbations satisfying TT conditions, hTTij , are

invariant under gauge transformations. Using the fact that
the Riemann tensor, which is gauge invariant, is expressed
by hTTij in the linear order, we can obtain the TT modes by

integration of

@2t h
TT
ij ¼ �2Ritjt

¼ �ð@t@jhit þ @i@thtj � @i@jhtt � @t@thijÞ; (5.2)

where h�� in the right-hand side are solutions of the wave

equation. (See Sec. 35.4 of [36].)

In the cylindrical coordinate, ~hðn;sÞTTij can be obtained as

~hðn;sÞTT�� ¼ 1

2

�
~c ðn;sÞ
tt þ ~c ðn;sÞ

�� �
~c ðn;sÞ
’’

�2
� ~c ðn;sÞ

zz

�
� 2i

!n

@� ~c
ðn;sÞ
t� � 1

2!2
n

@2�

�
~c ðn;sÞ
tt þ ~c ðn;sÞ

�� þ
~c ðn;sÞ
’’

�2
þ ~c ðn;sÞ

zz

�
;

~hðn;sÞTT�’

�
¼

~c ðn;sÞ
�’

�
� i

!n

�
@� � 1

�

�� ~c ðn;sÞ
t’

�

�
þ 1

��

�
~c ðn;sÞ
t� � i

2!n

�
@� � 1

�

��
~c ðn;sÞ
tt þ ~c ðn;sÞ

�� þ
~c ðn;sÞ
’’

�2
þ ~c ðn;sÞ

zz

��
;

~hðn;sÞTT�z ¼ ~c ðn;sÞ
�z � i

!n

@� ~c
ðn;sÞ
tz þ ks

!n

�
~c ðn;sÞ
t� � i

2!n

@�

�
~c ðn;sÞ
tt þ ~c ðn;sÞ

�� þ
~c ðn;sÞ
’’

�2
þ ~c ðn;sÞ

zz

��
;

~hðn;sÞTT’’

�2
¼ 1

2

�
~c ðn;sÞ
tt � ~c ðn;sÞ

�� þ
~c ðn;sÞ
’’

�2
� ~c ðn;sÞ

zz

�
þ 2

��

� ~c ðn;sÞ
t’

�
� i

n
~c ðn;sÞ
t�

�

þ 1

2ð��Þ2
�
1� �

n2
@�

��
~c ðn;sÞ
tt þ ~c ðn;sÞ

�� þ
~c ðn;sÞ
’’

�2
þ ~c ðn;sÞ

zz

�
;

~hðn;sÞTT’z

�
¼

~c ðn;sÞ
’z

�
þ ks

!n

� ~c ðn;sÞ
t’

�

�
þ 1

��

�
~c ðn;sÞ
tz þ ks

2!n

�
~c ðn;sÞ
tt þ ~c ðn;sÞ

�� þ
~c ðn;sÞ
’’

�2
þ ~c ðn;sÞ

zz

��
;

~hðn;sÞTTzz ¼ 1

2

�
~c ðn;sÞ
tt � ~c ðn;sÞ

�� �
~c ðn;sÞ
’’

�2
þ ~c ðn;sÞ

zz

�
þ 2ks

!n

~c ðn;sÞ
tz þ 1

2

�
ks
!n

�
2
�
~c ðn;sÞ
tt þ ~c ðn;sÞ

�� þ
~c ðn;sÞ
’’

�2
þ ~c ðn;sÞ

zz

�
: (5.3)

In the large distance limit, the wave vector of a ðn; sÞ
mode in the normalized orthogonal frame ðt̂; �̂; ’̂; ẑÞ is
expressed as

k̂
ðn;sÞ
�̂ ¼ ð�!n; �ns; 0; ksÞ; (5.4)

because the ’̂ component of the wave vector becomes
small as 1=� in the far region. Then, the ðn; sÞ mode
propagates in the direction specified by the angle �s=n
from the rotation axis which is defined by

cos�s=n ¼ ks
!n

¼ 2

Nlq

s

n
: (5.5)

The direction �s=n ¼ 
=2 is perpendicular to the z axis,

i.e., perpendicular to the string.

Here, we introduce a new normal frame ðt̂; �̂; ’̂; �̂Þ at the
observer, such that the direction of the wave vector coin-
cides with �̂, i.e.,

� k̂ðn;sÞ
t̂

¼ k̂ðn;sÞ�̂ ¼ !n: (5.6)

The new basis is defined for each ðn; sÞ explicitly as

�̂ ¼ sin�s=n�̂þ cos�s=nẑ; (5.7)

�̂ ¼ � cos�s=n�̂þ sin�s=nẑ: (5.8)

By the use of this frame the components of metric pertur-
bations (5.3) are given by
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~h ðn;sÞTT
�̂ �̂ ¼

�
�ns

!n

�
2
~hðn;sÞTT�� þ 2

�
ks�ns

!2
n

�
~hðn;sÞTT�z þ

�
ks
!n

�
2
~hðn;sÞTTzz ;

~hðn;sÞTT
�̂ �̂

¼
�
ks
!n

�
2
~hðn;sÞTT�� � 2

�
ks�ns

!2
n

�
~hðn;sÞTT�z þ

�
�ns

!n

�
2
~hðn;sÞTTzz ; ~hðn;sÞTT’̂ ’̂ ¼

~hðn;sÞTT’’

�2
;

~hðn;sÞTT
�̂ �̂

¼
�
1� 2

�
ks
!n

�
2
�
~hðn;sÞTT�z �

�
ks�ns

!2
n

�
ð~hðn;sÞTT�� � ~hðn;sÞTTzz Þ; ~hðn;sÞTT�̂ ’̂ ¼

�
�ns

!n

� ~hðn;sÞTT�’

�
þ

�
ks
!n

� ~hðn;sÞTT’z

�
;

~hðn;sÞTT
’̂ �̂

¼ �
�
ks
!n

� ~hðn;sÞTT�’

�
þ

�
�ns

!n

� ~hðn;sÞTT’z

�
:

(5.9)

It can be shown that ~hðn;sÞTT�̂ �̂ , ~hðn;sÞTT�̂ ’̂ , and ~hðn;sÞTT
�̂ �̂

are

vanishing by using the wave equation, i.e., (3.15), and
TT-gauge condition (5.1). For convenience, we define the
two modes of polarizations: the plus mode ~hðn;sÞþ , and the
cross mode ~hðn;sÞ� , as

~h ðn;sÞ
þ ð�Þ ¼ ~hðn;sÞTT’̂ ’̂ ð�Þ ¼ �~hðn;sÞTT

�̂ �̂
ð�Þ; (5.10)

~h ðn;sÞ
� ð�Þ ¼ ~hðn;sÞTT

’̂ �̂
ð�Þ: (5.11)

B. Directions of gravitational wave emission

Let us consider a set of pairs ðn; sÞ which give the same
ratio s=n under the conditions (3.32) and (3.41). For a
stationary rotating string with fixed l and q, all ðn;sÞmodes
in the set are emitted in the same direction �s=n defined by

(5.5) [37]. The lowest number of n and corresponding s in
the set, say ðn0;s0Þ, is the fundamental mode of gravita-
tional wave emitted to the direction �s=n. The overtone
modes are specified by the indices which are multiplica-
tions of ðn0;s0Þby positive integers larger than 1. For exam-
ple, mode indices of the fundamental mode and the over-
tone modes for each direction are shown in the following
table in the cases of string with ðl;qÞ¼ð0;1=2Þ and
ð1=3;1=2Þ.

ðl; qÞ ¼ ð0; 1=2Þ case:
cos�s=n Fundamental mode ðn0; s0Þ Overtone modes ðn; sÞ
0 (2, 0) ð4; 0Þ; ð6; 0Þ 
 
 

�2=3 ð3;�1Þ ð6;�2Þ; ð9;�3Þ 
 
 

�2=5 ð5;�1Þ ð10;�2Þ; ð15;�3Þ 
 
 

�2=7 ð7;�1Þ ð14;�2Þ; ð21;�3Þ 
 
 

�6=7 ð7;�3Þ ð14;�6Þ; ð21;�9Þ 
 
 

..
. ..

. ..
.

ðl; qÞ ¼ ð1=3; 1=2Þ case:
cos�s=n Fundamental mode ðn0; s0Þ Overtone modes ðn; sÞ
2=3 (2, 1) ð4; 2Þ; ð6; 3Þ 
 
 

0 (3, 0) ð6; 0Þ; ð9; 0Þ 
 
 

�1=3 ð4;�1Þ ð8;�2Þ; ð12;�3Þ 
 
 

4=15 (5, 1) ð10; 2Þ; ð15; 3Þ 
 
 

�8=15 ð5;�2Þ ð10;�4Þ; ð15;�6Þ 
 
 

�2=3 ð6;�3Þ ð12;�6Þ; ð18;�9Þ 
 
 

�4=21 ð7;�1Þ ð14;�2Þ; ð21;�3Þ 
 
 

..
. ..

. ..
.

If the direction �s=n is fixed, the gravitational wave is

given by superposition as

hðs=nÞþ;� ðt; �; ’; zÞ ¼ X0½expð�inf�ðt� cos�s=nzÞ � ’gÞ
� ~hðn;sÞþ;�ð�Þ þ ðc:c:Þ�; (5.12)

where the summation �0 is taken over the fundamental
mode with frequency n0� and overtone modes for given
�s=n. As will be shown later, the amplitude of the mode

with large n is highly suppressed, then only several discrete
directions are effective for gravitational wave emission.
The discreteness of the directions is analogous to the
diffraction by gratings. This effect comes from the periodic
structures of strings. Because the stationary rotating strings
considered here have infinite length along the rotation axis,
then a distant observer detects gravitational waves coming
from discrete directions specified by �s=n.
In the case of the helical strings Ml ¼ qNl=2 then non-

vanishing ðn; sÞmodes specified by (3.33) leads to �2
ns ¼ 0.

Therefore, the helical strings do not emit the gravitational
wave away from the strings.

C. Waveforms

The amplitude of gravitational waves behave as 1=
ffiffiffiffi
�

p
at

the far region because the source string is assumed to be
infinitely long. Then, it is convenient to factorize a non-

dimensional quantity �=
ffiffiffiffiffiffiffiffi
��

p
as

hðs=nÞþ;� ðt; �; ’; zÞ ¼
�

�ffiffiffiffiffiffiffiffi
��

p
�
ĥðs=nÞþ;� ðt; �; ’; zÞ; (5.13)

equivalently,

~h ðn;sÞ
þ;�ð�Þ ¼

�
�ffiffiffiffiffiffiffiffi
��

p
�
~̂h
ðn;sÞ
þ;�ð�Þ: (5.14)

By this rescaling, the amplitudes of ĥðs=nÞþ;� are independent

of �, �, and � in the far region.

In Figs. 5 and 6, we show the waveforms of ĥðs=nÞþ;�
emitted to the direction �s=n by the stationary rotating

string with ðl; qÞ ¼ ð0; 1=2Þ (planar string), and ðl; qÞ ¼
ð1=3; 1=2Þ, respectively. The solid lines and dashed lines
in the right figures denote the waveform of the plus and
cross modes, respectively.
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We can see some characteristic features of the wave-
forms from Figs. 5 and 6. First, the waveforms of plus and
cross modes are deformed from the sine curves of funda-

mental modes by the overtone modes. This is because the
magnitudes of the overtone modes are not negligible.
‘‘Saw-teeth’’-like shapes appear in the waveforms.

FIG. 5 (color online). Waveforms of gravitational waves emitted to cos�s=n ¼ 0, 2=3, 2=5, 2=7, and 6=7 from a planar string ðl; qÞ ¼
ð0; 1=2Þ. In each row, the left panel shows the ðn; sÞ for nonvanishing modes. The dots on the solid lines correspond to the modes which

propagate in the direction of �s=n, i.e., fundamental mode and overtone modes for �s=n. The amplitudes j ~̂hðn;sÞþ;�j of the fundamental

mode and the overtone modes are shown in the middle two panels. The right panel shows the waveforms of the plus-mode (solid line)
and cross modes (broken line).
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FIG. 6 (color online). Waveforms of gravitational waves emitted to the directions cos�s=n ¼ 2=3, 0,�1=3, 4=15,�8=15,�2=3, and
�4=21 from the string with ðl; qÞ ¼ ð1=3; 1=2Þ.
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Second, the amplitude of plus modes in each direction,

ĥðs=nÞþ , is determined basically by n0 of the fundamental
mode. The small n0 gives the large amplitude and the large
n0 does the small amplitude. Third, the amplitude of cross
modes, in contrast, depends on the direction �s=n. The
superposition of plus modes and cross modes makes ‘‘al-
most elliptically polarized waves’’. The gravitational
waves are not exactly elliptically polarized because the
waves are deformed from the sinusoidal form. The ‘‘ellip-
ticity’’ which is given by the amplitude ratio of plus and
cross modes depend on the direction �s=n.

In the case of planar strings (l ¼ 0), purely plus modes
are emitted in the direction �s=n ¼ 
=2, and the cross

modes grow as j�s=nj becomes large. When j cos�s=nj
approaches to 1, the amplitudes of both modes become
almost the same, i.e., the waves become the circular polar-
ization. In the case of string with ðl; qÞ ¼ ð1=3; 1=2Þ, the
amplitude of cross mode is quite small in the direction
cos�s=n ¼ �4=21, and the amplitudes of both modes be-

comes almost the same again as j cos�s=nj approaches to 1.

VI. TRAVELING WAVE MODES

We consider, here, the traveling wave modes hTW�� given

by (3.46), where �2
ns ¼ 0. Since Green’s function is real in

this case, then ~hðn;sÞ�� ð�Þ are real functions of � with mean-

ingless phase factors; then, hTW�� has the form of

hTW�� ðt; �; ’; zÞ ¼ 2
X0

n;s

fcosðnf�ðt� zÞ � ’gÞ~hðn;sÞTT�� ð�Þg

þ 2
X0

n;�s

fcosðnf�ðtþ zÞ � ’gÞ

� ~hðn;�sÞTT
�� ð�Þg; (6.1)

where the integers n and s are required to satisfy the
conditions (3.32) and (3.40). From these two conditions,
n should be a positive integer which satisfies

1� l� q

2
n ¼ j; (6.2)

where j is a positive integer, and s is given by

s ¼ qNl

2
n: (6.3)

The condition (6.2) means the parameter q should be a
rational number for appearance of traveling wave modes.

The summations in (6.1) are taken over pairs of ðn; sÞ
and ðn;�sÞ satisfying the conditions (6.2) and (6.3). For
example, in the case of ðl; qÞ ¼ ð0; 1=2Þ, the pairs ðn;�sÞ
are ð4;�2Þ; ð8;�4Þ; 
 
 
 . Nonzero components of ~hðn;�sÞTT

��

are

~hðn;�sÞTT
�� ð�Þ ¼ �

~hðn;sÞTT’’ ð�Þ
�2

¼ � 2�

qNl�p

Z Nl�p

0
d�½fGn�s

nþ2ð�; �stð�ÞÞ

��Tþð�stð�ÞÞ þGn�s
n�2ð�; �stð�ÞÞ

��T�ð�stð�ÞÞg expð�inf��q�þ �’ð�ÞgÞ�;
(6.4)

~hðn;�sÞTT
�’ ð�Þ

�
¼ � 2�i

qNl�p

Z Nl�p

0
d�½fGn�s

nþ2ð�; �stð�ÞÞ

��Tþð�stð�ÞÞ �Gn�s
n�2ð�; �stð�ÞÞ

��T�ð�stð�ÞÞg expð�inf��q�þ �’ð�ÞgÞ�;
(6.5)

where Green’s functions are given by (3.36).
The modes hTW�� given by (6.1) consist of the superposi-

tion of the propagating waves with circular polarization in
the ð�zÞ direction for�s, respectively. We can understand
that these modes are obtained by the limit �2

ns ! 0 in the
gravitational wave modes, that is, the direction of wave
emission in this limit is �s=n ¼ 0, 
. The metric perturba-

tions of the modes do not propagate off the string toward
the radial direction. These are related to the traveling
waves discussed in Ref. [35].
In the helical string cases, from (3.33), the first line in the

right-hand side of (6.1) vanishes and summation in the
second line is taken over pairs ðn;�sÞ, where n is a positive
integer and s is given by

s ¼ ð1� lÞNl

2
n ¼ Mln: (6.6)

There exists only a downward gravitational wave which is
accompanied with the downward string wave (2.11).
The wave length of each wave propagating along the z

axis in the traveling wave modes is

� ¼ 2


n�
: (6.7)

Then, the condition (6.3) for the appearance of the travel-
ing wave mode means that the periodicity of the stationary
rotating string, which is given by (2.16), should be the
wavelength of traveling wave times the integer s, i.e.,

Zp ¼ s�: (6.8)

This fact is consistent with the result in Ref. [38] which
implies that the deformation of the string is caused by the
gravitational waves propagating on the string.

VII. SUMMARY

We have studied gravitational perturbations around a
stationary rotating string in Minkowski spacetime. We
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have solved the linearized Einstein equations with the
energy-momentum tensor of the string by using the one-
dimensional Green’s function method. We have analyzed
three long-range modes: potential mode, gravitational
wave modes, and traveling wave modes.

A. Potential mode

The stationary rotating strings produce the logarithmic

Newtonian potential which is in proportion to ~�� ~T ,

where ~� and ~T denote the effective line density and the
effective tension of a stationary rotating ‘‘wiggly’’ string
defined by averaging of the energy-momentum tensor
along its rotation axis. The appearance of the Newtonian
potential is the result of the fact that the effective line
density becomes larger than the effective tension for rotat-

ing strings. There also exists angular deficit, 4
ð ~�þ ~T Þ,
around the string.

In addition, there are the azimuthal frame-dragging
effect caused by the angular momentum of the rotating
string and the linear frame-dragging along the rotation axis
caused by the linear momentum hPi of the string along the
rotation axis. The linear frame-dragging disappears if
hPi ¼ 0 in the inertial reference frame of observer.

The helical strings are very special strings. Since ~� ¼
~T for the helical strings, they are not associated with the
Newtonian potential, and there is an angular deficit with
the same amount as the straight string case. Further, the
helical strings cause the linear frame-dragging inevitably
because there is no inertial reference frame such that hPi ¼
0. The azimuthal frame-dragging and the linear frame-
dragging distinguish the helical strings from the straight
string.

B. Gravitational wave modes

The stationary rotating strings can emit the gravitational
waves in several discrete directions. The possible direc-
tions for each string are determined by the set of parame-
ters ðl; qÞwhich specifies the shape of string. This property,
analogous to the diffraction grating, comes from the peri-
odic structure of the strings along the rotation axis. The
following depend on the directions of gravitational wave
emission: fundamental frequency, waveforms, amplitude
ratio between plus and cross modes, equivalently, and the
ellipticity of elliptic polarization of the waves. The wave-
form of gravitational wave is not the sinusoidal curve but a
‘‘saw-teeth’’ like shape. This means that the polarization is
not exactly elliptical but almost elliptical.

Since the strings are infinitely long, the amplitude of
gravitational waves at the large distance is proportional to
1=

ffiffiffiffi
�

p
. Actually, infinite strings are oversimplification. But,

if the description of the stationary rotating strings is appli-
cable to a cosmological string in the long range compa-
rable to the distance between the string and a observer, the
amplitude of gravitational waves decreases more gradually

than the case of point source. In this case, it would be
possible to detect gravitational waves from the stationary
rotating strings in the cosmological distance (e.g.,
�103 Mpc) by the present interferometric detectors. As
the result of the numerical calculations, we have obtained
the following rough estimation of the gravitational wave
amplitude:

hþ;� ’ Oð10�14Þ
�

�

10�7

��
�=2


103 Hz

��1=2
�

�

103 Mpc

��1=2
;

(7.1)

where we choose 10�7 as a reference line density of the
grand unified theory string, 103 Hz as a reference fre-
quency, the most sensitive value of the current interfero-
metric detectors (TAMA300, LIGO, VIRGO, and
GEO600), and 103 Mpc as a reference cosmological
distance.

C. Traveling wave modes

As with the special case of gravitational waves, traveling
waves with the circular polarization propagating along the
rotating string can appear. The strings play the role of wave
guide then the amplitude of the gravitational wave does not
decrease along the string. These waves do not propagate off
the string toward distant observers, but the waves are not
confined in the vicinity of the string. The amplitude of the
traveling waves, described by the power or logarithmic
function in the radial coordinate, gradually decreases as
the distance from the string increases. Then, even for the
distant observer, it would be detectable as the gravitational
waves propagate parallelly to the strings.
The general stationary rotating strings lose the energy,

angular momentum, and linear momentum by the gravita-
tional wave emission. Then, the strings should evolve by
the gravitational radiation. If the loss rate of these quanti-
ties are small, we can expect that the evolution occurs as
the transitions in the family of the stationary rotating
strings, approximately. What is the final state of strings
after the gravitational wave emission? One would expect
that the straight string is the final state. But, we should
point out that the helical strings are also candidates for the
final states. Because, they do not lose energy, angular
momentum, and linear momentum by the gravitational
radiation. They keep the rotation constant with traveling
waves. The study on the final state of the stationary rotating
strings is under investigation [39].
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APPENDIX: THE COMPONENTS OF ���

The components of ��� are explicitly expressed in the
following:

�tt ¼ �ð1� l2Þ; �t� ¼ l�

2�
ð�2

max � �2
minÞ sinð2j�j�Þ; ��t’ ¼ ��2�2 � l2

��
; �tz ¼ qlsignð�Þ;

��� ¼ �2

4�2
ð�2

max � �2
minÞ2sin2ð2j�j�Þ; ���’ ¼ l

2�2
ð�2

max � �2
minÞ sinð2j�j�Þ;

��z ¼ qj�j
2�

ð�2
max � �2

minÞ sinð2j�j�Þ; �2�’’ ¼ ��2�2

�
1� l2

�4�4

�
; ��’z ¼ lq

j�j� ; �zz ¼ q2:

(A1)

In these expressions, � ¼ �ð�Þ is given by (2.5).
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