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The cosmic microwave background (CMB) is a rich source of cosmological information. Thanks to the

simplicity and linearity of the theory of cosmological perturbations, observations of the CMB’s

polarization and temperature anisotropy can reveal the parameters that describe the contents, structure,

and evolution of the cosmos. Temperature anisotropy is necessary but not sufficient to fully mine the CMB

of its cosmological information as it is plagued with various parameter degeneracies. Fortunately, CMB

polarization breaks many of these degeneracies and adds new information and increased precision. Of

particular interest is the CMB’s B-mode polarization, which provides a handle on several cosmological

parameters most notably the tensor-to-scalar ratio r and is sensitive to parameters that govern the growth

of large-scale structure and evolution of the gravitational potential. These imprint CMB temperature

anisotropy and cause E-to-B-mode polarization conversion via gravitational lensing. However, both

primordial gravitational-wave- and secondary lensing-induced B-mode signals are very weak and there-

fore prone to various foregrounds and systematics. In this work we use Fisher-matrix-based estimations

and apply, for the first time, Monte Carlo Markov Chain simulations to determine the effect of beam

systematics on the inferred cosmological parameters from five upcoming experiments: PLANCK,

POLARBEAR, SPIDER, QUIETþ CLOVER, and CMBPOL. We consider beam systematics that couple

the beam substructure to the gradient of temperature anisotropy and polarization (differential beamwidth,

pointing offsets and ellipticity) and beam systematics due to differential beam normalization (differential

gain) and orientation (beam rotation) of the polarization-sensitive axes (the latter two effects are

insensitive to the beam substructure). We determine allowable levels of beam systematics for given

tolerances on the induced parameter errors and check for possible biases in the inferred parameters

concomitant with potential increases in the statistical uncertainty. All our results are scaled to the ‘‘worst

case scenario.’’ In this case, and for our tolerance levels the beam rotation should not exceed the few-

degree to subdegree level, typical ellipticity is required to be 1%, the differential gain allowed level is a

few parts in 103 to 104, differential beam width upper limits are of the subpercent level, and differential

pointing should not exceed the few- to sub-arc sec level.
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I. INTRODUCTION

The standard cosmological model accounts for a multi-
tude of phenomena occurring over orders of magnitude of
length and angular scales throughout the entire history of
cosmological evolution. Remarkably, doing so only re-
quires about a dozen parameters. Perhaps one of the most
useful cosmological probes is cosmic microwave back-
ground (CMB) temperature anisotropy whose physics is
well understood. Complementary cosmological probes can
assist in breaking some of the degeneracies inherent in the
CMB and further tighten the constraints on the inferred
cosmological parameters. Temperature anisotropy alone
cannot capture all the cosmological information in the
CMB, and its polarization probes new directions in pa-
rameter space. B-mode polarization observations are noise
dominated but the robust secondary signal associated with
gravitational lensing, which is known up to an uncertainty
factor of 2 on all relevant scales, is at the threshold of
detection by upcoming CMB experiments. The lensing
signal may have been detected already through its signa-

ture on the CMB anisotropy as reported recently by
ACBAR (Reichardt et al. [1]). Lensing by the large-scale
structure (LSS) also converts primordial E mode to sec-
ondary B mode. When high fidelity B-mode data are
available a wealth of information from the inflationary
era (Zaldarriaga and Seljak [2], Kamionkowski,
Kosowsky, and Stebbins [3]), and cosmological parameters
that control the evolution of small-scale density perturba-
tions (such as the running of the spectral index of primor-
dial density perturbations, neutrino mass, and dark energy
equation of state), will be extracted from the CMB. At best,
B-mode polarization from lensing is a factor of 3 times
smaller than the primordial E-mode polarization, so it is
prone to contamination by both astrophysical foregrounds
and instrumental systematics. It is mandatory to account
for, and remove when possible, all sources of spurious B
mode in analyzing upcoming CMB data, especially those
generated by temperature leakage due to beam mismatch,
since temperature anisotropy is several orders of magni-
tude larger than the expected B-mode level produced by
lensing.
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Beam systematic have been discussed extensively (Hu,
Hedman, and Zaldarriaga [4], Rosset et al. [5], O’Dea,
Challinor, and Johnson [6], Shimon et al. [7]). All the
effects are associated with beam imperfections or beam
mismatch in dual-beam experiments, i.e. where the polar-
ization is obtained by differencing two signals, which are
measured simultaneously by two beams with two orthogo-
nal polarization axes. Fortunately, several of these effects
(e.g. differential gain, differential beam width and the first-
order pointing error—‘‘dipole,’’ Hu, Hedman, and
Zaldarriaga [4], O’Dea, Challinor, and Johnson [6],
Shimon et al. [7]) are reducible with an ideal scanning
strategy and otherwise can be cleaned from the data set by
virtue of their nonquadrupole nature, which distinguishes
them from genuine CMB polarization signals. Other spu-
rious polarization signals, such as those due to differential
ellipticity of the beam, second-order pointing errors, and
differential rotation, persist even in the case of ideal scan-
ning strategy and perfectly mimic CMB polarization.
These represent the minimal spurious B-mode signal, re-
siduals that will plague every polarization experiment. We
refer to them in the following as ‘‘irreducible beam system-
atics.’’ We assume throughout that beam parameters are
spatially constant. Two recent works (Kamionkowki [8]
and Su, Yadav, and Zaldarriaga [9]) considered the effect
of spatially dependent systematic beam-rotation and dif-
ferential gain, respectively. This scale dependence and the
associated new angular scale induce nontrivial higher order
correlation functions through non-Gaussianities, which can
be both used to optimally remove the space-dependent
component of beam rotation [8] and mimic the CMB
lensing signal, thereby biasing the quadratic estimator of
the lensing potential [9].

To calculate the effect of beam systematics we invoke
the Fisher information-matrix formalism as well as
Monte Carlo simulations of parameter extraction, the latter
for the first time. Our objective is to determine the suscep-
tibility of the above mentioned, and other, cosmological
parameters to beam systematics. For the Fisher-matrix-
based method and the Monte Carlo simulations we calcu-
late the underlying power spectrum using CAMB (Lewis,
Challinor, and Lasenby [10]). The Monte Carlo simula-
tions are carried out with COSMOMC (Lewis and Bridle
[11]). We represent the extra noise due to beam systematics
by analytic approximations (Shimon et al. [7]) and include
lensing extraction in the parameter inference process, fol-
lowing Kaplinghat, Knox, and Song [12] and Lesgourgues
et al. [13] (see also Perotto et al. [14] for the Monte Carlo
simulations) for neutrino mass (and other cosmological
parameters) reconstruction from CMB data.

This paper illustrates the effect of beam systematics and
its propagation to parameter estimation and error forecasts
for upcoming experiments. Our main concern is the effect
on the following cosmological parameters: the tensor-to-
scalar ratio r, the total neutrino mass M� (assuming three

degenerate species), tilt of the scalar index �, dark energy
equation of state w, and the spatial curvature, �k. The
lensing-induced B-mode signal is sensitive to all parame-
ters (except the tensor-to-scalar ratio) and peaks at a few
arcminute scales, while the tensor-to-scalar ratio depends
on the energy scale of inflation and the primordial signal
peaks at the characteristic horizon size at last scattering �
2�. We note that while the LSS-induced and primordial
tensor power B-mode spectra are sub-�K, the shape of the
primordial B-mode spectrum is known (only its amplitude
is unknown, Keating [15]) and the secondary LSS-induced
B-mode is guaranteed to exist by virtue of the known
existence of LSS and E-mode polarization.
The paper is organized as follows. We describe the

formalism of beam systematics for general non-Gaussian
beams and provide a cursory description of a critical tool to
mitigate polarization systematics—a half wave plate
(HWP), in Sec. II. The effect of lensing on parameter
extraction within the standard quadratic-estimators formal-
ism is discussed in Sec. III. The essentials of the Fisher-
matrix formalism are given in Sec. IV as well as some
details on the Monte Carlo simulations invoked here. Our
results are described in Sec. V, and we conclude with a
discussion of our main findings in Sec. VI.

II. BEAM SYSTEMATICS

Beam systematics due to optical imperfections depend
on both the underlying sky, the properties of the polar-
imeter, and on the scanning strategy. Temperature anisot-
ropy leaks to polarization when the output of two slightly
different beams with orthogonal polarization-sensitive di-
rections is being differenced. A trivial example is the effect
of differential gain. If the two beams have the same shape,
width, etc. except for a different overall response, i.e.
normalization, the difference of the measured intensity
will result in a nonvanishing polarization signal.
Similarly, if two circular beams slightly differ by their
width, this will again induce a nonvanishing polarization
upon taking the difference (see Fig. 2 at Shimon et al. [7]).
The spurious polarization will be proportional to tempera-
ture fluctuations on scales comparable to the difference in
beamwidths, which, due to the circular symmetry of the
problem, will be proportional to second-order gradients of
the temperature anisotropy. To eliminate these effects this
beam imperfection has to couple to non-ideal scanning
strategy as described in Shimon et al. [7] and below. A
closely related effect, which does not couple to scanning
strategy, is the effect of differential beam ellipticity. Here,
the spurious polarization scales as the second-order gra-
dient of the temperature anisotropy to leading order.
Another effect, widely described in the literature, which
again couples beam asymmetry and temperature anisot-
ropy to scanning strategy is the effect due to differential
pointing. The idea is simple; if two beams point at two
slightly different directions, they will statistically measure
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two different intensities proportional to fluctuations of the
background radiation on these particular scales. The dif-
ference, which may be naively regarded as polarization, is
nonvanishing in this case provided the scanning strategy is
non-ideal and contains either a dipole and/or an octupole
(Shimon et al. [7]). Finally, the effect of beam rotation we
consider in this work is due to uncertainty in the overall
beam orientation. This mixes the Q and U Stokes parame-
ters and as a result also leaks E to B and vice versa. A
constructive order-of-magnitude example is the effect of
differential pointing. This effect depends on the tempera-
ture gradient to first-order. The rms CMB temperature
gradients at the 1�, 300, 100, 50, and 10 scales are � 1:4,
1.5, 3.5, 2.5, and 0:2 �K=arcmin, respectively. Therefore,
any temperature difference measured with a dual-beam
experiment (with typical beamwidth of a few arcminutes)
with a� 10 pointing error will result in a� 1 �K system-
atic polarization, which has the potential to overwhelm the
B-mode signals.

Similarly, the systematic induced by differential ellip-
ticity results from the variation of the underlying tempera-
ture anisotropy along the two polarization-sensitive
directions which, in general, differ in scale depending on
the mean beamwidth, degree of ellipticity, and the tilt of
the polarization-sensitive direction with respect to the
ellipse’s principal axes. For example, the temperature dif-
ference measured along the major and minor axes of a 1�
beam with a 2% ellipticity scales as the second gradient of
the underlying temperature, which on this scale is �
0:2 �K=arcmin2, and the associated induced polarization
is therefore expected to be on the � �K level. The spu-
rious signals due to pointing error, differential beamwidth,
and beam ellipticity all peak at angular scales comparable
to the beam size. If the beam size is � 1�, the beam
systematics mainly affect the deduced tensor-to-scalar ra-
tio r. If the polarimeter’s beamwidth is a few arcminutes,
the associated systematics will impact the measured neu-
trino mass m�, spatial curvature �k, running of the scalar
spectral index �, and the dark energy equation of state w
(which strongly affects the lensing-induced B-mode sig-
nal). It can certainly be the case that other cosmological
parameters will be affected as well.

Two other spurious polarization signals we explore are
due to differential gain and differential rotation; these
effects are associated with different beam ‘‘normaliza-
tions’’ and orientation, respectively, and are independent
of the coupling between the beam substructure and the
underlying temperature perturbations. In particular, they
have the same scale dependence as the primordial tem-
perature anisotropy and polarization power spectra (as long
as the differential gain and beam rotation are spatially
independent; this of course changes if they depend on
space [8,9]), respectively, and their peak impact will be
on scales associated with the CMB’s temperature anisot-
ropy ( � 1�) and polarization ( � 100).

A. Mathematical formalism

We work entirely in Fourier space and in this section we
generalize our results (Shimon et al. [7]) to the case of the
most general beam shapes. Although the tolerance levels
on the beam parameters we derive in Secs. IV and V are
based on the assumption of elliptical beams, they can be
easily generalized to arbitrary beam shape, given the beam
profile, as we describe below. This can be used to adapt our
results to actual measured beam maps incorporating other
classes of beam non-ideality such as sidelobes.
We expand the temperature anisotropy and Q and U

Stokes parameters in 2-D plane waves since for sub-beam
scales this is a good approximation. While the (spin-0)
temperature anisotropy is expanded in scalar plane waves
eil�r, the (spin� 2) polarization tensorQþ iU is expanded

in tensor plane waves eil�re�2ið�l��rÞ, where�r is the angle
defining the direction of the radius-vector r in real space as
conventional (in an arbitrarily coordinate system on the sky
�r is the azimuthal angle along the line of sight) and �l

defines the direction of the wave-vector l in l-space in a
coordinate-system fixed to the beam as defined below, in
Eq. (2). Since in real space the temperature and polariza-
tion fields are convolved with the polarimeter’s beams,
these expressions are simply the product of their Fourier
transforms in Fourier space. For a general beam BðrÞ the
measured 2-D polarized beam map may exhibit a pointing
error �. In this case, the Fourier transform of the beam
function acquires a phase

~BðlÞ ! ~BðlÞ expðil � �Þ: (1)

It is useful to switch to polar coordinates at this point,
where we define

lx ¼ l cosð�l þ c � �Þ; ly ¼ l sinð�l þ c � �Þ;
�x ¼ � cos�; �y ¼ � sin�; (2)

and � � �þ �þ c is the angle of the polarization axis in
a coordinate system fixed to the sky (Fig. 1 of Shimon
et al. [7]). The Fourier representation of an arbitrary beam
then becomes

~BðlÞ ¼
Z

BðrÞeil�rd2r

¼
Z

BðrÞeilr cosð�lþc����rÞþil� cosð�lþ�þc����rÞd2r

� X
m;n

Bm;nðlÞeiðmþnÞð�l��Þ; (3)

where

Bm;nðlÞ ¼ imþnJnðl�ÞeiðmþnÞcþin� �
Z

rdrJmðlrÞ

�
Z

d�rBðrÞe�iðmþnÞ�r ; (4)

and in the last step we employed the expansion of 2-D
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plane waves in terms of cylindrical Bessel functions

eil� cosð�l���Þ ¼ Xn¼1

n¼�1
inJnðl�Þeinð�l���Þ: (5)

As in Shimon et al. [7], the optimal map constructed from
the CMB data depends on the measurements as

~mðpÞ ¼
� X
t;j2p

AT
j ðp; tÞAjðp; tÞ

��1

�
� X
t;j2p

AT
j ðp; tÞdjðp; tÞ

�
(6)

where the sums run over all measurements of the pixel p.
The pointing vector A is given by

A ¼
�
1;
1

2
e2i�ðp;tÞ;

1

2
e�2i�ðp;tÞ

�
; (7)

� is a function of both the pixel p and t, and AT is A
transposed. Once the leading beam coefficients Bm;nðlÞ
have been calculated, the induced power spectra of the
systematics can be calculated according to Eqs. (24),
(33), (A.1) and (A.2) of Shimon et al. [7].

Several of the beam systematics can be mitigated by
employing a HWP polarization modulator (e.g. Hanany
et al. [16], Johnson et al. [17], MacTavish et al. [18]).
These can operate in continuous or stepped rotation. When
HWP modulators are included we replace the above scan-
ning angle �ðp; tÞ with �ðp; tÞ þ 2’t, where ’ is the
angular velocity of the HWP (O’Dea, Challinor, and
Johnson [6]). Our deduced tolerance levels given below
are presented in a fashion independent of the details of the
scanning strategy; all the information about the scanning
strategy is encapsulated in the functions f1, f2, and f3:

f1 � 1
2j~hþð�1; 0Þj2;

f2 � 1
2j~hþð�1;�1Þj2 þ 1

2j~hþð�1; 1Þj2;

f3 � 1

2
h~fð0; 1Þ~h��ð1;�1Þi;

(8)

where

fðm; nÞ � he�ið2mþnÞ�ðp;tÞi;
h�ðm; nÞ � 1

D
½fðm; nÞ � fðm� 2; nÞhe�4i�ðp;tÞi	;

D � 1� he�i4�ðp;tÞihei4�ðp;tÞi;
(9)

and the angular brackets in hein�ðp;tÞi represent an average
over measurements of a single pixel p, averaged over time.
In these averages �ðp; tÞ ! �ðp; tÞ þ 2’t, and therefore
even if the scanning strategy does not uniformly cover all
polarization angles � of a given spatial pixel, the HWP
mitigates the spurious polarization caused by beam sys-
tematic effects if integrated over long time intervals. If the
hexadecapole of the scanning strategy is negligible, the
scanning strategy function f1 depends only on the quadru-

pole moment of the scanning strategy, while f2 encapsu-
lates information on both the dipole and octupole moments
of the scanning strategy.
At this point, it is instructive to show how, in the case of

an ideal scanning strategy the first-order pointing effect
vanishes. As can be seen from Table II this effect involves a
convolution of the beam function and underlying tempera-
ture anisotropy power spectrum with f2 in multipole space.
From the above definitions

hþð�1;�1Þ ¼ 1=D½he3i�i � he�i�ihe4i�i	hþð�1; 1Þ
¼ 1=D½hei�i � he�3i�ihe4i�i	h�ð1;�1Þ
¼ h�þð�1; 1Þ; (10)

and therefore if with each scanning angle � there is asso-
ciated an angle �þ 180� the f2 [Eqs. (8) and (10)] van-
ishes in real space and so does its Fourier transform. Note
that even if the scanning strategy is non-ideal f2 will
vanish provided that for each angle � the angle �þ
180� is sampled the same number of times per pixel.
This suggests that the dipole systematic can be completely
removed by removing all data points that contribute to
hþð�1;�1Þ and hþð�1; 1Þ, i.e. those measurements at �
for which �þ 180� is not sampled. Similar considerations
apply to f1, which controls the level of the differential
beamwidth- and differential gain-induced systematics (see
Table II).

B. Simplifying scan strategy effects

When the polarization angle at each pixel on the sky is
uniformly sampled the average hein�i vanishes for every
n � 0. In this case the scanning strategy is referred to as an
ideal scanning strategy. For uniform, but non-ideal, scan-
ning strategies, the scanning functions f1, f2, and f3
mentioned above (which are combinations of hein�i) are
nonvanishing even when n > 0 but uniform in real space.
As a result, their Fourier transforms are unnormalized delta
functions (the actual amplitudes are directly related to the
average values hein�i), and the convolutions in Fourier
space shown in Tables III-IVof Shimon et al. [7] become
trivial. To determine the tolerance level for beam parame-
ters we assume such uniform scanning strategies.
A uniform scanning strategy is a particularly useful

example. A nearly uniform scanning strategy can be rea-
sonably approximated by a sum over a few lowest multi-
poles, such as

~f iðlÞ ¼
Xl0max

l0¼0

f0iðl0Þ�ðl� l0Þ=ðl� l0Þ: (11)

Here jlmaxj is assumed sufficiently small, and i ¼ 1 or 2,
where f1, f2, and f3 are defined in Eq. (8)). In this case, the
‘-mode mixing due to the convolution of the underlying
power spectra and the scanning functions as in Table II
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(? stands for convolution in multipole space). ~fi can be
written as

~f i ? CT
l � fi

2	
� CT

l fi �
Xl0max

l0¼1

f0iðl0Þ: (12)

We assume here that the nonvanishing multipoles of ~fi are
concentrated near 0, i.e. that the scanning strategy is non-
ideal, yet approximately uniform. We have employed this
simplifying assumption throughout.

III. THE EFFECT OF SYSTEMATICS ON LENSING
RECONSTRUCTION

Gravitational lensing of the CMB is both a nuisance and
a valuable cosmological tool (e.g. Zaldarriaga and Seljak
[19]). It certainly has the potential to complicate CMB data
analysis due to the non-Gaussianity it induces. However, it
is also a unique probe of the growth of structure in the
linear, and mildly nonlinear, regimes (redshift of a few).
Kaplinghat, Knox, and Song [12], Lesgourgues et al. [13],
as well as others, have shown that with a nearly ideal CMB
experiment (in the sense that instrumental noise as well as

FIG. 1 (color online). For all panels the solid black curve is the deflection angle power spectrum Cdd
l caused by gravitational lensing

by the LSS. Top left: The noise (with no systematics) in lensing reconstruction from the quadratic optimal filters for POLARBEAR TT
(solid dark blue), EE (dotted light blue), TE (dashed green), TB (dotted-dashed yellow), EB (double-dotted-dashed orange) and MV
(dashed dark red). For POLARBEAR sensitivity and angular resolution, the lowest-noise estimator is one of the EE and TE estimators
depending on the angular size. Top right: Noise in lensing reconstruction for POLARBEAR with the MV estimator including the
effects of the most pernicious irreducible cross-polarization systematic: differential rotation. Differential rotation values are (bottom to
top) " ¼ 0:01, 0.02, 0.05, 0.10, and 0.20 rad, respectively. High signal-to-noise deflection angle reconstruction can be obtained over
nearly a decade of angular scale. The lensing reconstruction is not significantly affected by systematics because of the significant
contribution of the temperature to the MV estimator. Bottom left: Noise in lensing reconstruction for POLARBEAR with the MV
estimator including the most pernicious irreducible instrumental polarization systematics: differential ellipticity. Differential ellipticity
values are (bottom to top) e ¼ 0:01, 0.02, 0.05, 0.10, and 0.20, respectively (we assume c ¼ 45�). The same explanation for
insensitivity to differential rotation applies here for differential ellipticity e; the best estimator for this experiment is derived from
temperature correlations, which are hardly affected by beam systematics (and completely ignored in this analysis). Bottom right: Noise
in lensing reconstruction for POLARBEAR with the MV estimator for the most pernicious reducible instrumental polarization
systematics: differential pointing with 1% and 10% pointing errors (i.e. � ¼ 0:01
 and � ¼ 0:1
, respectively) under the ‘‘worst
case’’ assumption that the scanning-strategy-related function f2 ¼ 2	.
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astrophysical foregrounds are negligibly small), neutrino
mass limits can be improved by a factor of approximately
four by including lensing extraction in the data analysis
using CMB data alone. This lensing extraction process is
not perfect; a fundamental residual noise will afflict any
experiment, even ideal ones. This noise will, in principle,
propagate to the inferred cosmological parameters if the
latter significantly depend on lensing extraction, e.g. neu-
trino mass, � and w. It is important to illustrate first the
effect of beam systematics on lensing reconstruction. By
optimally filtering the temperature and polarization, Hu
and Okamoto [20] reconstructed the lensing potential
from quadratic estimators. It was shown that for experi-
ments with 10 times higher sensitivity than Planck, the EB
estimator (the estimator constructed from E-B correla-
tions) yields the tightest limits on the lensing potential.
This result assumes no beam systematics, which might
significantly contaminate the observed B mode.

We illustrate the effect of differential beam rotation,
ellipticity, and differential pointing (see Shimon et al.
[7]) on the noise of lensing reconstruction with
POLARBEAR (1200 detectors), CMBPOL-A (one of
two toy experiments we consider for CMBPOL; 0:22 �K
sensitivity and 5’ beam) and a toy model considered earlier

by O’Dea, Challinor, and Johnson [6], which we refer to as
QUIETþ CLOVER in Figs. 1–3, respectively. These are
perhaps the most pernicious systematics. Beam rotation
induces cross-polarization, which leaks the much larger E
mode to B-mode polarization and differential ellipticity
leaks T to B. Both leak to B mode in a way indistinguish-
able under rotation from a true B-mode signal. The rotation
and ellipticity parameters (" and e, respectively) we con-
sidered range from 0.01 to 0.20 (e is dimensionless and " is
given in radians). The differential pointing �, was set to 1%
and 10% of the beamwidth, while the dipole and octupole
components of the scanning strategy were set to the ‘‘worst
case scenario’’ f2 ¼ 2	, i.e. the unlikely situation where
all ‘‘hits’’ at a given pixel take place at the same polariza-
tion angle � (again, for ideal scanning strategy f2 ¼ 0 and
the dipole effect due to differential pointing vanishes).
Note for POLARBEAR (Fig. 1) with "; e ¼ 0:2 the lensing
potential can be reconstructed up to l � 200, while with no
beam rotation it can be reconstructed up to l � 250.
However, with CMBPOL-A (Fig. 2) lensing reconstruction
degrades significantly in the presence of beam rotation
[from good reconstruction up to l � 600 in the
systematics-free case down to l � 250 when "; e ¼ 0:2
and � ¼ 0:50 (in case f2 ¼ 2	)]. The reason for the quali-

FIG. 2 (color online). Lensing reconstruction with CMBPOL-A: As in Fig. 1. For CMBPOL-A sensitivity and angular resolution, the
lowest-noise estimator comes from correlations of the EB estimator. Therefore, lensing reconstruction is only mildly affected by beam
systematics.
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tative difference is that for experiments with sensitivities
comparable to PLANCK or POLARBEAR, the best esti-
mator of the lensing potential comes from the TT, TE and
EE correlations (depending on scale l) and the cross cor-
relations involving Bmode are only secondary in probative
power (see top-left panel of Fig. 1). Therefore, lensing
reconstruction for these experiments is hardly affected by
beam systematics (we ignored the negligible beam system-
atics’ effect on temperature anisotropy and considered only
those of E and B). In contrast, as can be seen from Fig. 2,
CMBPOL-A’s lensing reconstruction is significantly de-
graded since its lensing reconstruction is dominated by the
contribution of the EB estimator for all relevant multipoles
(see top-left panel of Fig. 2). The modified noise in recon-
structing the lensing potential, Ndd

l , is consistently substi-

tuted into our Fisher matrix and Monte Carlo simulations
(below, we summarize the relevant expressions of the
quadratic estimators method).

Following Hu and Okamoto [20], the minimum-variance
(MV) noise on the lensing deflection angle reconstructed
power spectrum Cdd

l is

Ndd
MV ¼

�X
��

ðN�1Þ��
��1

; (13)

where

N��ðLÞ ¼ L�2A�ðLÞA�ðLÞ
Z d2l1

ð2	Þ2 F�ðl1; l2ÞðF�ðl1; l2Þ

� C
x�;x�
l1

C
x0�;x0�
l2

þ F�ðl2; l1ÞCx�;x
0
�

l1
C
x0�;x�
l2

ÞA�ðLÞ

� L2

�Z d2l11
ð2	Þ2 h�ðl1; l1ÞF�ðl1; l1Þ

��1
; (14)

and � stands for one of the pairings TT, TE, EE, TB, and
EB (BB does not participate in these combinations). The
coupling takes place between different modes l1 and l2.
When � ¼ TT or EE

F�ðl1; l2Þ ! h�ðl1; l2Þ
2C0xx

l1
C0xx
l2

; (15)

and when � ¼ TB or EB

F�ðl1; l2Þ ! h�ðl1; l2Þ
C0xx
l1
C0x0x0
l2

; (16)

where C0
l are the observed power spectra, i.e. including

lensing, main-beam dilution on small scales, and in prin-
ciple—beam systematics (see Tables I and II). The latter
mainly affect the B-mode polarization, and as a result, the

FIG. 3 (color online). Lensing reconstruction with QUIETþ CLOVER: As in Fig. 1. For QUIETþ CLOVER sensitivity and
angular resolution, the lowest-noise estimator comes from correlations of the EB estimator. Therefore, lensing reconstruction is
significantly affected by beam systematics.
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EB estimator. A list of h�ðl1; l2Þ can be found in Hu and
Okamoto [20]. We have used the publicly available code
[21] employed in Lesgourgues et al. [13] and in Perotto
et al. [14]. The code is based on the formalism developed
in Okamoto and Hu [22], an extension of Hu and Okamoto
[20] to the full sky, to calculate the noise level in lensing
reconstruction.

IV. ERROR FORECAST

Accounting for beam systematics in both Stokes pa-
rameters and lensing power spectra is straightforward. In
addition, the instrumental noise associated with the main
beam is accounted for, as is conventional, by adding an
exponential noise term. Assuming Gaussian white noise

Nl ¼ 1P
a
ðNaa

l Þ�1
; (17)

where a runs over the experiment’s frequency bands. The
noise in channel a is (assuming a gaussian beam)

Naa
l ¼ ð�a�aÞ2elðlþ1Þ�2a=8 lnð2Þ; (18)

where �a is the noise per pixel in �K arcmin, �a is the
beam width (see Table III), and we assume noise from

different channels is uncorrelated. The power spectrum
then becomes

CX
l ! CX

l þ NX
l ; (19)

where X is either the autocorrelations TT, EE, and BB or

TABLE III. Instrumental characteristics of the CMB polarim-
eters considered in this work: fsky is the observed fraction of the

sky, � is the center frequency of the channels in GHz, �b is the
full-width at half-maximum in arcminutes, �T is the temperature
sensitivity per pixel in �K, and �E ¼ �B is the polarization
sensitivity. For all experiments, we assumed 1 yr of observations
(PLANCK [23], POLARBEAR [24], SPIDER [18], QUIETþ
CLOVER [6]). CMBPOL-A and B represent toy experiments for
illustration with CMBPOL-A having 1000 PLANCK detectors
and PLANCK resolution and CMBPOL-B has higher resolution
but 1 �K noise level (Kaplinghat, Knox, and Song [12]).

Experiment fsky � �b �T �E

PLANCK 0.65 30 330 2.0 2.8

44 240 2.7 3.9

70 140 4.7 6.7

100 9:50 2.5 4.0

143 7:10 2.2 4.2

217 5:00 4.8 9.8

353 5:00 14.7 29.8

545 5:00 147 1
857 5:00 6700 1

POLARBEAR 0.03 90 6:70 1.13 1.6

150 4:00 1.70 2.4

220 2:70 8.0 11.3

SPIDER 0.6 96 580 0.46 0.65

145 400 0.50 0.71

225 260 2.22 3.14

275 210 5.71 8.08

QUIETþ CLOVER 0.015 150 100 0.34 0.48

CMBPOL-A 0.65 150 50 0.22 0.32

CMBPOL-B 0.65 150 30 1.0 1.4

TABLE II. The scaling laws for the systematic effects to the power spectra CT
l , C

TE
l , CE

l , and CB
l assuming the underlying sky is not

polarized (except for the rotation signal where we assume the E and B-mode signals are present) and a general, not necessarily ideal or
uniform, scanning strategy. The next order contribution (10% of the ‘‘pure’’ temperature leakage shown in the table) is contributed by
CTE
l . It can be easily calculated based on the general expressions in Shimon et al. [7], where the definitions of z, �, ", etc., are also

found. For the pointing error we found that the ‘‘irreducible’’ contribution to B-mode contamination, arising from a second-order
effect, is extremely small and therefore only the first-order terms (which vanish in ideal scanning strategy) are shown. The functions f1
and f2 are experiment specific and encapsulate the information about the scanning strategy, which couples to the beam mismatch
parameters to generate spurious polarization. In general, the functions f1 and f2 are spatially anisotropic but for simplicity, and to
obtain a first-order approximation, we consider them constants (see Sec. II B) in general. In the case of ideal scanning strategy they
identically vanish. The exact expressions are given in Shimon et al. [7].

Effect Parameter �CTE
l �CE

l �CB
l

Gain g 0 g2f1 ? CT
l g2f1 ? CT

l

Monopole � 0 4�2ðl
Þ4CT
l ? f1 4�2ðl
Þ4CT

l ? f1
Pointing � �c�J

2
1ðl�ÞCT

l ? f3 J21ðl�ÞCT
l ? f2 J21ðl�ÞCT

l ? f2
Quadrupole e �I0ðzÞI1ðzÞccCT

l I21ðzÞc2cCT
l I21ðzÞs2cCT

l

Rotation " 0 4"2CB
l 4"2CE

l

TABLE I. Definitions of the parameters associated with the
systematic effects. Subscripts 1 and 2 refer to the first and second
polarized beams of the dual-beam polarization assumed in this
work.

Depends on beam

substructure

Effect Parameter Definition

No Gain g g1 � g2
Yes Monopole � 
1�
2


1þ
2

Yes Dipole � �1 � �2

Yes Quadrupole e

x�
y


xþ
y

No Rotation " 1=2ð"1 þ "2Þ

N. J. MILLER, M. SHIMON, AND B.G. KEATING PHYSICAL REVIEW D 79, 063008 (2009)

063008-8



the cross correlations TE, TB, andEB (the latter two power
spectra vanish in the standard model but not in the presence
of beam systematics and exotic parity-violating physics,
e.g. Carroll [25], Liu, Lee, and Ng [26], Xia et al. [27],
Komatsu et al. [28] or primordial magnetic fields, e.g.
Kosowsky and Loeb [29]). For the cross correlations, the
NX

l vanish as there is no correlation between the instru-

mental noise of the temperature and polarization (in the
absence of beam systematics).

A. Fisher-matrix-based calculation

The effect of instrumental noise is simply to increase the
error bars, which is evident from the Fisher-matrix formal-
ism below. The 1-
 error 
ð�iÞ on the cosmological pa-
rameter �i can be read off from the appropriate diagonal
element of the inverse Fisher matrix


ð�iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF�1Þii

q
; (20)

where the Fisher-matrix elements are defined as

Fij ¼ �
�

@2L

@�i@�j

�
; (21)

L is the likelihood function, and Eq. (21) is evaluated at the
best-fit point in parameter space. Explicitly, the Fisher-
matrix elements for the CMB read

Fij ¼ 1

2

X
l

ð2lþ 1ÞfskyTrace
�
C�1 @C

@�i

C�1 @C

@�j

�
: (22)

The prefactor 1=2ð2lþ 1Þfsky comes from the sample

variance of the multipole l with an experiment covering a
fraction fsky of the sky. The matrix C is

C ¼
C0TT
l CTE

l 0 CTd
l

CTE
l C0EE

l 0 0
0 0 C0BB

l 0
CTd
l 0 0 C0dd

l

0
BBB@

1
CCCA; (23)

where the diagonal primed elements C0XX
l � CXX

l þ NXX
l

and X 2 fT; E; B; dg. In general, NEE
l ¼ NBB

l ¼ 2NTT
l .

Note that, except for Ndd
l , which is not an instrumental

noise and emerges only because of the limited reconstruc-
tion of the lensing potential by the quadratic estimators of
Hu and Okamoto [20], the instrumental noise will increase
C, but not its derivatives with respect to the cosmological
parameters. This will increase the error on the parameter
estimation as seen from Eqs. (20), (22), and (23). It is
merely because the instrumental noise dilutes the informa-
tion below the characteristic beamwidth scale, and the
error increases correspondingly. However, this is not nec-
essarily the case with beam systematics since they couple
to the underlying cosmological model, and therefore do
depend on cosmological parameters. This noise due to
systematicsN

sys
l contributes to bothC and @C

@�i
and its effect

on the confidence level of parameter estimation can be, in
principle, either a degradation or an improvement. This
argument ignores potential systematic errors, i.e. bias (sys-
tematic shift of the average of the statistical distribution,
which characterizes certain cosmological parameters) of
the recovered average values of the cosmological parame-
ters. Indeed, as we show below, the main effect of beam
systematics is to bias the inferred cosmological parame-
ters, especially for large beam mismatch parameters, as
naively expected (see Fig. 4 for a comparison between the
bias and the uncertainty induced on the tensor-to-scalar
ratio and neutrino masses by beam ellipticity). It is impor-
tant to note that, although our focus is on beam systematics
and their effect on parameter estimation, we do not include
the systematics-induced CTB

l and CEB
l in the analysis [Eqs.

(22) and (23)] because our main concern is how standard
data analysis pipelines will be affected by beam system-
atics. We defer the treatment of the more general case,
which includes the parity-violating terms and their effect
on constraints of beyond-the-standard-model parity-
violating interactions in the primordial universe, to a future
work (Miller, Shimon, and Keating [30]).

FIG. 4 (color online). Uncertainty in the tensor-to-scalar ratio r (top) and total neutrino mass M� (bottom) due to beam ellipticity of
POLARBEAR. The black solid curve is the statistical error (uncertainty) and the red dashed curve is the bias. As we vary e, the
uncertainty increases by only a few percent (i.e. the width of the corresponding 1-D likelihood function does not significantly change).
The bias, however, sharply rises with increasing ellipticity, i.e. the expectation value of r and M� significantly changes. In general, we
find that beam systematics mainly bias the inferred parameters since, for large enough beam systematics parameters, the spurious
polarization signal overwhelms the cosmological signal.
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Given the beam systematics the bias of a parameter can
be calculated with the Fisher Matrix. This has been done by
O’Dea, Challinor, and Johnson [6]. The bias in a parameter
�i, if not too large, is given by

��i ¼ h�obs
i i � h�true

i i ¼ X
j

ðF�1ÞijBj; (24)

where the bias vector B can be written as

B ¼ X
l

ðCsys
l Þt��1 @C

cmb
l

@�j

(25)

and �ij ¼ covðCi
l; C

j
l Þ and Cl is a vector containing all six

power spectra.

B. Monte Carlo simulations

The Fisher-matrix approach is known to provide reliable
approximation to the uncertainty in case of Gaussian dis-
tributions and only a lower bound for more general distri-
butions by virtue of the Cramer-Rao theorem. It can yield
poor estimates, however, in cases of large biases and
parameter degeneracies. To check for such effects in our
simulations we repeated the analysis with MCMC simula-
tions, which make use of the full likelihood function and
not only its peak value and can therefore provide reliable
estimates of parameter errors even in the presence of large
biases. Our simulations illustrate that even when we con-
sider the Fisher-matrix-based results as a guide for choos-
ing the beam parameters for the MCMC simulations, the
resulting bias that the Monte Carlo simulations predict can
be larger than those found with the Fisher-matrix-based
calculation [actually Eq. (24) assumes that the bias is small
compared to the characteristic width of the likelihood
function of the parameter in question; when this is not
the case this approximation is invalid] in some cases.
This important point is further elucidated in the next
section. For our Monte Carlo simulations we use a modi-
fied version of CosmoMC [31], which includes measure-
ments of the lensing potential and its cross correlation with
the temperature anisotropy when calculating the likelihood
in order to run these simulations. An 11 parameter model is
used (�bh

2,�dmh
2,�, �,��h

2, w, ns, nt, �, logð1010AsÞ,
and r). We ran simulations for each of the five systematic
effects with noise corresponding to POLARBEAR,
CMBPOL-B, and QUIETþ CLOVER experiments.
While running Monte Carlo simulations is much more
time-consuming compared to the Fisher-matrix approach,
the error forecasts for future experiments will ultimately
have to account for a potentially significant biases of the
inferred cosmological parameters.

V. RESULTS

For both the Fisher andMCMCmethods we consider the
effect of both irreducible and reducible systematics. By

‘‘reducible’’ we refer to systematics that depend on the
coupling of an imperfect scanning strategy to the beam
mismatch parameters. These can, in principle, be removed
or reduced during data analysis. This includes the differ-
ential gain, differential beamwidth, and first-order pointing
error beam systematics. By ‘‘irreducible’’ we refer to those
systematics that depend only on the beam mismatch pa-
rameters (to leading order). For instance, the differential
ellipticity and second-order pointing error persist even if
the scanning strategy is ideal. For reducible systematics the
scanning strategy is a free parameter in our analysis (under
the assumption it is non-ideal, yet uniform, over the map)
and we set limits on the product of the scanning strategy
(encapsulated by the f1 and f2 parameters) and the differ-
ential gain, beamwidth, and pointing, as will be described
below.
To calculate the power spectra we assume the concord-

ance cosmological model throughout; the baryon, cold
dark matter, and neutrino physical energy densities in
critical density units �bh

2 ¼ 0:021, �ch
2 ¼ 0:111,

��h
2 ¼ 0:006. The latter is equivalent to a total neutrino

mass M� ¼ P3
i¼1 m�;i ¼ 0:56 eV, slightly lower than the

current limit set by a joint analysis of the Wilkinson
Microwave Anisotropy Probe (WMAP) data and a variety
of other cosmological probes (0.66 eV, e.g. Spergel et al.
[32]). We assume degenerate neutrino masses, i.e. all
neutrinos have the same mass, 0.19 eV, for the purpose of
illustration, and we do not attempt to address here the
question of what tolerance levels are required to determine
the neutrino hierarchy. As was shown by Lesgourgues
et al. [13], the prospects for determining the neutrino
hierarchy from the CMB alone, even in the absence of
systematics, are not very promising. This conclusion may
change when other probes, e.g. Ly-� forest, are added to
the analysis. Dark energy makes up the rest of the energy
required for closure density. The Hubble constant, dark
energy equation of state, and helium fraction are, respec-
tively, H0 ¼ 70 km sec�1 Mpc�1, w ¼ �1, and YHe ¼
0:24. h is the Hubble constant in 100 km= sec =Mpc units.
The optical depth to reionization and its redshift are �re ¼
0:073 and zre ¼ 12. The normalization of the primordial
power spectrum was set to As ¼ 2:4� 10�9 and its power
law index is ns ¼ 0:947 (Komatsu et al. [28]).
Since the effect of beam systematics is the focus of this

paper, and because these systematics are generally man-
ifested on scales smaller than the beamwidth (except for
the effects of differential gain and rotation) we concentrate
on some specific cosmological parameters, which will be
targeted by upcoming CMB experiments. These parame-
ters have been chosen for our analysis because we expect
them to benefit from lensing extraction or simply because
they are somehow associated with small angular scales and
therefore are prone to systematics on sub-beam scales. We
limit our analysis to the tensor-to-scalar ratio r, dark
energy equation of state w, spatial curvature �k, running

N. J. MILLER, M. SHIMON, AND B.G. KEATING PHYSICAL REVIEW D 79, 063008 (2009)

063008-10



of the scalar index �, and total neutrino mass M�. While r
is mainly constrained by the primordial B-mode signal that
peaks on degree scales (and is therefore not expected to be
overwhelmed by the beam systematics that peak at sub-
beam scales), it is still susceptible to the tail of these
systematics, extending all the way to degree scales, be-
cause of its expected small amplitude (less than 0:1 �K).
The tensor-to-scalar ratio is also affected by differential
gain and rotation, which are simply rescalings of tempera-
ture anisotropy and E-mode polarization power spectra,
respectively, and therefore do not necessarily peak at scales
beyond the primordial signal.

The other four parameters either determine the primor-
dial power spectrum PðkÞ on small angular scales (e.g. �)
or affect the lensed signal (both temperature and polariza-
tion) at late times (e.g. M�, �k, w). Ideally, the lensing
signal, which peaks at l � 1000, provides a useful handle
on the neutrino mass as well as other cosmological pa-
rameters, which govern the evolution of the large-scale
structure and gravitational potentials. However, the inher-
ent noise in the lensing-reconstruction process (Hu and
Okamoto [20]), which depends, among others, on the
instrument specifications (instrumental noise and beam-
width), now depends on beam systematics as well. The
systematics, however, depend on the cosmological parame-
ters through temperature leakage to polarization, and as a
result there is a complicated interplay between these sig-
nals and the information they provide on cosmological
parameters. As our numerical calculations show, the effect
on the inferred cosmological parameters stems from both
the direct effect of the systematics on the parameters [the
top-left 3� 3 block of the covariance matrix, Eq. (23)] and
the indirect effect on the noise in the lensing reconstruc-
tion,Ndd

l , in cases where the MVestimator is dominated by

the EB correlations (see Sec. III).

A. Fisher-matrix results

The Fisher-information matrix gives a first-order ap-
proximation to the lower bounds on errors inferred for
these parameters. However, by construction, it uses only
the information from the peak of the likelihood function.
Markov Chain Monte Carlo simulations are known to be
superior to Fisher-matrix-based analysis in cases of strong
parameter degeneracies and bias but Fisher-matrix results
are useful for first-order approximation and provide start-
ing values for MCMC simulations.

We follow O’Dea, Challinor, and Johnson [6] in quanti-
fying the required tolerance on the differential gain, dif-
ferential beamwidth, pointing, ellipticity, and rotation. To
estimate the effect of systematics and to set the systematics
to a given tolerance limit one has to compare the
systematics-free 1
 error in the i-th parameter [Eq. (20)]
to the error obtained in the presence of systematics. The
latter has two components; the bias and the uncertainty
(which depend on the curvature of the likelihood function,

i.e. to what extent does the information matrix constrain
the cosmological model in question). As in O’Dea,
Challinor, and Johnson [6] we define

� ¼ ��i


�i

���������0
i

; � ¼ �
�i


�i

���������0
i

; (26)

where the superscript 0 refers to values evaluated at the
peak of the likelihood function, i.e. the values we assume
for the underlying model, and ��i and �
�i

are the bias

[defined in Eq. (24)] and the change in the statistical error
for a given experiment and for the parameters �i induced
by the beam systematics, respectively. As shown in O’Dea,
Challinor, and Johnson [6] these two parameters depend
solely on the primordial, lensing, and systematics power
spectra. We require both � and � not to exceed 10% of the
uncertainty without systematics. As illustrated in Fig. 4 for
the case of tensor-to-scalar ratio and neutrino total mass,
the bias exceeds the uncertainty at some value of the beam
ellipticity. This is a general result; for given beam system-
atic and a cosmological parameter the bias becomes the
dominant component of the error in parameter estimation
for sufficiently large beam imperfection (ellipticity, gain,
etc.). This sets the limit on our five systematics parameters
as demonstrated in Tables IV, V, VI, VII, VIII, and IX for
PLANCK, POLARBEAR, SPIDER, QUIETþ CLOVER,
CMBPOL-A and CMBPOL-B (we considered two cases
which we refer to as CMBPOL-A and CMBPOL-B, the
former is a high sensitivity experiment with 1000 Planck-
equivalent detectors, the later is motivated by Kaplinghat,
Knox, and Song [12]) whose specifications are given in
Table III. For the systematics power spectra we used the
expressions in Table II assuming only temperature leakage

TABLE IV. Systematics tolerance for PLANCK: shown are
the nominal cosmological parameters we used along with the
tolerance levels (as defined by the criterion that both � and �,
Eq. (26), should not exceed the 10% threshold) set on combi-
nations of the quadrupole of the scanning strategy (f1, under the
assumption of uniform scanning strategy) and the dimensionless
differential gain g and differential beamwidth �. Also is shown
the constraint on pointing error weighted by the dipole of the
scanning strategy (f2) in arcsec units. The tolerance level on
ellipticity e is dimensionless (we assumed the worst case sce-
nario that c ¼ 45�) and the allowed rotation " is given in
angular degrees. Except for the differential beamwidth effect,
the most severe constraints are obtained from the requirement
that r is not biased. g and �, the parameters representing the
differential gain and differential beamwidth, are defined in
Table I.

Parameter Nominal value g
1%

ffiffiffiffiffi
f1
2	

q
�
1%

ffiffiffiffiffi
f1
2	

q
ð�100Þ

ffiffiffiffiffi
f2
2	

q
e
1% "½deg	

r 0.01 0.02 0.42 1.5 0.8 0.72

w �1 0.33 0.38 2.5 2.4 2.86

�k 0 0.37 0.44 3.0 2.6 3.72

� 0 0.67 0.33 2.2 2.1 2.23

M�½eV	 0.56 0.32 0.38 2.4 2.4 2.58
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(i.e. polarization-free underlying sky) except for the effect
of differential rotation where we consider mixing between
the E- and B-mode. CTE cannot leak to the B-mode power
spectrum since it assumes negative values for certain multi-
pole numbers and CE contribution is higher order correc-
tion to the B-mode systematics and will add only few
percent at most to the induced systematics. Because of
the scaling of the systematics with the beam width, this
potentially negligible CE contribution, which contaminate
the B-mode polarization at second order, will result in only
a few percent change to the tolerance levels for the beam
parameters we consider. More specifically, Tables IV, V,
VI, VII, VIII, and IX contain the maximum differential
gain, beamwidth, pointing, ellipticity, and rotation, in units

of
ffiffiffiffiffi
f1
2	

q
of a percent,

ffiffiffiffiffi
f2
2	

q
of an arcsecond, a percent, and a

degree, respectively. As explained in Eq. (12) the factor 2	
in the denominators is the result of our assumption that the
scanning strategy is spatially uniform. All results are ro-
bust against changing the step size used. Under the as-
sumption of uniform scanning strategy and assuming worst
case scenario’’’ that the quadrupole moment of the scan-

ning strategy is maximal (
ffiffiffiffiffi
f1
2	

q
¼ 1) in case of differential

gain and beamwidth and that the monopole and octupole

moments are maximal (
ffiffiffiffiffi
f2
2	

q
¼ 1) these allowed values

correspond directly to g and � in (percent units) and �
(in arcsec units), respectively. It is also apparent from the
tables that better sensitivity and higher resolution experi-
ments generally require better control of beam parameters.
This is expected since our criterion is the fixed 10% thresh-
old in � and �, i.e. the systematics are not allowed to
exceed the 10% (or any other reasonably chosen threshold)
level in the parameter uncertainty (
�i

) units. Higher-

sensitivity experiments will have smaller 
�i
in general

and therefore the allowed g, �, e, �, and " will be smaller.
This does not imply necessarily that controlling beam
systematics of higher-sensitivity experiments will be
more challenging since the uncertainty of beam parameters
is a direct result of the signal-to-noise level with which the
beam is calibrated against a point source. Reducing the
detector noise (akin to higher-sensitivity experiment) al-
lows smaller uncertainty in beam parameters. Also, as
mentioned above the 10% threshold adapted here is arbi-
trarily chosen and as long as we keep the systematic bias on
the cosmological parameters �i smaller than 
�i

, e.g. even

in case � is as high as 0.2, the beam systematics will not
significantly degrade the science. Therefore, even very
sensitive high-resolution experiments are expected to yield
good systematics control.

B. MCMC results

This work is the first to employ Monte Carlo simulations
to assess the effect of beam systematics on parameter
estimation. We first considered beam parameters that bias

TABLE IX. Systematics tolerance for CMBPOL-B: As in
Table IV.

Parameter Nominal value g
1%

ffiffiffiffiffi
f1
2	

q
�
1%

ffiffiffiffiffi
f1
2	

q
ð�100Þ

ffiffiffiffiffi
f2
2	

q
e
1% "½deg	

r 0.01 0.0031 0.57 0.2 1.1 0.066

w �1 0.0728 0.40 0.9 1.7 0.716

�k 0 0.0762 0.39 0.8 1.8 0.888

� 0 0.0600 0.30 0.4 1.3 0.315

M�½eV	 0.56 0.0700 0.45 1.4 1.7 0.544

TABLE VII. Systematics tolerance for QUIETþ CLOVER:
As in Table IV.

Parameter Nominal value g
1%

ffiffiffiffiffi
f1
2	

q
�
1%

ffiffiffiffiffi
f1
2	

q
ð�100Þ

ffiffiffiffiffi
f2
2	

q
e
1% "½deg	

r 0.01 0.009 0.20 0.4 0.4 0.2

w �1 0.114 0.17 3.2 0.6 0.9

�k 0 0.122 0.18 3.5 0.7 1.0

� 0 0.148 0.13 1.4 0.4 0.6

M�½eV	 0.56 0.109 0.18 3.1 0.7 0.8

TABLE VIII. Systematics tolerance for CMBPOL-A: As in
Table IV.

Parameter Nominal value g
1%

ffiffiffiffiffi
f1
2	

q
�
1%

ffiffiffiffiffi
f1
2	

q
ð�100Þ

ffiffiffiffiffi
f2
2	

q
e
1% "½deg	

r 0.01 0.0016 0.05 0.04 0.10 0.023

w �1 0.0259 0.19 0.4 0.28 0.773

�k 0 0.0270 0.21 0.4 0.28 0.372

� 0 0.0266 0.08 0.3 0.21 0.123

M�½eV	 0.56 0.0251 0.18 0.4 0.28 0.401

TABLE V. Systematics tolerance for POLARBEAR: As in
Table IV.

Parameter Nominal value g
1%

ffiffiffiffiffi
f1
2	

q
�
1%

ffiffiffiffiffi
f1
2	

q
ð�100Þ

ffiffiffiffiffi
f2
2	

q
e
1% "½deg	

r 0.01 0.01 0.74 0.5 1.4 0.25

w �1 0.16 0.38 1.7 1.8 1.26

�k 0 0.18 0.39 1.8 1.8 2.01

� 0 0.17 0.30 1.2 1.3 0.77

M�½eV	 0.56 0.15 0.42 1.9 1.8 1.06

TABLE VI. Systematics tolerance for SPIDER: As in
Table IV.

Parameter Nominal value g
1%

ffiffiffiffiffi
f1
2	

q
�
1%

ffiffiffiffiffi
f1
2	

q
ð�100Þ

ffiffiffiffiffi
f2
2	

q
e
1% "½deg	

r 0.01 0.03 0.10 2.2 0.19 0.97

w �1 0.13 0.31 9.2 0.47 2.86

�k 0 0.10 0.57 9.9 1.75 3.43

� 0 0.19 0.12 5.9 0.55 6.88

M�½eV	 0.56 0.10 0.26 10.9 0.38 3.72
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the tensor-to-scalar ratio by 10%, 50%, and 100% of the
error [i.e. � ¼ 0:1, 0.5, and 1.0, see Eq. (26)] found with
the Fisher-matrix formalism. The limiting value of � ¼ 0:1
was chosen for the Fisher-matrix formalism so that it was
small enough such that we should not be able to see a bias,
which is what we want for a limit. For the MCMC simu-
lations, we want to be able to distinctly see a bias and with
� ¼ 1we expected to observe it. The other two values � ¼
0:1 and 0.5 are also reported mainly for the purpose of

comparison between the naive expectations (based on
Fisher-matrix analysis) with the MCMC results. For these
simulations we focus only on the most sensitive cosmo-
logical parameters: r, w, and M�. We ran the MCMC
analysis on the experiments POLARBEAR, CMBPOL-B,
and QUIETþ CLOVER.
Our results for POLARBEAR are reported in Table X,

for CMBPOL-B in Table XI, and for QUIETþ CLOVER
in Table XII. The most sensitive parameter to the beam

TABLE X. The effect of differential gain, pointing, beamwidth, ellipticity, and rotation on parameter estimation for POLARBEAR
obtained with MCMC simulations. The systematic beam parameters ", g, etc. were chosen so that �Fish [Eq. (26)] assumes the
specified values (third column from left), i.e. the bias-to-uncertainty ratio in the tensor-to-scalar ratio r (assuming r ¼ 0:01), as
obtained by the Fisher-matrix-based calculation. The values shown are the cosmological parameters recovered from the full likelihood
function and their 1
 errors. The biases we obtain for differential beamwidth and ellipticity are orders of magnitude larger and are not
shown here.

Parameter No sys. �Fish Diff. gain Diff. pointing Diff. beamwidth Diff. ellipticity Diff. rotation

r 0:0103� 0:0036 0.1 0:0108� 0:0037 0:0108� 0:0038 0:0109� 0:0036 0:0107� 0:0038 0:0109� 0:0037
0.5 0:0123� 0:0038 0:0124� 0:0040 0:0133� 0:0042 0:0126� 0:0041 0:0122� 0:0049
1.0 0:0152� 0:0042 0:0152� 0:0047 0:0205� 0:0058 0:0192� 0:0056 0:0147� 0:0043

w �1:170� 0:328 0.1 �1:170� 0:328 �1:168� 0:325 �1:217� 0:328 �1:154� 0:334 �1:180� 0:335
0.5 �1:163� 0:307 �1:186� 0:331 �1:391� 0:269 �1:174� 0:329 �1:172� 0:327
1.0 �1:171� 0:321 �1:194� 0:334 �1:575� 0:217 �1:153� 0:333 �1:145� 0:320

M�½eV	 0:537� 0:071 0.1 0:539� 0:068 0:538� 0:070 0:558� 0:068 0:531� 0:069 0:540� 0:070
0.5 0:540� 0:067 0:538� 0:073 0:661� 0:065 0:538� 0:070 0:537� 0:068
1.0 0:544� 0:066 0:542� 0:074 0:924� 0:074 0:533� 0:077 0:533� 0:070

TABLE XI. The effect of beam systematics on parameter estimation from CMBPOL-B obtained with using MCMC simulations.

Parameter No sys. �Fish Diff. gain Diff. pointing Diff. beamwidth Diff. ellipticity Diff. rotation

r 0:00961� 0:00039 0.1 0:00 964� 0:0040 0:00 963� 0:0040 0:00 964� 0:0039 0:00 962� 0:0039 0:00 963� 0:0040
0.5 0:00 982� 0:0040 0:00 979� 0:00 041 0:00 983� 0:00 040 0:00 980� 0:00 041 0:00 980� 0:00 040
1.0 0:01 004� 0:00 041 0:01 000� 0:00 042 0:01 004� 0:00 041 0:01 002� 0:00 040 0:00 990� 0:00 040

w �1:025� 0:097 0.1 �1:027� 0:095 �1:027� 0:097 �1:045� 0:100 �1:025� 0:095 �1:029� 0:097
0.5 �1:027� 0:095 �1:028� 0:094 �1:152� 0:121 �1:021� 0:091 �1:032� 0:098
1.0 �1:026� 0:094 �1:027� 0:097 �1:304� 0:149 �1:026� 0:096 �1:026� 0:093

M�½eV	 0:534� 0:014 0.1 0:534� 0:014 0:534� 0:014 0:538� 0:014 0:534� 0:014 0:535� 0:014
0.5 0:535� 0:014 0:535� 0:014 0:556� 0:013 0:534� 0:014 0:535� 0:014
1.0 0:535� 0:014 0:536� 0:014 0:577� 0:013 0:534� 0:014 0:535� 0:014

TABLE XII. The effect of beam systematics on parameter estimation from QUIETþ CLOVER obtained with using MCMC
simulations.

Parameter No sys. �Fish Diff. gain Diff. pointing Diff. beamwidth Diff. ellipticity Diff. rotation

r 0:01035� 0:00333 0.1 0:01 076� 0:03 221 0:01 076� 0:00 330 0:01 084� 0:00 323 0:01 053� 0:00 342 0:01 046� 0:00 301

0.5 0:01 199� 0:00 335 0:01 241� 0:00 365 0:01 287� 0:00 384 0:01 289� 0:00 361 0:01 226� 0:00 361

1.0 0:01 445� 0:00 358 0:01 506� 0:00 409 0:02 326� 0:00 639 0:02 135� 0:00 587 0:01 448� 0:00 386

w �1:143� 0:362 0.1 �1:163� 0:349 �1:141� 0:352 �1:167� 0:361 �1:131� 0:370 �1:143� 0:368

0.5 �1:123� 0:361 �1:109� 0:363 �1:228� 0:326 �1:131� 0:362 �1:121� 0:357

1.0 �1:137� 0:356 �1:153� 0:362 �1:347� 0:322 �1:160� 0:364 �1:137� 0:362

M�½eV	 0:535� 0:109 0.1 0:536� 0:105 0:531� 0:114 0:548� 0:111 0:522� 0:112 0:532� 0:110

0.5 0:526� 0:120 0:526� 0:114 0:611� 0:110 0:533� 0:124 0:530� 0:112

1.0 0:528� 0:117 0:552� 0:114 0:774� 0:120 0:530� 0:123 0:532� 0:112
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systematics considered here turns out to be r, the tensor-to-
scalar ratio as it is not constrained by the addition of the
lensing power spectra. We found the bias on r can be as
high as 
100%. w, and M�, which are mostly constrained
by the larger (compared to the primordial signal from
inflation) lensing signal, are changed by no more that

10%, itself a non-negligible bias. Even in the absence
of systematics POLARBEAR and QUIETþ CLOVER
exhibit a small bias (approximately 1=2
) in w
(Tables X and XII, respectively) toward values smaller
than �1 but this situation significantly improves with
CMBPOL-B. The reason is that, as is evident from our
simulation, the 1-D distribution for w, while peaked at�1,
is skewed toward more negative values. As the experiment
sensitivity improves, such as in CMBPOL-B, this small
bias becomes insignificant. Most importantly, we also
found that the levels of bias (in r) caused by differential
beamwidth and ellipticity exceed the bias found with the
naive inclusion of the power spectrum bias in the Fisher-
matrix formalism (Table XIII). This illustrates that the
simplistic approach to bias within the Fisher-matrix for-
malism underestimates the induced bias on the cosmologi-
cal parameters. However, the Fisher matrix can be used, as
done here, to determine the starting values for MCMC
simulations. These two systematics, the differential beam-
width and ellipticity, are second -order gradients of the

underlying temperature anisotropy as opposed to the first-
order gradient in case of, e.g. first-order pointing error
effect. This implies that for given � and e this effect
steeply increases toward smaller scales. The Fisher-matrix
bias calculation is based, however, on the assumption that
the bias is relatively small, an assumption that certainly
breaks down when high-resolution experiments are con-
sidered (i.e. with SPIDER’s comparatively low angular
resolution, for example, we expect the tension between
the Fisher-matrix-based and MCMC estimations of the
bias to be smaller).

VI. CONCLUSIONS

The purpose of this work was to illustrate the effect of
beam systematics on parameter extraction from CMB ob-
servations. Beam systematics are expected to be significant
especially for detecting the B-mode polarization. Ongoing
and future experiments must meet very challenging re-
quirements at the experiment design and data analysis
phases to assure polarimetric fidelity. Ultimately, a major
target of these experiments is the most accurate estimation
of cosmological parameters, and for this end it is manda-
tory to assess, among other issues, the propagation of beam
systematics to parameter estimation. The tolerance levels
chosen in this work are somewhat arbitrary and may be

TABLE XIII. The bias in the tensor-to-scalar ratio r (�r) obtained with MCMC for POLARBEAR, CMBPOL-B, and QUIETþ
CLOVER. These �r values were obtained by assuming each of the five systematics we considered have the values that induce a bias
�Fish
r ¼ 0:1, 0.5, and 1, respectively, in the Fisher-matrix analysis. This table is a compilation of the corresponding values for r reported

in Tables X, XI, and XII. Note the discrepancy between the Fisher-matrix-based and MCMC forecast for the bias for the differential
beamwidth and ellipticity systematics. Both scale as the second-order gradient of the temperature C

sys
l / l4CT

l and as a result of this

steep rise of the systematics with scale the systematics soon overwhelm the primordial B-mode signal and significantly bias the
deduced tensor-to-scalar ratio. The Fisher-matrix estimate of the bias is only a leading order approximation in case the bias is small; an
assumption that evidently does not apply to systematics that scale as the second-order gradient of the temperature anisotropy.

Experiment Beam parameter �r (�
Fish
r ¼ 0:1) �r (�

Fish
r ¼ 0:5) �r (�

Fish
r ¼ 1:0)

POLARBEAR g
ffiffiffiffiffi
f1
2	

q
0.14 0.56 1.36

�
ffiffiffiffiffi
f2
2	

q
0.14 0.58 1.36

�
ffiffiffiffiffi
f1
2	

q
0.17 0.83 2.83

e 0.11 0.64 2.47

" 0.17 0.53 1.23

CMBPOL-B g
ffiffiffiffiffi
f1
2	

q
0.08 0.54 1.10

�
ffiffiffiffiffi
f2
2	

q
0.05 0.46 1.15

�
ffiffiffiffiffi
f1
2	

q
0.08 0.56 1.10

e 0.03 0.49 1.05

" 0.05 0.49 0.74

QUIETþ CLOVER g
ffiffiffiffiffi
f1
2	

q
0.12 0.49 1.23

�
ffiffiffiffiffi
f2
2	

q
0.12 0.62 1.41

�
ffiffiffiffiffi
f1
2	

q
0.15 0.76 3.88

e 0.06 0.76 3.30

" 0.04 0.57 1.24
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changed at will, according to the goals of individual experi-
ments, and the numerical values we quote in the tables
should be viewed in this perspective.

The only similar work so far to set tolerance levels on
beam mismatch in the context of parameter estimation is
O’Dea, Challinor, and Johnson [6], which influenced our
present work. However, we expand on this work in several
ways. While O’Dea, Challinor, and Johnson [6] considered
only the effect of systematics on the tensor-to-scalar ratio
r, we consider a family of parameters associated with the
B-mode sector: r, M�, �, w, and �k. We set all other
cosmological parameters to be consistent with the
WMAP values. In order to exhaust the potential of the
CMB to constrain these parameters we carried out lensing
extraction. In addition, we repeated the analysis for
POLARBEAR, CMBPOL-B, and QUIETþ CLOVER
with Monte Carlo simulations and found that the Fisher-
Matrix approximation is, in general, inadequate for ap-
praising the biases. We also found that high-resolution
experiments, such as POLARBEAR are very sensitive to
bias from second-order gradient effects (i.e. differential
ellipticity and differential beamwidth), which is underesti-
mated by the Fisher-matrix-based calculation, but fully
accounted for with MCMC simulations. Also, unlike
O’Dea, Challinor, and Johnson [6] our results are presented
independently of the scanning strategy details. The only
assumption we made was that the scanning strategy is
spatially uniform, a condition that can be achieved with
or without a HWP, which samples the polarization angles
in a way which is uniform; both spatially, and in terms of
polarization angle. In case this approximation fails the
more general formalism (Shimon et al. [7]) should be
used with the added complexity introduced to lensing
reconstruction by the scanning-induced non-Gaussianity
of the systematic B mode.

We find that parameter bias is the dominant factor and its
level actually sets the upper bounds on the beam parame-
ters appearing in Tables IV through IX. Our results show
that the most severe constraints are set on the most sensi-
tive experiments for a given tolerance on � and � since
these quantities are experiment-dependent [Eq. (26)] and
since, in general, an experiment with higher resolution and
better sensitivity will result in smaller errors 
�i

. We

expect that the constraints on the systematics should be
more demanding so as to realize the potential of experi-
ments. As mentioned above, the most stringent constraints
are obtained from the requirement on the bias rather than
from increased parameter uncertainty. Again, for the same
reason, as shown for specific examples in Fig. 4; the bias
always exceeds the uncertainty for large enough system-
atics and this always takes place before the 10% thresholds
in Eqs. (26) are attained. The reason is that for large
enough systematics the induced spurious polarization be-
comes comparable to, or exceeds, the underlying polariza-
tion signals, therefore biasing the deduced value. It is easy

to visualize configurations in which the bias increases
without bound while the ‘‘curvature’’ of the likelihood
function (i.e. the statistical error) with respect to specific
cosmological parameters does not change. It is also clear
from the tables that, in general, the tensor-to-scalar ratio is
the most sensitive parameter, and the second most sensitive
is �, the running of the scalar index (although there are
some exceptions). If the tensor-to-scalar ratio is larger than
the case we studied (r ¼ 0:01), this conclusion may change
since r is mainly affected by the overwhelming B-mode
systematics on degree scales. � is predicted to vanish by
the simplest models of inflation and was added to parame-
ter space to better fit the WMAP and other cosmological
data. As is well known, information from Ly-� systems
and other LSS probes can, in principle, better constrain� if
their associated systematics can be controlled to a suffi-
ciently accurate level. For these small scales the CMB is
not the ideal tool to extract information and the error that
beam systematics induce on � are not significant.
The upper limits we obtained in this work on the allowed

range of beam mismatch parameters for given experiments
and given arbitrarily set tolerance levels on the parameter
bias and uncertainty, constitute very conservative limits. It
can certainly be the case that some of the systematics
studied here may be fully or partially removed. This in-
cludes, in particular, the first-order pointing error, which
couples to the dipole moment of non-ideal scanning strat-
egies (see Shimon et al. [7]). By removing this dipole
during data analysis the effect due to the systematic first-
order pointing error (dipole) drops dramatically. We made
no attempt to remove or minimize these effects in this
work. Our results highlight the need for scan mitigation
techniques because the coupling of several beam system-
atics to non-ideal scanning strategies results in systematic
errors. This potential solution reduces systematics, which
ultimately propagate to parameter estimation, and affect
mainly the parameters considered in this work. A brute-
force strategy to idealize the data could be to remove data
points that contribute to higher-than-the-monopole mo-
ments in the scanning strategy. This would effectively
make the scanning strategy ‘‘ideal’’ and alleviate the effect
of the a priori most pernicious beam systematics. This
procedure ‘‘costs’’ only a minor increase in the instrumen-
tal noise (due to throwing out a fraction of the data) but will
greatly reduce the most pernicious reducible beam system-
atic, i.e. the first-order pointing error (‘‘dipole’’ effect).
The lesson is clear: the rich treasures of cosmological
parameters deducible from B-mode data require a combi-
nation of high polarimetric fidelity and judicious data
mining. Both are eminently feasible upcoming CMB po-
larization experiments.
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