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This paper is a first step towards developing a formalism to optimally extract dark energy information

from number counts using multiple cluster observation techniques. We use a Fisher matrix analysis to

study the improvements in the joint dark energy and cluster mass-observables constraints resulting from

combining cluster counts and clustering abundances measured with different techniques. We use our

formalism to forecast the constraints in �DE and w from combining optical and SZ cluster counting on a

4000 sq. degree patch of sky. We find that this cross-calibration approach yields �2 times better

constraints on �DE and w compared to simply adding the Fisher matrices of the individually self-

calibrated counts. The cross-calibrated constraints are less sensitive to variations in the mass threshold or

maximum redshift range. A by-product of our technique is that the correlation between different mass-

observables is well constrained without the need of additional priors on its value.
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I. INTRODUCTION

The evolution of the number of clusters of galaxies
provides a powerful tool to study the nature of dark energy.
Clusters are sensitive probes of the growth of structure
because cluster abundances are exponentially dependent
on the linear density perturbation field. In addition, cluster
surveys are sensitive to the evolution of the volume ele-
ment with redshift so that cluster surveys also probe the
background cosmology.

Planned and ongoing cluster surveys will detect millions
of clusters using a variety of techniques such as counts of
optically detected galaxies (e.g. DES [1], LSST, [2]), the
Sunyaev-Zel’dovich (SZ) flux decrement (e.g. SPT [3] and
ACT [4]), X-ray temperature and surface brightness (e.g.
eRosita, [5]), and weak lensing shear. Because different
cluster techniques suffer from different sources of errors,
combining the information from different surveys is essen-
tial to reduce random errors and control the systematics.

One of the major challenges in extracting dark energy
information from clusters is that cluster masses are not
directly observable. One must rely on observable proxies
for mass which only correlate statistically with the true
mass. The inherent uncertainties in the observable-mass
relation will degrade cosmological constraints if not well
understood. Methods have been developed to use addi-
tional cluster properties such as the cluster power spectrum
[6], sample covariance from counts in cells [7], or the
shape of the observed mass function [8–11] to ‘‘self-
calibrate’’ the mass-observable relation by simultaneously

solving for the cosmological and mass-observable
parameters.
Other works have investigated combining different clus-

ter techniques to cross-calibrate the mass-observable rela-
tions of each [6,12,13]. In [6,12], the cross-calibration is
between an SZ or X-ray survey and a detailed mass follow-
up to calibrate the mass-observable relation, whereas [13]
combines SZ and X-ray surveys. However, these studies
have assumed that the two surveys were independent, so
that the joint constraints were estimated by adding the
Fisher matrices of both experiments. But if two surveys
observe the same patch of sky, the measurements are not
independent. The goal of this paper is to show how to
exploit the interdependence of cluster surveys over the
same patch of sky to improve constraints on dark energy
and mass-nuisance parameters.
The paper is organized as follows. In Sec. II we describe

the Fisher matrix formalism to forecast cosmological con-
straints from cluster counts and clustering using a single
and multiple observables. We describe the major cluster
mass determination techniques in Sec. III and explain our
parametrization of the errors in the observables, i.e. the
mass-observable distributions. Results are presented in
Sec. IV, and our conclusions and prospects for future
work are given in Sec. V.

II. SELF-CALIBRATION AND THE FISHER
MATRIX FORMALISM

In this section we review how to obtain cosmological
constraints from cluster counts and clustering using a
single or multiple observables. Combining counts and
clustering to derive cosmological constraints from a single*ccunha@umich.edu
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mass estimation technique is often referred to as self-
calibration.

A. Mean number counts

The use of clusters of galaxies as cosmological indica-
tors depends on how reliably N-body simulations can
predict the number density of dark matter halos associated
to clusters of a given mass given an initial power spectrum.
We adopt the fitting function of [14] for differential co-
moving number density of clusters

d �n

d lnM
¼ 0:3

�m

M

d ln��1

d lnM
exp½�j ln��1 þ 0:64j3:82�;

(1)

where �2ðM; zÞ is the variance of the density field in a
spherical region with mean (present-day) matter density
�m encircling a mass M. Even though more recent fitting-
functions exist (e.g. [15,16]), we adopt the above for easier
comparison with the literature (e.g. [7,8,17]) and because
the results are relatively insensitive to the fiducial mass
function used.

Equation (1) shows that the number density of clusters is
sensitive to the variance of the density field, and hence to
the initial power spectrum. However, uncertainties in the
estimation of the mass are degenerate with changes in
cosmological parameters. The utility of cluster number
counts is therefore limited by uncertainties in the mass-
observable relation. Results from both simulations (e.g.
[18,19]) and observations (e.g. [20–22]) suggest that the
mass-observable relations can be parametrized in simple
forms with lognormal scatter of the mass-observable about
the mean relation. Other works (see e.g. [23]) suggest that
the distribution of galaxies in halos may be more
complicated.

For n observables, the probability of measuring clusters
given the true mass M and redshift z is

pðMobs; zpjM; zÞ�ðMobs; zpÞ; (2)

where Mobs ¼ ðMobs
1 ;Mobs

2 ; . . . ;Mobs
n Þ and �ðMobsÞ is the

combined selection function for all the observables. For
simplicity, we always work in a range of redshift and mass
where the surveys are expected to be nearly complete. This
allows us to approximate the selection function as unity.
This range depends on the observable we are using, so we
postpone justifying our assumptions for survey selections
to Sec. III, when we describe the different cluster tech-
niques. We further assume that the redshift errors are
independent of the mass-observable errors. This assump-
tion is not strictly true, since the bigger the cluster, the
more bright optical galaxies it should have, and the better
the cluster redshift estimate will be. This is particularly
relevant for optical clusters, for which the cluster detection
and mass estimate are inseparable from the cluster redshift
determination. We will postpone dealing with this diffi-
culty to a later work. For now, we write

pðMobs; zpjM; zÞ ¼ pðMobsjMÞpðzpjzÞ: (3)

We define the probability of measuring the observable
Mobs given the true mass M as [8]

pðMobsjMÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��2

lnM

q exp½�x2ðMobsÞ�; (4)

where

xðMobsÞ � lnMobs � lnM� lnMbiasðM; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�lnMðM; zÞ2p : (5)

We describe our parametrization of MbiasðM; zÞ and
�lnMðM; zÞ2 in Sec. III when we discuss our modeling of
different cluster techniques.
The number density of clusters at a given redshift z with

an observable in the range Mobs
� � Mobs � Mobs

�þ1 is given
by

�n �ðzÞ �
Z Mobs

�þ1

Mobs
�

dMobs

Mobs

Z dM

M

d �n

d lnM
pðMobsjMÞ (6)

where x� ¼ xðMobs
� Þ.

We define the probability of measuring two observables
Mobs

a , Mobs
b given the true mass as a bivariate Gaussian

distribution

pðMobs
1 ;Mobs

2 jMÞ ¼ 1

ð2�Þ detðCÞ1=2 exp

�
�xTC�1x

2

�
(7)

where C is the covariance matrix defined as

C ¼ �2
a ��a�b

��a�b �2
b

� �
(8)

and � 2 ½�1; 1� is the correlation coefficient. We motivate
the use of the bivariate distribution in the Appendix.
At a given redshift z, the average number density of

clusters with observables such that Mobs
a;� � Mobs

a �
Mobs

a;�þ1 and Mobs
b;� � Mobs

b � Mobs
b;�þ1 is given by

�n�;�ðzÞ �
Z Mobs

a;�þ1

Mobs
a;�

dMobs
a

Mobs
a

Z Mobs
b;�þ1

Mobs
b;�

dMobs
b

Mobs
b

Z dM

M

d �n

d lnM

� pðMobs
a ;Mobs

b jMÞ

¼ 1

2
ffiffiffiffiffiffiffi
2�

p
��

Z dM

M

d �n

d lnM

Z Mobs
a;�þ1

Mobs
a;�

dMobs
a

Mobs
a

� e�x2a

�
erfc

��xa � xbðMobs
b;�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �2Þp

�

� erfc

��xa � xbðMobs
b;�þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �2Þp

��
: (9)

For the two observables case, the integrals over the ob-
servables can only be performed analytically if � ¼ 0. One
would think that this problem could be resolved by diago-
nalizing the inverse covariance matrix—defined in Eq. (8).
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Diagonalization, however, does not simplify the calcula-
tion because the limits of the innermost integral over
observables become dependent on the other observable.
Thus, one cannot avoid performing the numerical integra-
tion. The equation for bðzÞ is modified analogously to
Eq. (9).

We interpret Eq. (9) as the combination of the error-free
number density multiplied by two window-functions de-
fined as

We
1 ¼ e�x2a (10)

and

We
2 ¼ erfc

��xa � xbðMobs
b;�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�
� erfc

��xa � xbðMobs
b;�þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�
:

(11)

WindowWe
1 has characteristic width given by the scatter of

the observable a with respect to the true mass, and is
centered, in the lnMobs

a � lnM coordinate, at the bias in
the mass-observable relation, lnMbias

a . The shape and posi-
tion of windowWe

2 in ðlnMobs
a � lnMÞ depend on the value

of the correlation coefficient � as well as on the boundaries
of the mass bin of the observable b, Mobs

b;� and Mobs
b;�þ1. If

� ¼ 0, We
2 is simply a constant, independent of Mobs

a and
M, as expected. For finite �,We

2 has the shape of a Mexican
hat. As j�j ! 1, We

2 approaches a top-hat function, with
edges at xbðMobs

b;�Þ and xbðMobs
b;�þ1Þ for positive � or at

�xbðMobs
b;�þ1Þ and �xbðMobs

b;�Þ for negative �. We
2 is not

invariant under � ! �� transformations. Decreasing �
‘‘spreads out’’ the number counts in the Mobs

a �Mobs
b

plane. If the observables have different scatter, the spread-
ing will be asymmetric with respect to the Mobs

a ¼ Mobs
b

line. In other words, variations in � are partially degenerate
with both the scatter and bias of the different observables.

The mean cluster number counts are given by integrating
Eq. (6) or (Eq. (9)) over comoving volume. In spherical
comoving coordinates, the volume element dV is

dV ¼ r2drd� ¼ r2ðzÞ
HðzÞ dzd�; (12)

whereHðzÞ is the Hubble parameter at redshift z, rðzÞ is the
comoving angular diameter distance and d� is the differ-
ential solid angle. Uncertainties in the redshifts distort the
volume element. Assuming photometric techniques are
used to determine the redshifts of the clusters, we parame-
trize the probability of measuring a photometric redshift,
zp, given the true cluster redshift z as [17]

pðzpjzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

z

q exp½�y2ðzpÞ�; (13)

where

yðzpÞ � zp � z� zbiasffiffiffiffiffiffiffiffiffi
2�2

z

q (14)

and zbias ¼ zbiasðzÞ is the photometric redshift bias and
�2

z ¼ �2
zðzÞ is the variance in the photo-z’s. We parame-

trize them as

zbiasðzÞ � zbias0 þ d1ð1þ zÞ (15)

�zðzÞ � �0
z þ e1ð1þ zÞ: (16)

For this paper we set the fiducial values zbias0 ¼ d1 ¼ e1 ¼
0, and �0

z ¼ 0:02, the expected overall scatter of cluster
photo-z’s in the Dark Energy Survey [1]. We hold these
parameters fixed throughout.
Assuming perfect angular selection the mean number of

clusters in a photo-z bin zpi � zp � zpiþ1 is

�m�;�;i ¼
Z z

p
iþ1

z
p
i

dzp
Z

dV �n�;�W
th
i ð�ÞpðzpjzÞ (17)

where W th
i ð�Þ is an angular top-hat window function.

To simplify the notation, henceforth we use the index �
to indicate bins of both observables.

B. Noise in counts

The number of clusters found in an angular/redshift bin
can deviate from the mean counts because of Poisson noise
and large-scale structure clustering. Both effects must be
included in any likelihood analysis. On cluster scales, the
clustering of baryonic matter follows the linear density
fluctuations of total matter �ðxÞ corrected by the linear
bias. That is,

m�;iðxÞ ¼ �m�;i½1þ b�;iðzÞ�ðxÞ�; (18)

where b�;iðzÞ is the average cluster linear bias defined as

b�;iðzÞ ¼ 1

�n�;iðzÞ
Z dMobs

�

Mobs
�

Z dMobs
�

Mobs
�

Z dM

M

� d �n�;iðzÞ
d lnM

bðM; zÞpðMobsjMÞ: (19)

We adopt the bðM; zÞ fit of [24]:

bðM; zÞ ¼ 1þ ac�
2
c=�

2 � 1

�c

þ 2pc

�c½1þ ða�2
c=�

2Þpc�
(20)

with ac ¼ 0:75, pc ¼ 0:3, and �c ¼ 1:69.
The sample covariance of counts m�;i is, given by [9]

S��ij ¼ hðm�;i � �m�;iÞðm�;j � �m�;jÞi (21)

¼ b�;i �m�;ib�;j �m�;j

Z d3k

ð2�Þ3 W
�
i ðkÞWjðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PiðkÞPjðkÞ

q
;

(22)
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where W�
i ðkÞ is the Fourier transform of the top-hat win-

dow function and PiðkÞ is the linear power spectrum at the
centroid of redshift bin i. Notice that, in contrast to [9], we

use
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PiðkÞPjðkÞ

q
instead of PðkÞ at an average redshift. We

do not notice significant differences from this change. In
addition, for computational efficiency, we only calculate
covariance terms for which ji� jj � 1 and set the remain-
ing terms to zero. Going from Eq. (21) to Eq. (22) we
assumed that the bias was approximately constant in each
photo-z bin so that it could be removed from the integral.
We only considered the sample covariance in bins of
redshift, but the angular covariance also contains useful
information. We postpone calculating the full sample co-
variance to a future work.

Following [17], we find that the window functionW�
i ðkÞ

in the presence of photo-z errors is given by

WiðkÞ ¼ 2 exp

�
ikk

�
ri þ zbiasi

Hi

��
exp

�
��2

z;ik
2
k

2H2
i

�

� sinðkk�ri=2Þ
kk�ri=2

J1ðk?ri�sÞ
k?ri�s

: (23)

Here ri ¼ rðzpi Þ is the angular diameter distance to the ith

photo-z bin, and �ri ¼ rðzpiþ1Þ � rðzpi Þ. Similarly, Hi ¼
Hðzpi Þ ¼ HðzÞ, zbiasi ¼ zbiasðzpi Þ ¼ zbiasðzÞ, and �z;i ¼
�zðzpi Þ ¼ �zðzÞ. We assumed that HðzÞ, zbiasðzÞ, and �zðzÞ
are constant inside each bin.

The Poisson noise of the counts is fully specified by the
mean counts �m. The sample variance in the counts is
determined by the mean counts, the bias, and the initial
power spectrum. Since all these quantities can be predicted
theoretically, both the mean counts and the sample vari-
ance contain useful information. In the following section
we use the Fisher matrix formalism to estimate joint con-
straints for dark energy and mass-observable parameters
using the information in the counts and the noise.

C. Fisher matrix

Given a model specified by a set of parameters p�, with
likelihood L, the Fisher information matrix is defined as

F�� ¼ �h @2 lnL

@p�@p�

i: (24)

The marginalized errors in the parameters are given by

�ðp�Þ ¼ ½ðF�1Þ���1=2. Priors are easily incorporated into
the Fisher matrix. If parameter pi has a prior uncertainty of
�ðpiÞ, we simply add �ðpiÞ�2 to the Fii entry of the Fisher
matrix before inverting.

Define the covariance matrix

Cij ¼ Sij þ �mi�ij (25)

where �mi is the vector of mean counts defined in Eq. (17)
and Sij is the sample covariance defined in Eq. (22). The

indices i and j here run over all mass and redshift bins.

Assuming Poisson noise and sample variance are the only
sources of noise, the Fisher matrix is, [7,25,26]

F�� ¼ �mt
;�C

�1 �m;� þ 1

2
Tr½C�1S;�C

�1S;��; (26)

where the ‘‘,’’ denote derivatives with respect to the model
parameters. The first term on the right-hand side contains
the ‘‘information’’ from the mean counts, �m. The Sij
matrix only contributes noise to this term, and hence
only reduces its information content. The second term
contains the information from the sample covariance.
For our purposes, the model parameters are the cosmo-

logical parameters, the parameters describing the errors in
the observables (i.e. the mass-nuisance parameters), and
the parameters of the photo-z errors. We use two sets of
fiducial cosmological parameters. One set is based on the
first-year data release of the Wilkinson Microwave
Anisotropy Probe (WMAP1, [27]) and the other is based
on the third-year data release (WMAP3, [28]). We use
WMAP1 and WMAP3 instead of the more recent five-
year data release because the WMAP1 and WMAP3 are
more extreme cases with regards to the value of �8 and the
predicted number counts, and hence WMAP5 is more or
less in-between both of them. The WMAP1 parameters
assumed are: the baryon density, �bh

2 ¼ 0:024, the dark
matter density, �mh

2 ¼ 0:14, the normalization of the
power spectrum at k ¼ 0:05 Mpc�1, �	 ¼ 5:07� 10�5,

the tilt, n ¼ 1:0, the optical depth to reionization, 
 ¼
0:17, the dark energy density, �DE ¼ 0:73, and the dark
energy equation of state,w ¼ �1. In this cosmology,�8 ¼
0:91. For WMAP3 we set�bh

2 ¼ 0:0223,�mh
2 ¼ 0:128,

�	 ¼ 4:053� 10�5 at k ¼ 0:05Mpc�1, n ¼ 0:958, 
 ¼
0:093, �DE ¼ 0:73, and w ¼ �1. This cosmology corre-
sponds to �8 ¼ 0:76. With the exception of w, the cosmo-
logical parameters we used have been determined to an
accuracy of a few percent. Extrapolating into the future, we
assume 1% priors on all cosmological parameters except
�DE and w. We used CMBfast [29], version 4.5.1, to
calculate the transfer functions.

III. CLUSTER MASS DETERMINATION
TECHNIQUES

There are four commonly used cluster detection tech-
niques for which large surveys are planned: optical, X-ray,
Sunyaev-Zeldovich flux decrement, and weak lensing. For
our Fisher matrix purposes, each of them is fully specified
by a mass threshold, survey area, maximum redshift, and
the parameters for the fiducial errors in Mobs and zp.
We show the mean number counts per redshift bin per

sq. degree as a function of photometric redshift (with a
constant scatter of �0

z ¼ 0:02) for several mass thresholds
and scatters in Fig. 1. The left plot shows the mean counts
for Mth ¼ 1013:5, 1013:9, 1014:2, and 1014:2h�1M�, for a
fixed scatter of �lnM ¼ 0:25. The sensitivity of the counts
to the mass threshold is apparent. The plot on the right
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shows the mean counts for �lnM ¼ 0:01, 0.25, 0.5, 1.0 with
the threshold set to Mth ¼ 1014:2h�1M�. The increase of
the scatter results in an increase in the total counts because
the mass function falls exponentially with mass. It also
causes flattening of the �mðzÞ curve. The increase in the
scatter implies an increase in the variance in counts, but a
decrease in the shot noise. For perfectly known scatter, the
decrease in shot noise outweighs the increase in variance
implying that more scatter can yield better cosmological
constraints. However, it is harder to constrain larger scatter
and its evolution, and the assumption of Gaussianity may
break down. This issue is particularly relevant for a
WMAP3 cosmology, where there are fewer clusters com-
pared to WMAP1.

Since the focus of this paper is on combining clusters in
the same area of the sky, we limit our tests to surveys
overlapping the South Pole Telescope (SPT) SZ Cluster
survey. We thus set the area of the sky to 4000 square
degrees, which we subdivide into 400 bins of 10 sq. de-
grees each. We assume SPTwill be able to observe clusters
with Mobs 	 1014:2h�1M� up to a redshift of 2 (see e.g.
[30]). We assume that photometric redshifts will be avail-
able using DESþ VISTA photometry. We parametrize the
SZ mass bias and variance as

lnMbiasðM; zÞ ¼ lnMbias
0 þ a1 lnð1þ zÞ (27)

¼ lnMbias
0 þ lnMbiasðzÞ (28)

�2
lnMðM; zÞ ¼ �2

0 þ
X3

i¼1

biz
i (29)

¼ �2
0 þ �2

lnMðzÞ: (30)

We set the fiducial mass scatter to �0 ¼ 0:25, and all the
other nuisance parameters to zero. In total, we use six

nuisance parameters for the scatter and bias in mass
ðlnMbias

0 ; a1; �
2
0; biÞ.

We assume a DES-like optical cluster survey with fidu-
cial mass threshold of Mth ¼ 1013:5h�1M� and maximum
redshift of 1. [31,32] were able to detect clusters with mass
greater than 1013:5h�1M� with a high level of purity and
completeness using photometric data from the Sloan
Digital Sky Survey (SDSS, [33]). The MaxBCG method
used by these authors relies on red cluster galaxies occupy-
ing a distinct region in color space, the red sequence. The
red sequence is known to be present in clusters at least to
redshift of 1 (see e.g. [34]), so that we are justified in our
choice for the expected DES mass threshold. Our choice of
maximum redshift is somewhat conservative since with the
addition of the IR filters from VISTA survey, DESþ
VISTA will have accurate redshifts (for field galaxies) up
to z� 1:5. Conversely, the maximum redshift of 2 for SPT
relies on the expectation that a deeper optical follow-up
may be available for SPT-detected clusters. We show in
Sec. IV that if the cross-calibration is performed, the SZ
clusters above z� 1 contribute very little to the cosmo-
logical constraints.
Different studies suggest a wide range of scatter for

optical observables, ranging from a constant �lnM ¼ 0:5
[35] to a mass-dependent scatter in the range 0:75<
�lnM < 1:2 [36]. After the submission of this paper, a
couple of papers made more optimistic estimates for the
scatter. Using weak lensing and X-ray analysis of
MaxBCG selected optical clusters [37] estimated a scatter
of �0:45 for PðMjMobsÞ, where M was determined using
weak lensing and Mobs was an optical richness estimate.
The scatter for PðMobsjMÞ should be smaller given the
Mobs �M relation. In [38] the authors show that improved
richness estimators may reduce the optical scatter. As a
conservative compromise, we choose a fiducial mass scat-
ter of �lnM ¼ 0:5 and allow for a cubic evolution in red-
shift and mass:

FIG. 1. (Left) Mean counts as a function of redshift �mðzÞ for various mass thresholds, with �lnM ¼ 0:25 for both WMAP1 and
WMAP3 cosmologies. (Right) �mðzÞ for various values of �lnM, with Mth ¼ 1014:2h�1M� assuming a WMAP3 cosmology.
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lnMbiasðM; zÞ ¼ lnMbias
0 þ a1 lnð1þ zÞ

þ a2ðlnMobs � lnMpivotÞ
¼ lnMbias

0 þ lnMbiasðzÞ þ lnMbiasðMÞ (31)

�2
lnMðM; zÞ ¼ �2

0 þ
X3

i¼1

biz
i þX3

i¼1

ciðlnMobs � lnMpivotÞi

¼ �2
0 þ �2

lnMðMÞ þ �2
lnMðzÞ: (32)

We set lnðMpivotÞ ¼ 34:5 (with M in units of h�1M�). In
all, we have 10 nuisance parameters for the optical-mass
errors ðlnMbias

0 ; a1; a2; �
2
0; bi; ciÞ. The results we obtain are

sensitive to the choice of parametrization, particularly the
number of nuisance parameters. There are few, if any,
constraints on the number of parameters necessary to
realistically describe the evolution of the variance and
bias with mass for any technique. If simpler parametriza-
tions than the ones we adopt here should prove to describe
the variations in the errors well, then cosmological con-
straints would improve.

Redshift/observables space

To calculate the SZ counts and sample variance, we use
mass bins of width logð�MobsÞ ¼ 0:2with the exception of
the highest mass bin, which we extend to infinity. We set
the width of our redshift bins to�zp ¼ 0:1. These bin sizes
imply 5 bins of mass and 20 redshift bins for the SZ
clusters. For the fiducial optical parameters, we divide
the mass range 1013:5 � Mobs

opt � 1014:2h�1M� into 5 bins

and use the same mass binning as the SZ for Mobs
opt >

1014:2h�1M�, with a total of 10 mass bins and 10 redshift
bins.

If the clusters detected by the optical and SZ surveys are
in different parts of the sky, then the samples are indepen-
dent. To estimate the joint constraints from both surveys

one simply applies the single mass-observable analysis
described in the previous section to each of the samples
and sums the Fisher matrices.
If the clusters are all in the same part of the sky, then the

samples are not independent. In addition, some regions of
redshift/observable space contain clusters detected by both
methods or only one. Our cross-calibration approach cal-
culates the mean counts and clustering at all bins shown in
Fig. 2. From Fig. 2 one can see that the observables’
parameter space is composed of four parts. One is defined
as the set of clusters for which 1013:5 <Mobs

opt <

1014:2h�1M�, Mobs
sz < 1014:2h�1M�, and 0< z < 1. Only

optical clusters are detected in this region. We divide that
interval of mass into 5 equally spaced bins and use
PðMobs

opt jMÞ to estimate the counts in that region. The

second region is defined as the clusters for which Mobs
sz >

1014:2h�1M�, Mobs
opt > 1013:5h�1M� and 0< z < 1. The

mass bins are simply the outer product of the optical and
SZ vectors of bins of observables in that range. It is
comprised of 5� 10 mass bins and 10 redshift bins. Here
we use PðMobs

opt ;M
obs
sz jMÞ to estimate the counts. The third

region is defined by Mobs
sz > 1014:2h�1M�, Mobs

opt <

1013:5h�1M� and 0< z < 1. Because there are almost no
clusters detected in this region, we do not include it in our
analysis. The fourth region is defined by Mobs

sz >
1014:2h�1M� and 1< z < 2. Since only SZ clusters can
be found in this region we estimate the counts using
PðMobs

sz jMÞ. The counts from the three regions we use are
organized into a single vector of counts, and the corre-
sponding covariance of the data (defined in Eq. (25)) is
given by a single matrix.
Figure 1 hints that our choice of binning results in a large

number of bins with mean counts substantially below unity.
Such small number of clusters per bin brings about two
concerns. The first is that in a real survey one would not be
able to accurately estimate the mean of such bins. While

FIG. 2. Optical-SZ mass bins in the redshift range (left) 0< z < 1 and (right) 1< z < 2. The black lines indicate the mass-threshold
for the SZ and optical surveys. The gray lines show the boundaries of the mass bins. We do not use the SZ-only region marked with the
asterisk because there are very few clusters in that region.
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this is true, our goal in this paper is to examine how much
information is in the counts, which we can only be certain
of extracting using a large number of bins. Our choice of
binning does not yield overly optimistic results since the
shot noise increases as the counts per bin become smaller.
The bins with very few objects therefore do not contribute
significantly to the Fisher matrix. We tested this using a
total of 32 bins instead of 50 (in the region of overlap of the
surveys) and found only negligible differences in the re-
sulting dark energy constraints. When performing this
analysis on real data sets, one would be advised to adopt
a different binning strategy, perhaps using tree-structure
algorithms to optimally subdivide the data, or hierarchical
Bayesian classification algorithms, especially if more than
two observables are used.

The second concern is that with few objects per bin the
Gaussian approximation assumed when we defined
Eq. (26)—see [7] for a derivation—is not valid. To test
the impact of the Gaussian assumption, we performed the
single-observable self-calibration analysis for the SZ sur-
vey using 5, 10 and 40 mass bins. The results are virtually
identical if 5 or 10 bins are used, but degrade by a few
percent for 40 bins. We did not investigate whether the
degradation was a result of the breakdown of the Gaussian
assumption or simply due to numerical noise. The impor-
tant point is that excessive binning does not yield unreal-
istic improvements in the constraints.

IV. RESULTS

Unless stated otherwise, all results shown assume no
priors on the nuisance parameters.

A. Results for a single observable

First, we present results for a single observable. Figure 3
shows the dependence of the constraints on �DE (left) and
w (right) on the maximum redshift of the survey (zmax).

The dashed and solid black lines are for the fiducial optical
mass threshold, scatter and bias in WMAP1 and WMAP3
cosmologies, respectively. The dashed and solid gray lines
are the corresponding results assuming the fiducial SZ
survey. The rate of improvement in the �DE constraints
with zmax decreases sharply after z� 0:5 for all cases
except the optical results in WMAP3, where the break
happens around z� 1. The constraints on w show a more
pronounced redshift dependence for both optical and SZ.
In a WMAP3 cosmology, varying zmax from 1 to 2 results
in �ðwÞ decreasing by a factor of �2:5 for the optical and
�2:1 for the SZ. The intersection of the dashed lines in
both plots, or of the solid lines in the left plot, mark the
redshifts below which the optical survey yields tighter
constraints than the SZ survey. At this point, Poisson noise
in the counts is the dominant component of the error
budget. The increase in counts due to the larger scatter of
the optical observable compensates for the loss of infor-
mation due to increased scatter.
Figure 4 shows (left)�ð�DEÞ and (right)�ðwÞ versus the

mass threshold of the survey in a WMAP3 cosmology. The
number of mass bins used in the calculation is different for
eachMth. At the lowest threshold Mth ¼ 1013:2h�1M� and
there 16 bins of Mobs. We increase Mth in steps of
� lnMobs ¼ 0:1 and decrease the number of mass bins by
one at every step up to Mth ¼ 1014:7h�1M�. The solid
black and solid gray lines show the marginalized con-
straints for the fiducial optical and SZ parametrizations.
For the dashed black line we assume no mass dependence
in the optical-mass scatter, i.e. we use the same parametri-
zation as the fiducial SZ survey, except that �0 ¼ 0:5, and
the maximum redshift is 1. The fact that the dashed black
line drops below the gray line in the left plot is another
illustration of the point made in Sec. III of larger scatter
resulting in better cosmological constraints, despite the
lower redshift range of the optical survey and no priors
on the scatter. Allowing for mass dependence of lnMbias

opt

FIG. 3. Constraints on (left) �DE and (right) w versus the maximum redshift of the survey for the fiducial optical and SZ surveys in
WMAP1 and WMAP3 cosmologies.
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and �2
opt not only degrades �ð�DEÞ but also increases the

sensitivity of the constraints to Mth. The constraints on w
are much less affected, because of the low maximum
redshift of the optical survey.

B. Results for two observables

Figure 5 shows the 68% confidence regions for�DE and
w in (left) WMAP1 and (right) WMAP3 cosmologies
assuming no priors in the nuisance parameters and no
correlation between the observables (i.e. � ¼ 0, fixed).
Comparing both plots, we see that the low fiducial number
of clusters in the WMAP3 cosmology implies weaker
cosmological constraints. More interestingly, in a cosmol-

ogy with fewer clusters the lower mass threshold of the
optical technique makes it more constraining than the
fiducial SZ even without any priors on the bias or scatter.
The marginalized constraints are summarized in Table I.
Performing the cross-calibration using only clusters de-

tected by both methods (hereafter partial cross-
calibration—represented in the plots by the filled gray
ellipses) does not yield very good constraints. The partial
cross-calibration is slightly more useful in a WMAP3
cosmology, because there are few clusters above z ¼ 1,
so that not using that region of parameter space does not
cause much degradation. Constraints using the cross-
calibration with all clusters available (hereafter full cross-

FIG. 5 (color online). 68% confidence regions in the �DE � w plane in (left) WMAP1 and (right) WMAP3 cosmologies. The
constraints from cross-calibration using only clusters detected simultaneously in optical and SZ (i.e. partial cross-calibration—with
selection Mobs

sz > 1014:2h�1M�, Mobs
opt > 1013:5h�1M� and 0< z < 1) are represented by the filled gray ellipses. The cross-calibration

using all clusters (i.e. full cross-calibration) yields the filled black ellipses. For comparison, the long dashed red lines show constraints
for the fiducial optical survey, and the short dashed blue lines show constraints for the fiducial SZ survey. Treating the optical and SZ
surveys as independent and adding their Fisher matrices yields the solid black lines.

FIG. 4. Constraints on (left)�DE and (right) w versus the mass threshold of the survey in a WMAP3 cosmology. The number of mass
bins used in the calculation is different for each Mth. At the lowest threshold Mth ¼ 1013:2h�1M� and 16 bins of Mobs are used. We
increase Mth in steps of � lnMobs ¼ 0:1 and decrease the number of mass bins by one at every step up to Mth ¼ 1014:7h�1M�. The
solid black and solid gray lines are the marginalized constraints for the fiducial optical and SZ parametrizations. For the dashed black
line we assume no mass dependence in the optical-mass scatter, i.e. it uses the exact same parametrization as the fiducial SZ survey,
except that �0 ¼ 0:5 and the maximum redshift is 1.
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calibration—filled black ellipses) yields much better con-
straints than the partial cross-calibration. In fact, con-
straints on �DE and w from the full cross-calibration are
a factor �2 better than constraints derived by simply add-
ing the Fisher matrices of the optical and SZ techniques
(the solid black line).

We demonstrate the importance of clustering in a
WMAP3 cosmology to self- and cross-calibration in
Fig. 6. Comparing the filled light gray ellipse with the solid
black line, we see that clustering information tightens
constraints on both �DE and w significantly if we only
sum the optical and SZ Fisher matrices. But comparing the
filled dark gray ellipse with the filled black ellipse we see
that clustering does not add as much information to the full
cross-calibration. Constraints on w are unchanged, and
�DE constraints improve by a factor of �1:7.

Figure 7 shows �ð�DEÞ and �ðwÞ for the full cross-
calibration as a function of the optical mass threshold,

Mopt
th , in both WMAP1 and WMAP3 cosmologies with �

fixed at zero. The dots indicate boundaries of the mass bins
for Mobs

opt < 1014:2h�1M�. Above 1014:2 we use the same

bins as theMobs
sz . Constraints onw are slightly less sensitive

to Mobs
opt than constraints on �DE. Comparing the slopes of

the curves in Figs. 4 and 7 we see that the full cross-
calibration constraints are less sensitive to Mth than the
self-calibrated constraints from optical or SZ alone. In
Fig. 4 a change in Mth from 1013:5h�1M� to
1014:2h�1M� results in a degradation of �ðwÞ and
�ð�DEÞ of �4:0 and �3:6, respectively, for optical only,
and of �5:9 and �4:0 for SZ only. With the full cross-
calibration, the degradation factor is only�3:0 for�ð�DEÞ
and �3:3 for �ðwÞ.
The full cross-calibration also reduces the sensitivity to

the maximum redshift range of the surveys. Figure 8 shows
�ð�DEÞ and�ðwÞ as a function of the maximum redshift of
the optical survey for the full cross-calibration. Comparing
to Fig. 3 it is clear that the individual surveys are much
more sensitive to zmax than the full cross-calibration. For
example, if zmax changes from 1 to 2 in a WMAP3 cos-
mology, the optical-only and SZ-only constraints on w
improve by factors of �2:2 and �2:0, respectively. In
comparison, the same change in zmax for the optical survey
in the full cross-calibration improves w constraints by only
�1:3. Cross-calibration constraints are even less sensitive
to variations in the maximum redshift of the SZ survey. For
a fixed optical zmax ¼ 1, reducing the SZ zmax from 2 to 1.1
degrades constraints by only a few percent in both cosmol-
ogies. In this scenario, we find�ð�DE; wÞ ¼ ð0:022; 0:048Þ

TABLE I. Marginalized constraints on cosmological parame-
ters.

WMAP1 WMAP3

Survey �ð�DEÞ �ðwÞ �ð�DEÞ �ðwÞ
Intersection 0.058 0.093 0.070 0.15

Optical 0.057 0.098 0.10 0.13

SZ 0.050 0.11 0.074 0.21

Opticalþ SZ 0.032 0.062 0.057 0.092

Cross-Cal. ðFullÞc 0.021 0.030 0.025 0.045

Cross-Cal. ðzSZmax < 1:1Þc 0.022 0.032 0.026 0.047

FIG. 6. The filled light gray ellipse shows the constraints from
summing the SZ and optical fisher matrices without clustering.
The solid black line indicates the corresponding constraints
when clustering is added. The filled dark gray and filled black
ellipses show the full cross-calibration constraints without and
with clustering, respectively.

FIG. 7. �ð�DEÞ and �ðwÞ for the full cross-calibration as a
function of the optical mass threshold, Mopt

th , in both WMAP1

and WMAP3 cosmologies with correlation � fixed at zero. The
dots indicate boundaries of the mass bins for Mobs

opt <

1014:2h�1M�. Above 1014:2 we use the same bins as for Mobs
sz .
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in a WMAP1 cosmology and �ð�DE; wÞ ¼ ð0:027; 0:073Þ
in a WMAP3 cosmology.

All cross-calibration results shown heretofore assumed
correlation coefficient � fixed at zero. From Eq. (A14) we
see that � ¼ 0 implies �ab ¼ �opt-sz ¼ 1. Weak lensing

and X-ray mass measurements of optically-selected clus-
ters suggest that a more realistic guess would be �opt-sz �
0:3–0:7, from which Eq. (A14) implies that 0:19< j�j<
0:55. A value of � > 0:6 corresponds to �opt-sz < 0:19. To

obtain higher correlation values, one would need �ab to be
small compared to �a and �b.

Figure 9 shows the dependence of the constraints on the
dark energy and optical mass-nuisance parameters on the

correlation coefficient. From the left plot we see that the
dark energy parameters are insensitive to the value of the
correlation for � < 0:6 for the full cross-calibration analy-
sis. The very sharp drop in the uncertainties of both cos-
mological and nuisance parameters is largely due to the
optical and SZ surveys having different fiducial scatters
and mass thresholds. Given �opt and �SZ, high values of

the correlation imply very low values of �opt-sz, the scatter

between observables. High correlation means that the scat-
ter in the optical is effectively that of the SZ survey. From
the plot we see that � ¼ 0:8; the combination of optical
and SZ results yields constraints very similar to a survey
with optical Mth but with SZ scatter (cf. Fig. 4).
The constraints on � improve as � increases, though

comparing constraints for fixed and free �, we see that dark
energy constraints are fairly insensitive to �ð�Þ. This
means that the correlation is sufficiently well determined
by the cross-calibration analysis without need for addi-
tional priors.
In the right plot, we see that for the cross-calibration

using only clusters detected by both methods (i.e. the
partial cross-calibration) the constraints are more depen-
dent on the value of the correlation and on its uncertainty.
The relation between � and the optical bias is most pro-
nounced. As mentioned in the discussion following
Eq. (11), variations in the correlation change the distribu-
tion of number counts in Mobs

a �Mobs
b space in ways that

mimic bias and scatter in the observables. In the full cross-
calibration, the relation between �ð�Þ and �ðlnMbias

opt Þ is
less pronounced because the information from clusters
detected only by optical (or SZ) helps to break the degen-
eracy between the correlation and the bias. Though not
shown, the uncertainty in the bias and scatter of the SZ
observable scales very similarly to that of the correspond-
ing optical nuisance parameters.
In Fig. 10 we show �ð�DEÞ (left) and �ðwÞ (right)

as functions of the prior on the nuisance parameters for

FIG. 8. �ð�DEÞ and �ðwÞ for the full cross-calibration as a
function of the maximum redshift of the optical survey, in
WMAP1 and WMAP3 cosmologies with correlation � fixed at
zero.

FIG. 9 (color online). 1� � constraints on dark energy and optical-mass-nuisance parameters as a function of correlation � for (left)
the full cross-calibration and (right) the partial cross-calibration. Both plots are for a WMAP3 cosmology.
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the full calibration analysis. Throughout we assume
that �prior¼�priorð�2

0Þ¼�priorðlnMbias
0 Þ¼0:5�priorðaiÞ¼

0:5�priorðbiÞ¼0:5�priorðciÞ. We see from the left plot that

constraints on�DE are most sensitive to priors on the mass
bias, especially the optical-mass bias. A prior of ð0:1Þ2 on
lnMbias

opt improves �ð�DEÞ by a factor of�3. With priors of

ð0:1Þ2 on all parameters (multiplied by two where appro-
priate) �ð�DEÞ improves by approximately an order of
magnitude!

Constraints on w are largely insensitive to priors on the
mass-dependent part of the optical scatter, �2

optðMÞ, or on
the SZ mass bias parameters. Priors on the optical-mass
bias improve constraints by at most 12%. The constraints
are most sensitive to priors on the redshift-dependent scat-
ter nuisance parameters, particularly the optical scatter. A
prior of ð0:1Þ2 on �2

optðM; zÞ and �2
SZðzÞ decreases �ðwÞ by

a factor of �1:3. The full cross-calibration can constrain
the constant parts of both the SZ and optical scatter so that
priors on them do not improve w constraints. The full
improvement requires priors of ð0:01Þ2 on all parameters
and yields �ðwÞ ¼ 0:022.

V. CONCLUSIONS AND FUTURE WORK

We developed a formalism to derive joint cosmological
and cluster mass-observable constraints from cluster num-
ber counts and clustering sample variance of multiple
cluster finding techniques. The improvement we find rela-
tive to previous works arises from our use of the interde-
pendence of cluster measurements performed over the
same patch of sky to cross-calibrate the mass-observable
relations of the different techniques. When combining an
SPT-like and DES-like survey, the full cross-calibration

method yields �2 times smaller constraints on �DE and w
compared to simply adding the Fisher matrices of the
individual experiments. Furthermore, constraints from the
full cross-calibration are less sensitive toMth and zmax than
the single mass-observable constraints.
The cross-calibration places tight constraints on the

correlation between the observables without the need of
additional priors. Conversely, priors on the mass-variance
and bias can significantly improve the dark energy con-
straints. Constraints on�DE are most sensitive to priors on
the mass biases. On the other hand, constraints on w are
more sensitive to priors on the redshift-dependent part of
the scatters. Priors on the optical nuisance parameters are
more relevant than priors on SZ nuisance parameters for
both �DE and w constraints.
Our technique can still be improved. Combining more

than two techniques at a time should further improve
constraints. But we can only combine multiple techniques
if we use a more efficient binning strategy, to minimize the
number of mass bins needed to extract the useful informa-
tion. It is possible that a more efficient binning may even
improve the two observables case, particularly in cosmol-
ogies with low �8.
Work still needs to be done before the self-calibration or

full cross-calibration can be applied to real data. The cross-
calibration estimates presented here are sensitive to the
parametrization of the mass errors. Simulations are needed
to determine what parametrizations are robust to theoreti-
cal and experimental uncertainties. Our results assumed a
perfect selection, but selection effects may bias the cos-
mological constraints. [35] have shown that if the halo
selection depends on halo concentration, and if the halo
bias depends on the assembly history, the sample variance

FIG. 10 (color online). �ð�DEÞ (left) and �ðwÞ (right) versus the prior on the nuisance parameters for the full calibration analysis.
For the dotted red (grey) lines, priors were applied on the mass-dependent part of �2

opt only. For the solid red (grey) lines priors were

applied on all parameters of �2
opt. Applying priors to all terms of �2

sz yields the solid green (light grey) lines. The dotted black lines

were generated using priors on �2
opt and �

2
sz. The dashed green (light grey) lines have priors on lnMbias

sz and the dashed red (grey) lines

have priors on lnMbias
opt . Applying priors to all nuisance parameters yields the solid black lines.
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due to clustering will deviate from that of a random selec-
tion of halos with the same mass distribution. If the clus-
tering sample variance is modeled incorrectly, the self-
calibration may bias the recovered dark energy parameters.
Since the different cluster surveys are expected to have
selections with different dependence on the halo concen-
tration, cross-calibration should mitigate selection effects,
though we are yet to test this hypothesis. Finally, we must
still account for the relation between photo-z and mass-
observable errors. Regardless of the simplifications
adopted here, we conclude that having overlap between
surveys is very important to maximize the effectiveness of
cross-calibration techniques.
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APPENDIX: THE PROBABILITY DISTRIBUTION
OF MULTIPLE OBSERVABLES

Studies of the cluster mass-observable relation in the
literature (e.g. [22,32,39]), using either simulations or ob-
servations, typically estimate pðMobsjMÞ (by measuring
the scatter of MobsðMÞ) for a single mass-observable or
the relation between two observables, pðMobs

a jMobs
b Þ, for a

given M, or equivalently, assuming no evolution in M.
Thus, it is useful to express pðMobsjMÞ in terms of combi-
nations of pðMobsjMÞ and pðMobs

a jMobs
b Þ. This can be done

using the product rule of probability and Bayes’ theorem.
For example, for two observables,

pðMobsjMÞ ¼ pðMobs
a ;Mobs

b jMÞ
¼ pðMobs

a jMÞpðMobs
b jMobs

a ;MÞ

¼ pðMobs
a jMÞpðMobs

b jMÞpðM
obs
a jMobs

b Þ
pðMobs

a Þ : (A1)

For n observables,

pðMobsjMÞ ¼ Yn�1

j¼1

�Qn�1
i¼jþ1 pðMobs

j jMobs
i Þ

pðMobs
j Þn�j

�Yn

i¼1

pðMobs
j jMÞ:

(A2)

In this paper we focus on combining two observables at
a time. Given mass measurement techniques a and b we
adopt the following parametrizations:

pðMobs
o jMÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2��2
o

p exp

��x2oðMobs
o Þ

2�2
o

�
; (A3)

where o is either a or b and

xoðMobs
o Þ � lnMobs

o � lnM� lnMbias
o : (A4)

The definition of xoðMobs
o Þ here differs from the definition

of xðMobsÞ in Eq. (5) by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2

lnM

q
.

Similarly,

pðMobs
a jMobs

b Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��2

ab

q exp

��x2abðMobs
ab Þ

2�2
ab

�
; (A5)

where

xabðMobs
ab Þ � lnMobs

a � lnMbias
a � lnMobs

b þ lnMbias
b

¼ xa � xb: (A6)

Combining all the probability distributions above, yields

pðMobs
a ;Mobs

b jMÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�3�2

a�
2
b�

2
ab

q exp½A�; (A7)

where

A ¼
�
� x2a
2�2

a

� x2b
2�2

b

� ðxa � xbÞ2
2�2

ab

�
(A8)

and we have simplified the notation by writing �x to
represent �lnMx. Rearranging the terms in (A8) we find

A ¼ �1

2

�
x2a

�
1

�2
a

þ 1

�2
ab

�
þ x2b

�
1

�2
b

þ 1

�2
ab

�

� 2xaxb

�
1

�2
ab

��
: (A9)

If we define the vector x ¼ ðxa; xbÞ and the matrix

B ¼
1
�2
a
þ 1

�2
ab

� 1
�2
ab

� 1
�2
ab

1
�2
a
þ 1

�2
ab

0
@

1
A (A10)

we obtain

A ¼ �1

2
½xTBx�: (A11)

With the above form for A, it is clear that we can represent
pðMobs

1 ;Mobs
2 jMÞ by a bivariate Gaussian distribution,
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pðMobs
1 ;Mobs

2 jMÞ ¼ 1

ð2�Þ detðCÞ1=2 exp½�xTC�1x�
(A12)

where C is the covariance matrix defined as

C ¼ �2
a ��a�b

��a�b �2
b

� �
(A13)

and � is the correlation coefficient defined in terms of �a,
�b, and �ab as

� ¼ 
�a�b

½ð�2
a þ �2

abÞð�2
b þ �2

abÞ�1=2
: (A14)
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