
Rotation of linear polarization plane and circular polarization
from cosmological pseudoscalar fields

Fabio Finelli1,2,3 and Matteo Galaverni1,3,4

1INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy
2INAF/OAB, Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy

3INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna, Italy
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We discuss the rotation of the linear polarization plane and the production of circular polarization

generated by a cosmological pseudoscalar field. We compute analytically and numerically the propagation

of the Stokes parameters from the last scattering surface for an oscillating and a monotonic decreasing

pseudoscalar field. For the models studied in this paper, we show the comparison between the widely used

approximation in which the linear polarization rotation angle is constant in time and the exact result.
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I. INTRODUCTION

In 1977 R. Peccei and H. Quinn [1] suggested a solution
to the strong CP-problem of QCD introducing a new
symmetry breaking at a given energy scale fa. The boson
associated with this broken global symmetry was called
axion. All the physical properties of this pseudoscalar field
strongly depend on the energy scale fa at which the new
symmetry is broken: the particle mass and the coupling
constants with other particles are inversely proportional to
fa. Pseudo-Goldstone bosons also arise in many particle
physics scenarios [2].

Axions and, in general, other pseudoscalar particles are
among the most favored particle physics candidates for the
cold dark matter (CDM) [3–5]. They interact with photons
according to the Lagrangian:

L int ¼ � g�
4
�F��

~F��; (1)

where g� is the coupling constant, F�� is the electromag-

netic tensor, and ~F�� � 1
2 �

����F�� its dual. Many con-

straints on axion derive from this interaction with photons:
laboratory experiments (photon-axion conversion experi-
ments) and astrophysical arguments (stellar evolution of
red giants) constrain g� to be small. One of the most

stringent experimental bound (g� < 8:8� 10�20 eV�1

for ma < 0:02 eV) is obtained by the CAST experiment
[6] constraining the axion-photon conversion for solar
axions. This limit supersedes the one obtained from the
duration of the helium burning time in horizontal-branch
stars in globular clusters: g� & 10�19 eV�1 [4,7].

In this paper we wish to study in detail the coupling of
such a pseudoscalar field with photons. The interaction in
Eq. (1) modifies the polarization of an electromagnetic
wave propagating along intervening magnetic fields, or
through a slowly varying background field � [8]. Here
we are interested in the second case, which does not require
the presence of a magnetic field (note that in the first case

the polarization is also modified in absence of axions, an
effect known as Faraday rotation). We consider the time-
dependent pseudoscalar condensate as dark matter or part
of it and study the impact of its time derivative on the
polarization of the photons. As a consequence of its cou-
pling with a pseudoscalar field, the plane of linear polar-
ization of light is rotated (cosmological birefringence)
[9,10].
In the case of cosmic microwave background (CMB)

photons, we pay attention to the rotation along the path
between the last scattering surface (LSS) and the observer,
modifying the polarization pattern generated by Thomson
scattering at LSS [11]. This rotation induced by the pseu-
doscalar interaction modifies the gradient and curl of the
polarization pattern (E and B following [12]), creating B
modes from E modes. The parity violating nature of the
interaction generates nonzero parity-odd correlators (TB
and EB) which would be otherwise vanishing for the
standard Gaussian cosmological case [13,14]. In particular
the TB power spectrum may be very useful to constrain the
coupling constant g� between photons and pseudoscalars,

since it is larger than the auto and cross power spectra in
polarization; in general, these nonstandard correlators are
already constrained by present data sets [15–17].
We study two representative examples for the dynamics

of a pseudo-Goldstone field behaving as dark matter (see
[18] for a pseudoscalar field model of dark energy): the
oscillating and a monotonic decreasing behavior. In the
latest case we study analytically the problem, whereas in
the former numerically and analytically. The case of a field
growing linearly in time has been studied in [19]. We
compare the polarization power spectra obtained describ-
ing the rotation of linear polarization with a time-
dependent angle with the ones obtained considering a
constant rotation angle.
Our paper is organized as follows. We write the relevant

equations for the electromagnetic gauge potential coupled
to a pseudoscalar field in Sec. II. We review the Stokes
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parameters for a monochromatic electromagnetic plane
wave and the Boltzmann equation for CMB photons
coupled to pseudoscalars in Sec. III. In Sec. IV we write
the Stokes parameters in terms of the left and right polar-
izations gauge potential and solve the differential equa-
tions for the latter for oscillating behavior of the
pseudoscalar field. In a similar way Sec. V is dedicated
to the monotonic behavior of the pseudoscalar field. In
Sec. VI we test the constant rotation angle approximation.
We conclude in Sec. VII. We work in units where the speed
of light is equal to one (c ¼ 1).

II. ELECTRODYNAMICS COUPLED TO A
PSEUDOSCALAR FIELD

The Lagrangian density L for the photons and the
pseudoscalar field � is [20] (following the notation of
[21]):

L ¼ � 1

4
F��F

�� � 1

2
r��r��� Vð�Þ

� g�
4
�F��

~F��: (2)

The Euler-Lagrange equations resulting from this
Lagrangian are:

h� � r�r�� ¼ dV

d�
þ g�

4
F��

~F��; (3)

r�F
�� ¼ �g�ðr��Þ ~F��; (4)

r�
~F�� ¼ 0: (5)

Using the definition of the electromagnetic tensor F�� �
r�A� �r�A� Eq. (4) becomes:

hA� �r�ðr�A
�Þ � R�

� A� ¼ �g�
2
ðr��Þ���

��F��:

(6)

The complete antisymmetric tensor contain the determi-
nant of the metric g and ½� � �� guarantees antisymmetry in
the four indexes [22]:

���	
 ¼ ffiffiffiffiffiffiffi�g
p ½��	
�; (7)

���	
 ¼ �ð ffiffiffiffiffiffiffi�g
p Þ�1½��	
�: (8)

For a spatially flat Friedmann-Robertson-Walker universe
the metric is:

ds2 ¼ �dt2 þ a2ðtÞdx2 ¼ a2ð�Þ½�d�2 þ dx2�; (9)

where t is the cosmic time, � is conformal time, and x
denotes the space coordinates. We consider a plane wave
propagating along n̂ in Coulomb gauge (r �A ¼ 0). If n̂ is
aligned with the z axis and neglecting the spatial variation
of the pseudoscalar field � ¼ �ð�Þ, the two relevant com-
ponents of Eq. (6) are:

A00
x ð�; zÞ � @2Axð�; zÞ

@z2
¼ g��

0 @Ayð�; zÞ
@z

; (10)

A00
y ð�; zÞ �

@2Ayð�; zÞ
@z2

¼ �g��
0 @Axð�; zÞ

@z
: (11)

Defining Fourier transform as ~Ax;yðk; �Þ ¼ ð2�Þ�1 �R
eikzAx;yð�; zÞdz the previous equations become:

~A 00
x ðk; �Þ þ k2 ~Axðk; �Þ þ g��

0ik ~Ayðk; �Þ ¼ 0; (12)

~A 00
y ðk; �Þ þ k2 ~Ayðk; �Þ � g��

0ik ~Axðk; �Þ ¼ 0: (13)

where k is the Fourier conjugate of z. These equations can

be decoupled introducing ~A�ðk; �Þ ¼ ~Axðk; �Þ �
i ~Ayðk; �Þ, left and right components of the electromagnetic

vector potential:

~A 00�ðk; �Þ þ ½k2 � g��
0k� ~A�ðk; �Þ ¼ 0: (14)

III. STANDARD REVIEW OF STOKES
PARAMETERS AND BOLTZMANN EQUATION

A. Stokes parameters

The complex electric field vector for a plane wave
propagating along ẑ direction at a point ðx; yÞ in some
transverse plane z ¼ z0 is:

E ¼ ðExðtÞ; EyðtÞÞ ¼ ½êx"xðtÞei’xðtÞ þ êy"yðtÞei’yðtÞ�e�ikt;

(15)

where the physical quantity is the real part of E. For a
spatially flat Friedmann-Robertson-Walker metric the re-
lation between the electromagnetic tensor and the physical
fields is:

F�� ¼ að�Þ
0 �Ex �Ey �Ez

Ex 0 Bz �By

Ey �Bz 0 Bx

Ez By �Bx 0

0
BBB@

1
CCCA: (16)

In general we consider quasimonochromatic waves: the
amplitudes ("xðtÞ and "yðtÞ) and the phases (’xðtÞ and

’yðtÞ) are slowly varying functions of time respect to the

inverse frequency of the wave.
The Stokes parameters I, Q, U, and V are defined as:

I � 1

a2
ðhE�

xðtÞExðtÞi þ hE�
yðtÞEyðtÞiÞ; (17)

Q � 1

a2
ðhE�

xðtÞExðtÞi � hE�
yðtÞEyðtÞiÞ; (18)

U � 1

a2
ðhE�

xðtÞEyðtÞi þ hE�
yðtÞExðtÞiÞ

¼ 2

a2
h"x"y cosð’x � ’yÞi; (19)
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V � � i

a2
ðhE�

xðtÞEyðtÞi � hE�
yðtÞExðtÞiÞ

¼ 2

a2
h"x"y sinð’x � ’yÞi: (20)

where h� � �i denote the ensemble average, the average over
all possible realizations of a given quasimonochromatic
wave. For a pure monochromatic wave ensemble averages
can be omitted and the wave is completely polarized:

I2 �Q2 �U2 � V2 ¼ 0: (21)

The parameter I gives the total intensity of the radiation,Q
and U describe linear polarization and V circular polariza-
tion. Linear polarization can also be characterized through
a vector of modulus:

PL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þU2

q
; (22)

and an angle 
, defined as:


 � 1

2
arctan

U

Q
: (23)

It is important to underline that I and V are physical
observables, since they are independent on the particular
orientation of the reference frame in the plane perpendicu-
lar to the direction of propagation n̂, whileQ andU depend
on the orientation of this basis [23]. After a rotation of the
reference frame of an angle 
 (Rð
Þ) they transform ac-
cording to:

Q!Rð
ÞQ cosð2
Þ þU sinð2
Þ;
U!Rð
Þ �Q sinð2
Þ þU cosð2
Þ:

(24)

Also linear polarization, like total intensity and circular
polarization, can be described through quantities indepen-
dent on the orientation of the reference frame in the plane
perpendicular to the direction of propagation of the wave.
In the context of CMB anisotropies, the linear polarization
vector field is usually described in terms of a gradient-like
component (E mode) and of a curl-like component (B
mode).

In a similar way it is possible to describe the electric
vector field in the x� y plane through a superposition of
left and right circular polarized waves defining:

êþ � êx þ iêyffiffiffi
2

p and ê� � êx � iêyffiffiffi
2

p : (25)

In this new basis:

I � 1

a2
ðhE�þðtÞEþðtÞi þ hE��ðtÞE�ðtÞiÞ; (26)

Q � 1

a2
ðhE�þðtÞE�ðtÞi þ hE��ðtÞEþðtÞiÞ

¼ 2

a2
h"þ"� cosð’þ � ’�Þi; (27)

U � � i

a2
ðhE�þðtÞE�ðtÞi � hE��ðtÞEþðtÞiÞ

¼ 2

a2
h"þ"� sinð’þ � ’�Þi; (28)

V � 1

a2
ðhE�þðtÞEþðtÞi � hE��ðtÞE�ðtÞiÞ: (29)

The relation between the vector potential and the electric
field for a wave propagating in a charge-free region is:

E ¼ �@A

@t
¼ �A0

a
; (30)

According to definition given in the previous section the
Stokes parameters in terms of the vector potential are:

I ¼ 1

a4
ðhA0�þA0þi þ hA0��A0�iÞ; (31)

Q ¼ 1

a4
ðhA0�þA0�i þ hA0��A0þiÞ ¼

2

a4
<ðhA0�þA0�iÞ; (32)

U ¼ � i

a4
ðhA0�þA0�i � hA0��A0þiÞ ¼

2

a4
=ðhA0�þA0�iÞ; (33)

V ¼ 1

a4
ðhA0�þA0þi � hA0��A0�iÞ: (34)

As we shall see in more detail in the following section,
the coupling to a cosmological pseudoscalar field induce a
physical time-dependent rotation of the plane of linear
polarization along the line of sight, described by:

Q0 ¼ 2
0ð�ÞU and U0 ¼ �2
0ð�ÞQ; (35)

whose solution is:

Q ¼ Qi cos2
þUi sin2
;

U ¼ �Qi sin2
þUi cos2
:
(36)

where Qi, Ui are the Stokes parameters at initial time
which would be otherwise unchanged in absence of the
interaction with the pseudoscalar field.

B. Boltzmann equation and cosmological birefringence

In the Boltzmann equations for linear polarization of the
radiation density contrast averaged over momenta contains
a mixing term:

2
0 ¼ g�0; (37)

due to the pseudoscalar interaction [11]; the Boltzmann
equation for spin-2 functions Q� iU is:
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�0
Q�iUðk; �Þ þ ik��Q�iUðk; �Þ

¼ �ne�Tað�Þ
�
�Q�iUðk; �Þ

þX
m

ffiffiffiffiffiffiffi
6�

5

s
�2Y

m
2 S

ðmÞ
P ðk; �Þ

�
� i2
0ð�Þ�Q�iUðk; �Þ:

(38)

where � is the cosine of the angle between the CMB
photon direction and the Fourier wave vector, ne is the
number density of free electrons, �T is the Thomson cross
section, sYm

2 are spherical harmonics with spin-weight s,

and SðmÞ
P ðk; �Þ is the source term for generating linear

polarization reported in [24] (m ¼ 0,�1,�2 corresponds,
respectively, to scalar, vector, and tenor perturbations):

SðmÞ
P ðk; �Þ ¼ �ðmÞ

T2 ðk; �Þ þ 12
ffiffiffi
6

p
�ðmÞ

þ;2ðk; �Þ
þ 12

ffiffiffi
6

p
�ðmÞ

�;2ðk; �Þ: (39)

�ðmÞ
Tl and �ðmÞ

�;l are the Fourier transforms of the coefficients

of the following series:

�Tðx; n̂; �Þ ¼
X
lm

ð�iÞl ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ð2lþ 1Þp

�ðmÞ
Tl ðx; �ÞYm

l ðn̂Þ;

(40)

�Q�iUðx; n̂;�Þ ¼
X
lm

ð�iÞl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ð2lþ 1Þ

p
�ðmÞ

�;‘ðx;�Þ�2Y
m
l ðn̂Þ;

(41)

Note that Eq. (38) corrects some typos in Eq. (1) of
Ref. [18].

The quantity �Q�iU is related to the rotation invariant

polarization fields �E and �B through the spin raising (ð)

and lowering (ð) operators:

�E � � 1

2
ðð2�QþiU þ ð2�Q�iUÞ; (42)

�B � � i

2
ðð2�QþiU � ð2�Q�iUÞ: (43)

Following the line of sight strategy for scalar perturba-
tions we obtain, in agreement with Ref. [18]:

�Tðk; �0Þ ¼
Z �0

�rec

d�gð�ÞSTðk; �Þj‘ðk�0 � k�Þ; (44)

�Eðk; �0Þ ¼
Z �0

�rec

d�gð�ÞSð0ÞP ðk; �Þ j‘ðk�0 � k�Þ
ðk�0 � k�Þ2

� cos½2
ð�Þ�; (45)

�Bðk; �0Þ ¼
Z �0

�rec

d�gð�ÞSð0ÞP ðk; �Þ j‘ðk�0 � k�Þ
ðk�0 � k�Þ2

� sin½2
ð�Þ�: (46)

where gð�Þ is the visibility function, STðk; �Þ is the source
term for temperature anisotropies, and j‘ is the spherical
Bessel function. The polarization C‘ auto- and cross-
spectra are given by:

CEE
‘ ¼ ð4�Þ2 9ð‘þ 2Þ!

16ð‘� 2Þ!
Z

k2dk½�Eðk; �0Þ�2; (47)

CBB
‘ ¼ ð4�Þ2 9ð‘þ 2Þ!

16ð‘� 2Þ!
Z

k2dk½�Bðk; �0Þ�2; (48)

CEB
‘ ¼ ð4�Þ2 9ð‘þ 2Þ!

16ð‘� 2Þ!
Z

k2dk�Eðk; �0Þ�Bðk; �0Þ;
(49)

CTE
‘ ¼ ð4�Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð‘þ 2Þ!
16ð‘� 2Þ!

s Z
k2dk�Tðk; �0Þ�Eðk; �0Þ;

(50)

CTB
‘ ¼ ð4�Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð‘þ 2Þ!
16ð‘� 2Þ!

s Z
k2dk�Tðk; �0Þ�Bðk; �0Þ:

(51)

In the approximation in which 
 ¼ �
, with �
 constant in
time, Eqs. (45) and (46) simplify since cos½2 �
�, sin½2 �
� can
be extracted from the integral along the line of sight and:

�obs
E ¼ �Eð
 ¼ 0Þ cosð2 �
Þ; (52)

�obs
B ¼ �Eð
 ¼ 0Þ sinð2 �
Þ; (53)

and the power spectra are given by [11,15]:

CEE;obs
‘ ¼ CEE

‘ cos2ð2 �
Þ; (54)

CBB;obs
‘ ¼ CEE

‘ sin2ð2 �
Þ; (55)

CEB;obs
‘ ¼ 1

2
CEE
‘ sinð4 �
Þ; (56)

CTE;obs
‘ ¼ CTE

‘ cosð2 �
Þ; (57)

CTB;obs
‘ ¼ CTE

‘ sinð2 �
Þ: (58)

The expression for �
 to insert in Eqs. (52)–(58) is:

�
 ¼ g�
2
½�ð�0Þ ��ð�recÞ�: (59)

Several limits on the constant rotation angle �
 have been
already obtained using current observation of CMBP (see
Table I).
This time-independent rotation angle approximation is

an operative approximation which allows to write
Eqs. (53), is clearly inconsistent since for 
 ¼ const the
term proportional to 
0 in the Boltzmann Eq. (38) vanishes
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and therefore there is no rotation of the linear polarization
plane. See Figs. 6 and 7 for a comparison of this approxi-
mation with a full Boltzmann description of the birefrin-
gence effect for a dynamical pseudoscalar field.

IV. COSINE-TYPE POTENTIAL

In this section we assume that dark matter is given by
massive axions, � is governed by the potential [3]:

Vð�Þ ¼ m2 f
2
a

N2

�
1� cos

�N

fa

�
; (60)

where N is the color anomaly of the Peccei-Quinn sym-
metry. Here we are interested in the regimewhere the axion
field oscillates near the minimum of the potential (for
simplicity we shall consider N ¼ 1 in the following):
�=fa 	 1 and the potential can be approximated with
Vð�Þ ’ m2�2=2. In this case �ðtÞ satisfies the equation:

€�þ 3H _�þm2� ¼ 0: (61)

When m> 3H the scalar field begins to oscillate, and the
solution in a matter dominated universe ( _a=a ¼ 2=3t) is
[26]:

�ðtÞ ¼ t�1=2½c1J1=2ðmtÞ þ c2J�1=2ðmtÞ� ’mt
1�0

mt
sinðmtÞ;

(62)

where the time-independent coefficients of the Bessel
functions c1, c2 depend on the initial conditions.

The averaged energy and pressure densities associated
with the field are:

��� ¼
_�2

2
þ 1

2
m2 ��2 ’mt
1�2

0

2t2

�
1þO

�
1

mt

�
2
�
; (63)

��� ¼
_�2

2
� 1

2
m2 ��2 ’mt
1�2

0

2t2
�O

�
1

mt

�
2
; (64)

where � denotes the average over an oscillation period of
the axion condensate. Note that we are implicitly assuming
that the pseudoscalar field is homogeneous. In the context
of axion physics, this means that in our observable universe
we have just one value for the misalignment angle, which
means that the PQ symmetry has occurred before or during
inflation.

We fix the constant �0 comparing �� with the energy

density in a matter dominated universe:

�M ¼ 3H2M2
pl

8�
¼ M2

pl

6�t2
) �0 ¼

Mplffiffiffiffiffiffiffi
3�

p ; (65)

�ðtÞ ’ Mplffiffiffiffiffiffiffi
3�

p
mt

sinðmtÞ; (66)

where Mpl ’ 1:22� 1019 GeV is the Planck mass.

Using the relation between cosmic and conformal time
in a universe of matter:

t ¼ �0

3

�
�

�0

�
3
; (67)

we find the following approximation for �ð�Þ:

�ð�Þ ’
ffiffiffiffi
3

�

s
Mpl

m�0ð ��0
Þ3 sin

�
m
�0

3

�
�

�0

�
3
�
; (68)

and

�0ð�Þ ’
ffiffiffiffi
3

�

s
Mpl

�

�
cos

�
m
�0

3

�
�

�0

�
3
�

� 3�2
0

m�3
sin

�
m
�0

3

�
�

�0

�
3
��
: (69)

If m is not too small the value ofH � a0=a obtained with
the scalar field density in the Friedmann equation coincides
with that of a matter dominated universe H ¼ 2=� once
the average through oscillations is performed [27] (see
Fig. 1). The derivative can be replaced in Eq. (14) for the
evolution of the gauge potential:

~A 00�ðk; �Þ þ k2½1� �ð�;g�;m; k; �0Þ� ~A�ðk; �Þ ¼ 0;

(70)

TABLE I. Constraints on linear polarization rotation �
 in the
constant angle approximation.

Data set �
ð2�Þ½deg�
WMAP3 and Boomerang (B03) [15] �13:7< �
 < 1:9
WMAP3 [16] �8:5< �
 < 3:5
WMAP5 [17] �5:9< �
 < 2:4
QUaD [25] �1:2< �
 < 3:9

1.0 2.0 3.01.5

1.00

0.50

0.30

0.70

FIG. 1. Evolution of H =H rec in function of conformal time
for m ¼ 10�28 eV (dashed line), m ¼ 5� 10�27 eV (dotted
line) and for a matter dominated universe (continuous line),
from recombination (�rec) to 3:5�rec. Present time corresponds
to �0 ¼ �rec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zrec

p ’ 33:18�rec.
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defined the function:

�ð�; g�;m; k; �0Þ �
ffiffiffiffi
3

�

s
g�Mpl

k�

�
cos

�
m
�0

3

�
�

�0

�
3
�

� 3�2
0

m�3
sin

�
m
�0

3

�
�

�0

�
3
��
: (71)

This term, induced by axion-photon coupling, oscillates
with frequency proportional to the mass of the axion and its
amplitude decreases with time.

In the next two subsections we study analytically and
numerically Eq. (70) for different values of the parameters
m and g�; we exclude the region where the mass of the

pseudoscalar field is so small that the field starts to oscillate
after equivalence (m< 3Heq), and the region correspond-

ing to a PQ symmetry broken at energies higher than
Planck scale (fa >Mpl): see Fig. 2.

A. Adiabatic solution

Adiabatic solutions of Eq. (70) are:

~A s ¼ 1ffiffiffiffiffiffiffiffiffi
2!s

p e�i
R

!sd�; (72)

where !sð�Þ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g��

0ð�Þ
k

q
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ð�Þp

and s ¼ �:

The second derivative respect to conformal time is:

~A 00
s ¼ ~As

�
�!2

s þ 3!02
s

4!2
s

� !00
s

2!3
s

�
: (73)

The adiabatic solution (72) is a good approximation for the

vector potential when the terms 3!02
s

4!2
s
and !00

s

2!3
s
are small

compared to !2
s :

3!02
s

4!4
s

¼ 3�02

16k2ð1� �Þ3 	 1; (74)

!00
s

2!3
s

¼ �2ð1� �Þ�00 � �02

8k2ð1� �Þ3 	 1: (75)

If both conditions are satisfied and � 	 1:

~A� ’ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kð1� �=4Þp exp

�
�ik

�
�� 1

2

Z
�d�

��

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kð1� �g��

0kÞ
q exp½�iðk�� 2�g�Þ�: (76)

In the adiabatic regime the coupling between photons and
axions produces a frequency independent shift between the
two polarized waves, which corresponds to a rotation of the
plane of linear polarization:


adiabatic ¼
g�
2
½�ð�0Þ ��ð�recÞ�: (77)

This result agrees with the one obtained in Ref. [8], which
therefore holds in the adiabatic regime. More important
than this, 
adiabatic ¼ �
, i.e. Eq. (77) agree with the rotation
angle which is approximated by Eq. (59) in the Boltzmann
Sec. III B. This agreement is not a coincidence and shows
the usefulness of studying the gauge potential as done in
this section: the estimate based on the adiabatic approxi-
mation of the rotation angle due to cosmological birefrin-
gence can be also obtained by studying the gauge potential
As.
Typically �ð�recÞ 
 �ð�0Þ; from last scattering to now

�� ’ m2 ��2 so, in a matter dominated universe:

��ð�Þ ’
ffiffiffiffiffiffiffi
3

8�

s
MplH ð�Þ

m
’

ffiffiffiffiffiffiffi
3

2�

s
Mpl

m�0

�
�0

�

�
3
: (78)

An estimate of the angle 
adiabatic is:


adiabatic ’ g�

ffiffiffiffiffiffiffi
3

8�

s
Mpl

m�0

½ð1þ zrecÞ3=2 � 1�: (79)

Note the dependence of 
adiabatic on the coupling constant
and on the mass of the pseudoscalar field: for fixed g� the

effect is larger for smaller masses.
The amplitude of the electromagnetic field changes

according to:

FIG. 2 (color online). Plane ðlog10m ½eV�; log10g� ½eV�1�Þ:
region excluded by CAST [6] (blue with vertical lines), region
where j
Að�MAT ¼ 0:3; m; g�Þj> 10 deg (red region with hori-

zontal lines), ðm; g�Þ values expected in main QCD axion

models (red with dots), region where the mass of the pseudo-
scalar field is too small in order to explain dark matter (m<

3Heq) (yellow with horizontal lines), and region where PQ

symmetry is broken at energies higher than Planck scale (fa >

Mpl) (yellow with vertical lines).
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j~Ej2 ¼ j~A0j2
a2

’ !s

2a2
; (80)

so the degree of circular polarization evolves according
[28,29]:

~� C ¼ j ~A0þj2 � j ~A0�j2
j ~A0þj2 þ j ~A0�j2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1��

p ’ �

2

¼ 2�g��
0

k
: (81)

B. CMBP constraints on the ðm;g�Þ plane
In a flat universe dominated by dust (w ¼ 0) plus a

component with w ¼ �1 (cosmological constant) the evo-
lution of the scale factor in terms of cosmic time is [30]:

aðtÞ ¼
�

�MAT

1��MAT

�
1=3

sinh

�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��MAT

p
H0t

�
2=3

; (82)

where�MAT is the density parameter for matter nowadays.
The Hubble parameter is:

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��MAT

p
coth

�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��MAT

p
H0t

�
: (83)

The pseudoscalar field evolves according to:

�ðtÞ ’mt
1 �0

½sinhð32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��MAT

p
H0tÞ�

� sin

�
mt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1��MATÞ

�
3H0

2m

�
2

s �
: (84)

The energy density is:

�� ¼
�_�
2

2
þ 1

2
m2 ��2

’mt
1 m2�2
0

2½sinhð32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��MAT

p
H0tÞ�2

/ a�3: (85)

Assuming that the axionlike particles contribute to the cold
dark matter density ��;0 ¼ �MAT�CR;0 (where �CR;0 is the

critical density) we can estimate �0:

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1��MATÞ

�

s
H0Mpl

2m
: (86)

Therefore the evolution of the pseudoscalar field as a
function of cosmic time is:

�ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�MAT

�

s
H0Mpl

2ma3=2ðtÞ

� sin

�
mt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1��MATÞ

�
3H0

2m

�
2

s �
: (87)

Note how this equations reduces to Eq. (66) in a matter

dominated universe:�MAT ¼ 1,H0=ð2a3=2Þ ¼ 1=ð3tÞ. The

linear polarization plane, from last scattering surface, ro-
tates according to:


ðtÞ ¼ g�
2
½�ðtÞ ��ðtrecÞ�: (88)

The Boltzmann equation contains the derivative of
the rotation angle respect to of conformal time
(cf. Equation (38)), so we need the relation between cosmic
and conformal time. For a particular model with �MAT ¼
0:3 it is possible to fit numerically the relation between
cosmic and conformal time from last scattering to nowa-
days:

t ’ �0

3:45

�
�

�0

�
3:09

: (89)

Replacing this expression in Eq. (87) we obtain the evolu-
tion of the pseudoscalar field as a function of conformal
time � ¼ �ð�Þ.
The linear polarization angle is not constant in time, but

it oscillates with varying amplitude. If the field represents a
fraction �MAT of the universe energy density, then the
amplitude of these oscillations is:


Að�MAT; m; g�Þ ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�MAT

�

s
g�MplH0

m

�
1

a3=20

� 1

a3=2rec

�

’ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�MAT

�

s
g�MplH0

m
z3=2rec : (90)

Fixed �MAT, it is possible to constraint a certain region of
the ðm; g�Þ-plane requiring 
Að�MAT; m; g�Þ to be smaller

of a certain angle, typically of the order of few degrees (see
Table I). The excluded region considering current limits on
CMB birefringence is shown in Fig. 2.
Fixed a particular value for the pseudoscalar field mass

and for its coupling with photons we can also estimate how
the polarization angular power spectra are modified by a
rotation of the linear polarization plane. We modified the
source term for linear polarization in the public Boltzmann
code CAMB [31] following Eqs. (45) and (46). The linear
polarization rotation angle is given by Eq. (88) and the
evolution of the pseudoscalar field by Eq. (87). The new
power spectra are compared with the standard unrotated
ones in Fig. 3 fixed m ¼ 10�22 eV and g� ¼ 10�20 eV�1.

In Sec. VI we compare the power spectra modified
version of CAMB obtained starting by Eqs. (45) and (46)
which takes into account the time dependence of the
pseudoscalar field in the integral along the line of sight
with the approximated spectra obtained following Eqs.
(55)–(59).

C. Comments for axion cosmology

For axions the coupling constant with photons g� and

the energy scale fa at which the new symmetry is broken
are related [4]:
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jg�j ¼ �EM

2�fa

3

4
� with 0:1 & � & 1; (91)

where the value for � depends on the particular model
considered for the axion. By using this relation a limit on

the coupling constant is turned into a limit on the energy of
symmetry breaking.
The critical density associated with the misalignment

production of axions strongly depends on the initial mis-
alignment angle associated with the axion field�i through
the following relation [3,4]:

FIG. 3 (color online). EE (a), BB (b), TE (c), TB (d), and EB (e) angular power spectra for m ¼ 10�22 eV and g� ¼ 10�20 eV�1

(black solid line), the black dotted line is the standard case in which there is no coupling between photons and pseudoscalars (
 ¼ 0).
For the BB power spectrum (b) we plot for comparison also the polarization signal induced by gravitational lensing (black dotted line),
and primordial BB signal if r ¼ 0:1 (blue dot-dashed line). The cosmological parameters of the flat �CDM model used here are
�bh

2 ¼ 0:022, �ch
2 ¼ 0:123, � ¼ 0:09, ns ¼ 1, As ¼ 2:3� 10�9, H0 ¼ 100h km s�1 Mpc�1 ¼ 72 km s�1 Mpc�1.
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�mish
2 � 0:23� 10�0:6

�
fa

1012 GeV

�
1:175

�2
i Fð�iÞ; (92)

where h encodes the actual value of the Hubble parameter
(H0 ¼ 100h km s�1 Mpc�1) and Fð�iÞ accounts for an-
harmonic effects if �i 
 1. The demand �mis � �DM

provides an upper bound on f1:175a �2
i (assuming Fð�iÞ ’

1) [26,32,33]:

fa�
1:7
i � 2� 1011
12 GeV: (93)

This condition becomes also an upper bound for fa
under the assumption that inflation occurred before the
breaking of PQ-symmetry (fa � fINF) [3]: in this scenario
different regions have different values for�i, so averaging
over all observable universe the value of�i in equation can

replaced by its rms value (�=
ffiffiffi
3

p
) and the limit fa �

1011
12 GeV is obtained. As can be seen from Fig. 2,
CAST disfavors values of g� � 10�11
�12 GeV�1 with a

mass up to 0.02 eV. Note however that our calculation
cannot be applied directly to this case since we assume �
homogeneous in our universe, whereas it is not if the PQ
symmetry breaking occurs after inflation: although taking
into account space inhomogeneities were a second order
effect in cosmological perturbation theory, cosmological
birefringence might be larger than the one computed in this
paper.

Our calculations apply without modifications to the case
in which inflation occurs after PQ-symmetry breaking: the
initial misalignment angle �i is homogeneous throughout

our universe and can be much smaller than �=
ffiffiffi
3

p
. Such

possibility allow the scale of PQ-symmetry breaking fa to
be much higher than 1011
12 GeV and is motivated by
anthropic considerations [34–37]. These smaller values
of g� can be constrained by present data in CMB polar-

ization in a much better way than CAST, in particular, for
small masses.

V. EXPONENTIAL POTENTIAL

We consider in this section a pseudoscalar field with an
exponential potential:

Vð�Þ ¼ V0 expð����Þ; (94)

with �2 � 8�G: Theoretical motivations to this exponen-
tial potential are certainly weaker than the ones for the
potential presented in Eq. (60). However it is interesting to
show how the kinematics of the pseudoscalar field is
important for the resulting spectra of CMB anisotropies
in polarization. Whereas the time derivative of the pseu-
doscalar field in the previous case contains oscillations
about a vanishing value (see Eq. (69)), we study here a
case where the behavior in time is monotonous.

It is known [38] that exponential potential with �2 >
3ð1þ wFÞ leads to a component which tracks the dominant
background fluid with equation of state p� ¼ w���. In

order to satisfy the nucleosynthesis bound we choose � ¼

4:5. During the matter dominated era the scalar field be-
haves as:

�� ¼
_�2

2
þ V0 expð����Þ ¼ f�MAT � f

�MAT;0

a3
; (95)

P� ¼
_�2

2
� V0 expð����Þ; (96)

where �MAT ¼ �DM þ �baryons þ ��.

For � ¼ 4:5 the contribution of the pseudoscalar field to
universe energy density is shown in Fig. 4. The value of��

changes with time, but it is almost constant (�� ’ ��;0 ¼
0:148) from recombination ( logarec ’ �7) to nowadays.
The derivative of the pseudoscalar field respect to con-

formal time is proportional to a�1=2 and the evolution of
the scale factor in the matter dominated phase is að�Þ ¼
ð�=�0Þ2 so:

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�MAT;0

q �0

�
: (97)

Substituting this relation in Eq. (14) we obtain the follow-
ing expression for the evolution of the electromagnetic
potential:

~A 00� þ
�
k2 � g�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�MAT;0

q �0

�
k

�
~A� ¼ 0: (98)

This is a particular differential equation, called Coulomb

wave equation; defining q� � �g�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f�MAT;0

p
�0=2 ¼ �q

and x � k� it becomes:

d2 ~A�
dx2

þ
�
1� 2q�

x

�
~A� ¼ 0: (99)

The solution of this particular equation can be written in
terms of regular (F0ðq; xÞ) and irregular (G0ðq; xÞ)

40 30 20 10 0

1.0

0.5

0.0

0.5

1.0

FIG. 4. For � ¼ 4:5 Dashed line: �DM þ�baryons, dotted line:
�RAD, thin continuous line: ��, thick continuous line: w�, in

terms of the natural logarithm of the scale factor (from loga ’
�40 to nowadays loga0 ¼ 0). Here �DM;0 þ�baryons;0 ¼ 0:852

and ��;0 ¼ 0:148.
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Coulomb wave functions [39,40]:

~Aþ ¼ fþF0ðqþ; xÞ þ gþG0ðqþ; xÞ
¼ fþF0ð�q; xÞ þ gþG0ð�q; xÞ;

~A� ¼ f�F0ðq�; xÞ þ g�G0ðq�; xÞ
¼ f�F0ðq; xÞ þ g�G0ðq; xÞ;

where fþ, f�, gþ, and g� 2 C; in a compact notation:

~A�ðq; xÞ ¼ f�F0ð�q; xÞ þ g�G0ð�q; xÞ: (100)

The Stokes parameters contain the derivative respect to
conformal time �, so we evaluate:

~A 0�ðq; xÞ ¼ k

�
f�

@F0ð�q; xÞ
@x

þ g�
@G0ð�q; xÞ

@x

�
: (101)

The solution given in Eq. (100) verifies the Wronskian

condition ( ~A� ~A0�� � ~A0� ~A�� ¼ i) if the following relation
holds:

f��g� � f�g�� ¼ i

k
) =ðf��g�Þ ¼

1

2k
: (102)

In the general case, when the coupling does not vanishes
(g� � 0), we expand the solution (100) for large value of x

neglecting terms proportional to Oðx�2Þ (see the
Appendix):

~A�ðq; xÞ ’ f�
�
q2

2x
cosðx� �ðq; xÞÞ

þ
�
1� q

2x

�
sinðx� �ðq; xÞÞ

�

þ g�
��

1� q

2x

�
cosðx� �ðq; xÞÞ

� q2

2x
sinðx� �ðq; xÞÞ

�
; (103)

where �ðq; xÞ � q ln2x� arg�ð1þ iqÞ. The derivative re-
spect to conformal time is:

~A0�ðq; xÞ ’ k

�
f�

��
1� q

2x

�
cosðx� �ðq; xÞÞ

� q2

2x
sinðx� �ðq; xÞÞ

�

þ g�
�
� q2

2x
cosðx� �ðq; xÞÞ

�
�
1� q

2x

�
sinðx� �ðq; xÞÞ

��

¼ k

2

�
eiðx��ðq;xÞÞ

�
1� q

2x
þ i

q2

2x

�
ðf� þ ig�Þ

� e�iðx��ðq;xÞÞ
�
1� q

2x
� i

q2

2x

�
ðf� � ig�Þ

�
:

(104)

In general both forward moving waves ( ~A� / e�ik�) and

backward moving waves ( ~A� / eik�) must be taken into
account for propagation of light in a medium. Chosen a
particular value for the constants f� and g� that verifies
the Wronskian relation (102) the evolution of polarization
is fixed.
If we assume, according with [41,42], that the photon

pseudoscalar conversion is a small effect due to low energy
of CMB photons, the production of backward moving
waves can be neglected (see [43] for the use of this ap-
proximation). The Eq. (104) setting f� ¼ �ig� becomes:

~A 0�ðq; xÞ ’ �ikg�
�
1� q

2x
� i

q2

2x

�
e�iðx��ðq;xÞÞ; (105)

and in terms of the value at recombination time:

~A0�ðq; xÞ ’ ~A0�ðq; xrecÞ
�
1� q

2

�
1

x
� 1

xrec

�

� i
q2

2

�
1

x
� 1

xrec

��
expf�i½x� xrec � ���g;

(106)

where we have introduced

�� � �ðq; xÞ � �ðq; xrecÞ ¼ q lnð�=�recÞ
¼ q

2
lnða=arecÞ: (107)

We observe that also in this exact case the plane of linear
polarization is rotated of an angle �� independent on k
whose dependence on the difference between the present
value of � and the corresponding one at recombination is
the same of the adiabatic approximation and of Eq. (59).
Current measures and constraints on the polarization

pattern of CMB anisotropies produce an upper limit on
the linear polarization rotation angle of the order of few
degrees (see Table I). We now use these constraints and our
analytic expression:

j
j ¼ jqj
2

lnð1þ zrecÞ ’ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2�
��;0

s
jg�jMpl lnð1þ zrecÞ;

(108)

to obtain an upper bound for q, which can be turned into a
upper bound on g�; if j
j & 6 deg, then:

jg�j & 10�30 eV�1; (109)

where we have assumed: ��;0 ’ 0:148 and zrec ’ 1100.

The angle of linear polarization 
ð�Þ appearing in Eqs.
(45) and (46) can be replaced with:
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j
ð�Þj ’ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2�
��;0

s
jg�jMpl ln

�
�

�rec

�
; (110)

and the polarization power spectra are evaluated using the

expression given in Sec. III B, see angular power spectra of
Fig. 5.
In Sec. VI we compare the power spectra modified

version of CAMB obtained starting by Eqs. (45) and (46)
which takes into account the time dependence of the
pseudoscalar field in the integral along the line of sight

FIG. 5 (color online). EE (a), BB (b), TE (c), TB (d) and EB (e) angular power spectra for g� ¼ 10�28 eV�1 (black solid line); the
black dotted line is the standard case in which there is no coupling (
 ¼ 0). For the BB power spectrum (b) we plot for comparison also
the polarization signal induced by gravitational lensing (black dotted line), and primordial BB signal if r ¼ 0:1 (blue dot-dashed line).
The cosmological parameters of the flat CDM model used here are �b ¼ 0:0462, �c ¼ 0:9538 (�� ’ 0:148), � ¼ 0:09, ns ¼ 1,

As ¼ 2:3� 10�9, H0 ¼ 72 km s�1 Mpc�1.
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with the approximated spectra obtained following Eqs.
(55)–(60).

VI. COMPARISON WITH CONSTANT ROTATION
ANGLE APPROXIMATION

In this section we compare the angular power spectra
obtained modifying the public code CAMB [31] consider-
ing the correct dynamic of the pseudoscalar field (
 ¼

ð�Þ) as described in Sec. III B, with the ones obtained

FIG. 6 (color online). EE (a), BB (b), TE (c), TB (d) and EB (e) angular power spectra for m ¼ 10�22 eV and g� ¼ 10�20 eV�1

(black solid line) and approximating the rotation angle with the constant value 
rec (red dashed line). The cosmological parameters of
the flat�CDMmodel used here are�bh

2 ¼ 0:022,�ch
2 ¼ 0:123, � ¼ 0:09, ns ¼ 1, As ¼ 2:3� 10�9,H0 ¼ 100h km s�1 Mpc�1 ¼

72 km s�1 Mpc�1.
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in the constant rotation angle approximation (
 ¼ const)
for the two different potential considered in the previous
sections: see Figs. 6 and 7.

In Sec. III B we have already shown how the power
spectra in the constant rotation angle approximation [Eqs.
(54)–(58)] can be obtained from the general expressions
[Eqs. (47)–(51)].

Power spectrum modifications obtained starting directly
form the Boltzmann equations and taking into account the
temporal evolution of the pseudoscalar field are usually
smaller than effects predicted considering a constant rota-
tion angle equal to the total rotation angle from last scat-
tering to nowadays. If the cosmological pseudoscalar field

FIG. 7 (color online). EE (a), BB (b), TE (c), TB (d) and EB (e) angular power spectra for g� ¼ 10�28 eV�1 (black solid line) and
approximating the rotation angle with the constant value 
rec (red dashed line); the black dotted line is the standard case in which there
is no coupling. The cosmological parameters of the flat CDM model used here are �b ¼ 0:0462, �c ¼ 0:9538 (�� ’ 0:148), � ¼
0:09, ns ¼ 1, As ¼ 2:3� 10�9, H0 ¼ 72 km s�1 Mpc�1.
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evolves quickly, then the constant rotation angle approxi-
mation clearly leads to an overestimate of the effects.

It is important to stress that the constant rotation angle
approximation is just an operative approximation. The
additional term in the Boltzmann equations which rotates
the linear polarization plane is (see Eq. (38)):

� i2
0ð�Þ�Q�iUðk; �Þ; (111)

which clearly vanishes for 
 ¼ const.

VII. CONCLUSIONS

We have studied the impact of a pseudoscalar field act-
ing as dark matter on CMBP. We have shown that such
pseudoscalar interaction with photons rotates the plane of
linear polarization and generates circular polarization. In
absence of measures for the V mode of CMBP, the existing
upper limits on an isotropic TB and EB correlations can
constrain the coupling constants of photons with the pseu-
doscalar field.

We have examined two representative examples for the
dynamics of a pseudo-Goldstone field behaving as dark
matter: the oscillating and the monotonic decreasing be-
havior. In the monotonic decreasing behavior, by neglect-
ing backward moving waves, we have shown how present
CMB observations can constrain the coupling constant g�
to small values as Oð10�30Þ eV. For the more physically
motivated axion case which leads to an oscillating behav-
ior, we have shown how constraints from CMB cosmologi-
cal birefringence can become important for small masses
for the axion.

We have also shown how the use of integral solution of
the Boltzmann function may improve the estimate obtained
by multiplying the CMB power spectrum by the suitable
trigonometric functions of the rotation angle as in Eqs. (54)
–(58).
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APPENDIX: COULOMB WAVE EQUATION

The Coulomb wave equation is [39]:

d2w

dx2
�

�
1� 2q

x
� LðLþ 1Þ

x2

�
w ¼ 0; (A1)

with x > 0, �1< q<1, L a non negative integer. Here,
in order to solve Eq. (99), we are particular interested to the
particular case when L ¼ 0.

The solution can be written in terms of regular (FLðq; xÞ)
and irregular (GLðq; xÞ) Coulomb wave function:

w ¼ c1FLðq; xÞ þ c2GLðq; xÞ: (A2)

The Coulomb functions can be expanded for large values
of x [39]:

F0 ¼ g cos
þ f sin
; (A3)

G0 ¼ f cos
� g sin
; (A4)

similarly for the first derivative respect to x

F0
0 ¼ g� cos
þ f� sin
; (A5)

G0
0 ¼ f� cos
� g� sin
; (A6)

with 
 � x� q ln2xþ arg�ð1þ iqÞ and:

f¼ X1
k¼0

fk; g¼ X1
k¼0

gk; f� ¼ X1
k¼0

f�k; g� ¼ X1
k¼0

g�k;

(A7)

where:

f0 ¼ 1; fkþ1 ¼ akfk � bkgk; (A8)

g0 ¼ 0; gkþ1 ¼ akgk þ bkfk; (A9)

f�0 ¼ 0; f�kþ1 ¼ akf
�
k � bkg

�
k �

fkþ1

x
; (A10)

g�0 ¼ 1� q

x
; g�kþ1 ¼ akg

�
k þ bkf

�
k �

gkþ1

x
; (A11)

ak ¼ ð2kþ 1Þq
2ðkþ 1Þx ; bk ¼ q2 � kðkþ 1Þ

2ðkþ 1Þx : (A12)

Restricting to the first order:

f ¼ 1þ q

2x
þO

�
1

x2

�
; (A13)

g ¼ q2

2x
þO

�
1

x2

�
; (A14)

f� ¼ � q2

2x
þO

�
1

x2

�
; (A15)

g� ¼ 1� q

2x
þO

�
1

x2

�
: (A16)

Summarizing the asymptotic expansion of FLðq; xÞ and
FLðq; xÞ for large values of x is:

F0ðq; xÞ ’ q2

2x
cos
þ

�
1þ q

2x

�
sin
; (A17)

G0ðq; xÞ ’
�
1þ q

2x

�
cos
� q2

2x
sin
; (A18)

and for the first derivative:
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F0
0ðq; xÞ ’

�
1� q

2x

�
cos
� q2

2x
sin
; (A19) EQ-TARGET;temp:intralink-;da20;316;747G0

0ðq; xÞ ’ � q2

2x
cos
�

�
1� q

2x

�
sin
: (A20)
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