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The concept of ‘‘age’’ as a parameter for the description of the state of development of high energy

showers in the atmosphere has been in use in cosmic ray studies for several decades. In this work we

briefly discuss how this concept, originally introduced to describe the average behavior of electromagnetic

cascades, can be fruitfully applied to describe individual showers generated by primary particles of

different nature, including protons, nuclei and neutrinos. Showers with the same age share three different

important properties: (i) their electron size has the same fractional rate of change with increasing depth,

(ii) the bulk of the electrons and photons in the shower (excluding high energy particles) have energy

spectra with shapes and relative normalization uniquely determined by the age parameter, and (iii) the

electrons and photons in the shower have also the same angular and lateral distributions sufficiently far

from the shower axis. In this work we discuss how the properties associated with the shower age can be

understood with simple arguments, and how the shapes of the electron and photon spectra and the relative

normalization that correspond to a certain age can be calculated analytically.
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I. INTRODUCTION

The concept of the ‘‘age’’ of a shower has been in use in
the cosmic ray community for more than half a century.
The concept first emerged [1] in the study of the average
longitudinal development of purely electromagnetic show-
ers generated by photons or electrons. It was then also
applied [2,3] to the lateral distribution of electrons around
the shower axis. Soon, it was also understood that it is
possible and useful to assign an age also to individual
showers, and that the concept is applicable also to showers
generated by hadronic primary particles such as protons or
nuclei.

Some recent works [4–6] have rediscussed the concept
of shower age for the showers generated by ultra high
energy cosmic rays in the Earth’s atmosphere. Giller
et al. [4] and Nerling et al. [5] have studied with
Monte Carlo methods the showers generated by high en-
ergy protons and nuclei in air, and have observed that the
energy and angle distributions of the electrons (in this work
with ‘‘electrons’’ we will refer to the sum of electrons and
positrons) in the showers have shapes that to a good
approximation are only determined by an age parameter
�s defined as:

�sðt; tmaxÞ ¼ 3t

tþ 2tmax

; (1)

where t is the depth in unit of radiation lengths and tmax is
the depth where the shower reaches its maximum size. The
shower size is defined as the total number of charged
particle integrated over all energy, and effectively coin-
cides with the electron size. These results have been ex-
tended to the lateral distribution of electrons by Gora et al.

[6]. This property of ‘‘universality’’ is obviously very
important for the analysis and interpretation of high energy
cosmic ray observations, and it is therefore desirable to
have a deeper understanding of its origin and of its
limitations.
In this work we want to review critically the concepts of

shower age and ‘‘universality’’. One of the main points we
want to make is to argue that the definition of age of
Eq. (1), while reasonably accurate in most cases, is in
general not correct, and should be replaced by a better
motivated and more accurate definition.
The essence of the concept of shower age can be under-

stood observing that all showers at the maximum of their
development are in an appropriate sense ‘‘similar’’ to each
other (that is have the same age). This ‘‘similarity’’ is
represented by the fact that in all showers at maximum
the energy spectra of ‘‘most’’ electrons and photons have
the same shape and the same relative normalization. These
particles also have the same angular distributions (that are
obviously strongly correlated with energy) and, for an
equal density profile of the medium where the shower is
propagating, also the same lateral distribution around the
shower axis.
The idea that all showers at maximum, that is at the

depth where the derivative of the shower size NðtÞ van-
ishes, are similar independently from the energy and nature
of the primary particle, can be naturally be generalized,
stating that all showers that have the same fractional rate of
change with depth, that is the same ‘‘size slope’’ �:

� ¼ 1

NðtÞ
dNðtÞ
dt

(2)

are also similar. This means that to each value of the �
corresponds well determined shapes of the electron and
photon spectra (again only valid for most particles) and a*paolo.lipari@roma1.infn.it
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well determined relative normalization for the two popu-
lations. It is intuitive (and will be later verified by detailed
calculations) that the energy spectra of electrons and pho-
tons become progressively softer as � decreases going
from positive (when the shower size grows) to negative
(when the shower size decreases) values.

There is a one to one mapping between the values of the
size slope � and the values of the shower age s. This
mapping is encoded by a function that, in the notation
introduced by Rossi and Greisen in their ‘‘classic’’ paper
[1], is called �1ðsÞ. The general definition of the shower
age is therefore:

s ¼ ��1
1 ð�Þ ¼ ��1

1

�
1

NðtÞ
dNðtÞ
dt

�
; (3)

where ��1
1 is the inverse function of �1ðsÞ. The function

�1ðsÞ (that will be discussed in more detail in the follow-
ing) is monotonically decreasing and has a single zero at
s ¼ 1, therefore according to Eq. (3) showers have age s ¼
1 at maximum and age s < 1 (s > 1) before (after)
maximum.

The definition of the age parameter (3) may seem at first
sight (and in some sense actually is) arbitrary, since the size
slope � itself or any monotonic function of � are also
perfectly adequate to identify similar showers. The choice
of the particular mapping of Eq. (3) is motivated by the fact
that one can attach a direct physical meaning to the quan-
tity s. The shapes of the electron and photon spectra for E
above the critical energy " (the electron critical energy " is
the average energy lost by an electron in a radiation length,
and corresponds also to the electron energy for which
radiative and collision losses are equal) and E � E0

(with E0 the primary particle energy) are well represented
by a power law:

neðEÞ � n�ðEÞ � E�ðsþ1Þ: (4)

These power law behaviors stops when E approaches (from
above) the electron critical energy. For energies below E�
" the electron spectrum has a sharp cutoff, while the
photon spectrum has a ‘‘knee’’ and takes the form E�1.
The precise shapes of the cutoff of the electron spectrum,
of the knee of the photon spectrum (that is the transition

from the form E�ðsþ1Þ to the E�1) and the relative normal-
izations of the photon and electron spectra are all entirely
determined by the age s (or equivalently by the size slope
�) and can be computed in detail.

The commonly used definitions of age in Eq. (1) always
coincides with the general definition (3) at shower maxi-
mum and therefore, by construction, it is a reasonably good
approximation for showers sufficiently close to maximum.
The motivation for the more general definition may appear
as only a formal question of ‘‘principle’’. In fact in some
circumstances the two definitions are significantly differ-
ent, and the general definition gives the correct shower age.
The definition (1) coincides with the correct one only for a

particular shape of the shower longitudinal that is known as
the ‘‘Greisen profile’’ [3]. In fact the Greisen profile and
the age definition (1) are intimately connected, and can be
seen (with the mediation of the function �1) as the integral
and the derivative of each other. The Greisen profile (dis-
cussed below in Sec. IV) describes accurately the average
development of purely electromagnetic showers, but is
only a rough approximation for the description of individ-
ual hadronic showers, and naturally fails completely in the
description of neutrino-induced showers. The deviations of
the definition (1) from the true age (3) are of the same order
of the deviations of the profile of a shower from the Greisen
profile that has the same tmax.
The authors in [4,5] have calculated with Monte Carlo

methods the shape of the electron spectra in hadronic
showers of different age. The parametrizations of their
results are essentially identical to the shapes of the electron
spectra in showers of the same age calculated several
decades ago by Rossi and Greisen [1]. These modern
works have therefore effectively only ‘‘rediscovered’’
with Monte Carlo methods what should be called the
‘‘Rossi-Greisen’’ spectra. We want to attract attention to
this fact for three reasons. The first one is that it is ob-
viously appropriate to give credit to the remarkable work of
the pioneers. The second is that the works of [4,5] do not
include a discussion of photon spectra. The shapes of these
spectra and their relative normalization with respect to the
electron ones are also determined unambiguously by the
shower age, and have been also computed explicitly by
Rossi and Greisen. Finally the derivation of the spectral
shapes obtained by Rossi and Greisen with analytic meth-
ods allows physical insights on the origin and limitations of
the universality of the spectra, that are not easily deducible
from a Monte Carlo calculation.
It should be stressed that the universality of properties

for cascades of the same age has clearly limitations since it
only applies to most but not all particles in the shower. For
example, the similarity among showers at the maximum of
their development, (that is at age s ¼ 1) does not imply
that the showers simply differ by the absolute normaliza-
tion of their electromagnetic component. Considering at
first the case of purely electromagnetic cascades, at maxi-
mum the showers generated by a photon of initial energy
E0 contain (in essentially all cases) more high energy
particles than the showers generated by photons of lower
energy. These high energy particles are negligible in num-
ber and do not contribute significantly to the total size but
in general carry an important fraction of the shower energy,
they ‘‘feed’’ the shower development and influence its
development. The showers generated by other types of
primary particles have ‘‘cores’’ of different structure and
particle content, and follow different development profiles.
This work is organized as follows: In the next two

sections we review a very well-known subject, discussing
the average longitudinal evolution of purely electromag-
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netic showers first in ‘‘approximation A’’, that is neglecting
the electron ionization losses, and then in ‘‘approximation
B’’. The concept of age emerged naturally in these studies.
In approximation B the shower equations have ‘‘elemen-
tary solutions’’ labeled by the parameter s, these solutions
correspond to the ‘‘universal spectra’’ of showers with age
s. The following section discusses the well known
‘‘Greisen profile’’ that describes the average longitudinal
development of purely electromagnetic showers. Finally
we discuss the evolution of individual hadronic showers,
and give some conclusions.

II. ELECTROMAGNETIC SHOWERS IN
APPROXIMATION A

The evolution of purely electromagnetic showers can be
studied [1] using two sets of simplifying assumptions
called ‘‘Approximation A’’ and ‘‘Approximation B’’.

In approximation A the only processes considered for
the shower development are pair production for photons,
and bremsstrahlung for electrons. The differential cross
sections for these processes are described by the asymp-
totic formulas valid at high energy. The electron energy
losses due to collisions with electrons and nuclei of the
medium are neglected.

The average longitudinal development of electromag-
netic showers is described by the two functions neðE; tÞ and
n�ðE; tÞ that give the differential energy spectra of elec-

trons and photons at depth t. In this work we are following
the notation introduced by Rossi and Greisen in [1], how-
ever here we introduce different symbols. Rossi and
Greisen indicate the differential (integral) electron spec-
trum as �ðE; tÞ (�ðE; tÞ) and the photon spectrum as
�ðE; tÞ; the subscript notation used here is more suitable
to the extension of the formalism to hadronic showers
where other particle types are present.

In approximation A the evolution of the electron and
photon differential spectra is described by the two integro-
differential equations:

@neðE; tÞ
@t

¼ �
Z 1

0
dv’0ðvÞ

�
neðE; tÞ

� 1

1� v
ne

�
E

1� v
; t

��

þ 2
Z 1

0

du

u
c ðuÞn�

�
E

u
; t

�
; (5)

@n�ðE; tÞ
@t

¼
Z 1

0

dv

v
’ðvÞne

�
E

v
; t

�
� �0n�ðE; tÞ: (6)

In the right-hand side of Eq. (5) the first term describes the
(e ! e) contribution, and the second one the (� ! e)
processes. In the right-hand side of Eq. (6) the first term
describes the (e ! �) contribution, and the second one
photon absorption. The differential cross sections for
bremsstrahlung ’ðvÞ and pair production c ðuÞ, and the

photon absorption cross section �0 are given in
appendix A.

A. Elementary solutions

In the system of Eqs. (5) and (6) no energy scale is
present. Accordingly these equations have a set of ‘‘ele-
mentary’’, scale invariant solutions of form

neðE; tÞ ¼ KE�ðsþ1Þe�ðsÞt

n�ðE; tÞ ¼ Kr�ðsÞE�ðsþ1Þe�ðsÞt
(7)

that are power laws in energy, and change exponentially
with the depth t. Inserting these solutions in the shower
Eqs. (5) and (6) one obtains a quadratic equation for �ðsÞ
that has the two solutions:

�1;2ðsÞ ¼ � 1

2
ðAðsÞ þ �0Þ � 1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAðsÞ � �0Þ2 þ 4BðsÞCðsÞ

q
: (8)

To each solution corresponds a photon/electron ratio:

rð1;2Þ� ðsÞ ¼ CðsÞ
�0 þ �1;2ðsÞ (9)

The auxiliary functions AðsÞ, BðsÞ and CðsÞ appearing in
the definitions (8) and (9) are given explicitly in
appendix A. The functions �1;2ðsÞ are shown in Fig. 1,

the function rð1Þ� is shown in Fig. 2.
Even if �1ðsÞ is already given by an explicit analytic

expression in (8), it is very useful to follow Greisen [3] and
introduce the simpler expression

�� 1ðsÞ ¼ 1

2
ðs� 1� 3 lnsÞ (10)

that is a very good approximation for �1ðsÞ with deviations
smaller than 2% in the interval 0:6 � s � 1:4. A compari-
son of the exact and approximate expressions for �1ðsÞ is
shown in the top panel of Fig. 1. The usefulness of this
simpler functional form will be clear in the following.
The existence of two solutions �1;2ðsÞ for each s value is

physically simple to understand. If one starts at t ¼ 0 with
populations of electrons that have power law form with the
same slope, but arbitrary normalizations, the spectra main-
tain identical power law shapes at all t, but change their
relative and absolute normalization. The spectra reach first
an asymptotic �=e ratio with a t scale j�2ðsÞj�1, and then

evolve exponentially / e�1ðsÞt maintaining a constant equi-
librium ratio. The convergence to an asymptotic �=e ratio
is the fastest process since j�2ðsÞj> j�1ðsÞj for all s values.
As an explicit example, an initial power law, pure elec-

tron spectrum:

neðE; 0Þ ¼ KE�ðsþ1Þ n�ðE; 0Þ ¼ 0 (11)

evolves in t as:
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neðE; tÞ ¼ K

�1ðsÞ � �2ðsÞ ½ð�1ðsÞ þ �0Þe�1ðsÞt � ð�2ðsÞ

þ �0Þe�2ðsÞt�E�ðsþ1Þ

n�ðE; tÞ ¼ K

�1ðsÞ � �2ðsÞCðsÞ½e
�1ðsÞt � e�2ðsÞt�E�ðsþ1Þ:

(12)

The spectra remain power laws for all t values. For t �
j�2ðsÞj�1 one can set e�2ðsÞt to zero, and the spectra evolve

in t as a simple exponential ( / e�1ðsÞt) with an asymptotic
�=e ratio CðsÞ=ð�1ðsÞ þ �0Þ that corresponds to the first
solution in (9).
In summary, the solutions

neðE; tÞ ¼ K0E�ðsþ1Þe�1ðsÞt

n�ðE; 0Þ ¼ K0E�ðsþ1Þe�1ðsÞtrð1Þ� ðsÞ
(13)

are a sort of ‘‘attractor’’, and any combinations of photon
and electron spectra power laws spectra of the same slope s
‘‘converge’’ to this solution.
The only t independent solution corresponds to s ¼ 1

and is particularly important: The existence of this
t-independent solution:

neðE; tÞ ¼ KE�2 n�ðE; tÞ ¼ K �r�E
�2 (14)

and its energy dependence / E�2 do not depend on the
detailed form of the pair production and bremsstrahlung
cross sections, and can be immediately understood observ-
ing that a power law spectrum of form E�2 contains equal
amount of energy in each energy decade and that the
bremsstrahlung and pair production processes that ‘‘mix’’
the electron and photon populations, conserve energy, and
are scale invariant. Only the value of the �=e ratio that
corresponds to this solution depends on the detailed form
of the cross sections and is:

�r � ¼ rð1Þ� ð1Þ ¼ hvibrems

�0

¼ Cð1Þ
�0

¼ ð1þ bÞ
ð7=9� b=3Þ ’ 1:31:

(15)

The fact that �1ðsÞ is positive (growing solution) for s <
1 and negative (decreasing solution) for s > 1 is also
independent from the detailed form of the cross sections,
and is a simple consequence of the fact that in a power law

spectrum of form E�ðsþ1Þ the energy contained in each
decade increases with E when s < 1 and decreases when
s > 1.
This very elementary discussion already illustrates how

the t dependence of the shower development is intimately
related to the shape of the energy spectra of the particles in
the shower.

B. Showers generated by a primary � or e	

The evolution of the shower generated by a primary
electron or photon of initial energy E0, in approximation

FIG. 2. Equilibrium photon/electron ratio: rð1Þ� ðsÞ ¼
CðsÞ=½�0 þ �1ðsÞ�.

FIG. 1 (color online). Top panel: plot of the function �1ðsÞ; the
dashed line shows the analytic approximation introduced by
Greisen. Bottom panel: plot of the function �2ðsÞ.
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A has been calculated by Rossi and Greisen [1]. Before
describing these solutions explicitly we can observe that
some important properties can be readily deduced with
simple considerations. The differential spectra of electrons
and photons in the solutions have the scaling form:

n�ðE0; E; tÞ ¼ 1

E0

f�

�
E

E0

; t

�
(16)

(the subscript � runs over the 4 cases: e ! e, e ! �, � !
e and � ! �). Correspondingly, the integral spectra have
the scaling form:

N�ðE0; Emin; tÞ ¼
Z E0

Emin

dEn�ðE0; E; tÞ ¼ F�

�
Emin

E0

; t

�
:

(17)

These scaling properties of the approximation A solutions
are a simple consequence of the absence of quantities with
the dimension of energy in the shower equations.

Energy conservation is reflected in the condition:Z E0

0
dEEneðE0; E; tÞ þ

Z E0

0
dEEn�ðE0; E; tÞ ¼ E0: (18)

The solution of the shower equations for a monochro-
matic photon or electron [1] is very simple for the Mellin
transforms of ne and n�. The physically observable spectra

can then be obtained inverting these transforms. The in-
version can be easily performed numerically with a single
path integration along a line in the complex plane, with
exact results. Rossi and Greisen have also shown that it is
possible to invert the transform using a ‘‘saddle point
approximation,’’ obtaining simple expressions for the spec-
tra that are at the same time remarkably accurate and very
instructive.

The saddle point approximation solution for the differ-
ential spectra (valid for large t and E=E0 � 1) can be
written as:

n�ðE0; E; tÞ ’ 1

E0

1ffiffiffiffiffiffiffi
2�

p
�
G�ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
�00
1 ðsÞt

p
�

�
E

E0

��ðsþ1Þ
e�1ðsÞt

�
s¼�sðE=E0;tÞ

(19)

with

�s

�
E

E0

; t

�
’ 3t

t� 2 lnðE=E0Þ : (20)

For the integral spectra the saddle point approximation
solution is:

N�ðE0; Emin; tÞ ’ 1ffiffiffiffiffiffiffi
2�

p
�
1

s

G�ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
�00
1 ðsÞt

p
�
�
Emin

E0

��s
e�1ðsÞt

�
s¼�sðEmin=E0;tÞ

: (21)

Note that both the electron and photon integral spectra

diverge for Emin ! 0. For completeness a derivation of
these well-known results is sketched in appendix B, that
also lists explicit expressions for the functions G�ðsÞ. An
example of the differential spectra in approximation A is
shown in Fig. 3.
The saddle point solutions of the shower equations in

approximation A exhibit several interesting properties:
(i) For a fixed value (less than unity) of the ratio E=E0

(or Emin=E0) the differential and integral spectra start
at zero for t ’ 0, then grow with increasing t, reach-
ing a maximum at the value tmax and then begin to
decrease vanishing for t ! 1. The exponential fac-

tor e�1ðsÞt controls the t evolution of the solution.
Therefore in good approximation shower maximum
corresponds to �1ðsÞ ¼ 0 (and therefore to s ¼ 1).
Using Eq. (20) one finds the well-known result:

tmax

�
E

E0

�
’ ln

�
E0

E

�
: (22)

One can therefore rewrite Eq. (20) in the form:

�s

�
E

E0

; t

�
’ 3t

tþ 2tmax

: (23)

(ii) More in general, from the fact that the factor e�1ðsÞt
controls the t dependence of the solution, it follows
that to a good approximation one has:

1

N�

@N�

@t
’ �1

�
�s

�
Emin

E0

; t

��
(24)

FIG. 3. Electron and photon energy spectra calculated in ap-
proximation A for the shower generated by a primary photon of
energy 1018 eV at three values of the depth (t ¼ 14:6, 23.7, t ¼
41:3 that correspond approximately to age s ¼ 0:7, 1 and 1.4).
Thick (thin) lines are for electrons (photons). The spectra are
shown in the form E2nðEÞ versus E. The area below each curve
is proportional to the amount of energy transported by each
particle type at the depth considered.
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or

1

n�

@n�
@t

’ �1

�
�s

�
E

E0

; t

��
: (25)

(iii) The quantity �sðE=E0; tÞ is related to the shape of the
energy spectrum around E, and has manifestly the
meaning of the ‘‘local slope’’ of the spectrum at
energy E:

� E

n�

@n�
@E

’ �s

�
E

E0

; t

�
þ 1: (26)

In other words the spectrum around E is well ap-

proximated as a power law E�ð�sþ1Þ. Globally the
spectrum is not a simple power law and the local
slope changes as a function of E=E0 and t. For a fixed
depth t the local slope �s grows monotonically with
E=E0, as the spectrum becomes progressively
steeper. For a fixed value of E=E0 the spectrum
also becomes steeper with increasing t and as the
local slope grows monotonically. The shape of the
spectrum around energy E takes the form / E�2

when the spectrum for this energy reaches the
maximum.

(iv) Photons and electrons have spectra with very similar
but not identical shapes, and accordingly the �=e
ratio changes slowly with energy. From the expres-
sions for the functions G�ðsÞ (given in (B14)–(B17))
one finds:

n�ðE0; E; tÞ
neðE0; E; tÞ

’ Cð�sÞ
�0 þ �1ð �sÞ ¼ rð1Þ� ð�sÞ: (27)

That is the ‘‘asymptotic ratio’’ for the elementary
power law solution with slope s ¼ �sðE=E0; tÞ. Note
the remarkable fact that this result is independent
from the nature of the particle (� or e) that initiates
the shower.

(v) In fact the developments of showers initiated by a
photon or an electron of the same energy are remark-
ably close to each other, demonstrating that the
electron and photon population quickly tend to reach
a sort of dynamic equilibrium feeding each other.

In approximation A there is no natural way to associate a
single age to a shower because the equations do not contain
any meaningful energy scale (except the energy of the
primary particle). Therefore for a given depth t one can
associate a different age to every ratio E=E0 (or Emin=E0)
according to Eq. (20). The age �s describes at the same time
the ‘‘stage’’ of the longitudinal evolution of spectrum (via
Eqs. (24) or (25)), and the shape of the spectrum near

energy E, that is well-approximated by the power law /
E�ð �sþ1Þ. The age also controls the �=e ratio around E
according to Eq. (27).

III. ELECTROMAGNETIC SHOWERS IN
APPROXIMATION B

In approximation B the electron energy losses due to
collisions are simply modeled as an energy independent
loss " per unit of radiation length. The quantity " is the
critical energy (in air " ’ 81 MeV). Accordingly, a term is
added to the right-hand side of Eq. (5) that describes the
electron evolution:

@neðE; tÞ
@t

¼ �
Z 1

0
dv’0ðvÞ

�
neðE; tÞ

� 1

1� v
ne

�
E

1� v
; t

��

þ 2
Z 1

0

du

u
c ðuÞn�

�
E

u
; t

�
þ "

@neðE; tÞ
@E

:

(28)

The new system of Eqs. (28) and (6) does not have any
more simple power law solutions of form (7). However,
even in this case, one can introduce elementary solutions
that have a constant shape in energy and evolve with t with

the simple behavior e�ðsÞt. Following Rossi and Greisen [1]
the elementary solutions can be written in the form:

neðE; tÞ ¼ Ke�ðsÞtE�ðsþ1Þp
�
s;
E

"

�

n�ðE; tÞ ¼ Ke�ðsÞtE�ðsþ1Þg
�
s;
E

"

�
r�ðsÞ

(29)

that contain two additional functions pðs; xÞ and gðs; xÞ.
For large energy (E � ") the electron collision losses can
be safely neglected, and the solutions coincide with the
simple power law form of approximation A. This con-
straint tell us that the functions �ðsÞ and r�ðsÞ that appear
in (29) coincide with the functions discussed before and
given in Eqs. (8) and (9), and that for large E=" the
functions pðs; xÞ and gðs; xÞ asymptotically become unity:

lim
x!1pðs; xÞ ¼ 1; lim

x!1gðs; xÞ ¼ 1: (30)

Inserting expression (29) in the shower equations one
obtains two pairs of integro-differential equations (see
Appendix C) for the functions pðs; xÞ and gðs; xÞ corre-
sponding to the two solutions for �ðsÞ. These equations can
be solved numerically to obtain the functions p1;2ðs; xÞ and
g1;2ðs; xÞ.
The physical meaning of the functions p1ðs; xÞ and

g1ðs; xÞ is transparent. If one injects power laws spectra

of electrons and photons of form E�ðsþ1Þ after a few lengths
j�2ðsÞj�1 the spectra take asymptotically constant shapes
given by:

neðE; tÞ ¼ Ke�1ðsÞtE�ðsþ1Þp1

�
s;
E

"

�

n�ðE; tÞ ¼ Ke�1ðsÞtE�ðsþ1Þg1
�
s;
E

"

�
rð1Þ� ðsÞ

(31)
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(identical to (29) but selecting the first of the two possible
solutions) and continue their evolve in t as a simple
exponential.

The qualitative features of this asymptotic solution are
easy to understand. The electron spectrum is a nearly
perfect power law for E � " but has a cutoff for E� ",
when electrons are absorbed because of ionization losses.

The photon spectrum changes from a power law / E�ðsþ1Þ
for E � " to the form/ E�1 for E � ", reflecting the 1=E
dependence of the bremsstrahlung cross section.

These physically intuitive properties are confirmed by
the explicit calculation first performed by Rossi and
Greisen, who have demonstrated [1] that the behavior of
the functions pðs; xÞ and gðs; xÞ for x ! 0 is:

pðs; xÞ / xsþ1 (32)

gðs; xÞ / xs: (33)

The low-energy behavior of the function pðs; xÞ implies
that for E ! 0 the electron spectrum goes to a finite value.
The energy integration of the electron spectrum therefore
converges both for E ! 1 (if s > 0) and for E ! 0, and it
becomes possible to talk about the total electron size. As
expected the differential photon spectrum diverges / E�1

for E ! 0, and therefore the integral spectrum diverges
logarithmically at the lower limit.

The total electron size for the phenomenologically most
important solution (that corresponds to �1ðsÞ) can be writ-
ten as:

NeðsÞ ¼
Z 1

0
dEneðEÞ /

Z 1

0
dEE�ðsþ1Þp1

�
s;
E

"

�

¼ "�s
Z 1

0
dxx�ðsþ1Þp1ðs; xÞ ¼ "�s K1ðs;�sÞ

s
:

(34)

The last equation defines the function K1ðs;�sÞ. The
physical significance of K1ðs;�sÞ can be understood com-
paring Eq. (34) with the integral

Z 1

"
dEE�ðsþ1Þ ¼ "�s

s
:

The electron size obtained integrating over all E the ele-
mentary solution (29) differs from the integration of the

simple form E�ðsþ1Þ in the interval ð" � E � 1) by a
factor K1ðs;�sÞ. Rossi and Greisen have shown how to
calculate exact values of the function K1ðs;�sÞ for all
integer values s 
 0. For s ¼ 1 one has K1ð1;�1Þ ¼
2:8948.

The functions p1;2ðs; xÞ and g1;2ðs; xÞ can be calculated

with numerical methods, as discussed in Appendix C. For
x > 1, it is also possible [1] (see again Appendix C1) to
express the functions as power expansion in 1=x with
easily calculable coefficients.

Figs. 4 and 5 show (on a linear and log scale) the
behavior of the electron spectrum plotted in the form
dne=d lnE ¼ EneðEÞ for three values of the index s. The
integrated electron size Ne is accounted for by particles in
the energy range 0:01 & E=" & 10. Note that an important
limitation of the treatment in approximation B is that the
electron mass is neglected. Accordingly the electron spec-
tra extends down to E ! 0 to unphysical energy values
below the electron mass.

FIG. 5 (color online). Plot of the energy distributions of elec-
trons and photons calculated in approximation B for three values
of the age parameter s (s ¼ 0:7, 1 and 1.3) The distributions (in
the form Ene� ¼ dne;�=d lnE) are calculated as: pðs; EÞE�s for

electrons gðs; EÞE�sr�ðsÞ for photons and renormalized to have a

total size of one electron (and the correct �=e ratio).

FIG. 4 (color online). Plot of the energy distributions of elec-
trons calculated in approximation B for three values of the age
parameter s (s ¼ 0:7, s ¼ 1 and s ¼ 1:3). The distributions (in
the form Ene ¼ dne=d lnE) are calculated as: p1ðs; EÞE�s and
are renormalized to have a total size of one electron.
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Solutions for monochromatic electron or photon

The solution of the shower equations in approximation B
with the initial condition of a monochromatic electron or
photon of energy E0 cannot be given with an exact closed
form expression. Rossi and Greisen suggest to approximate
the solution with the expressions:

neð�Þ!eðE0; E; tÞ ’ ½neð�Þ!eðE0; E; tÞ�A � p1

�
�s

�
"

E0

; t

�
;
E

"

�
(35)

neð�Þ!�ðE0; E; tÞ ’ ½neð�Þ!eðE0; E; tÞ�A � g1

�
�s

�
"

E0

; t

�
;
E

"

�
(36)

with �sðx; tÞ given by (20). These expressions combine the
solution of the shower equations in approximation A with
the functions p1ðs; xÞ and g1ðs; xÞ introduced in Sec. II B as
part of the ‘‘elementary solutions’’ to the shower equations.
For E � " the solution coincides with the one obtained in
approximation A, while for E & " the spectra have ap-
proximately the same shape of the elementary solution that
corresponds to �sð"=E0; tÞ.

In approximation B, it in possible and natural to consider
the value

s ¼ �s

�
"

E0

; t

�
¼ 3t

tþ 2 lnðE0="Þ (37)

as the age of the shower.
The total electron size of the shower NeðE0; tÞ obtained

integrating over all energies is well approximated by the
expression:

N�ðeÞ!eðE0; tÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
��

E0

"

�
s K1ðs;�sÞ

s

� G�ðeÞ!eðsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
�00
1 ðsÞt

p e�1ðsÞt
�
s¼�sð"=E0;tÞ

; (38)

where we have used the fact that integration over energy is
dominated by E� " and the result (34). It can be easily
seen, that the maximum of the size coincides with the
condition �1ðsÞ ¼ 0, that implies s ¼ 1 and, solving Eq.
(37):

tmax ’ ln
E0

"
: (39)

Energy conservation in approximation B can be ex-
pressed with the equation:Z E0

0
dEEneðE0; E; tÞ þ

Z E0

0
dEEn�ðE0; E; tÞ

¼ E0 � "
Z t

0
dt0NeðE0; t

0Þ: (40)

The left-hand side of this equation is the energy contained
in the shower particles at depth t, while the second term in

the right-hand side gives the energy dispersed in the me-
dium by the electrons as ionization. Equation (40) also
implies:

"
Z 1

0
dtNeðE0; tÞ ¼ E0: (41)

An example of the e and � spectra calculated in approx-
imations A and B for a photon of initial energy 1018 eV at
shower maximum is shown in Fig. 6. The two solutions
coincide for E � " ’ 81 MeV, but deviate from each
other at lower energy. The spectra in approximation B
are strongly suppressed below the critical energy. The
sum of the areas below the curves are proportional to the
energy carried by each particle type. The curves of the
approximation B solution enclose a smaller area because a
part of the energy has been dispersed as ionization in the air
(see Eqs. (18) and (40)).
In approximation B showers generated by different pri-

maries but having the same age s according to the defini-
tion (37) have ‘‘essentially’’ equal spectra. This concept is
illustrated in Fig. 7, that shows the electron spectra at
shower maximum for showers generated by photons of
different energy. The spectra are shown in two different
representations. The first is of form (Edn=dE versus E), in
this case the area below the curve is proportional to the
electron multiplicity. In the other representation the spectra
are shown in the form (E2dn=dE versus E), in this case the
area below the curve is proportional to the amount of
energy contained in electrons. In showers of the same
age most of the particles have coincident spectral shapes,
however the distributions of the highest energy particles
differ. High E particles account for a significant fraction of
the energy contained in the shower, and are the reason why
the evolution with t of a shower is not uniquely defined by

FIG. 6. Comparison of the approximation A and approxima-
tion B solutions for the electron and photon spectra in the shower
generated by a primary photon of energy 1018 eV at shower
maximum (t ¼ 23:7). The area below each curve is proportional
to the amount of energy transported by each particle.
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the age, but depends also on the shower energy (or equiv-
alently of the position tðsÞ where the age s is achieved.

To summarize the results of this section, the explicit
calculation of the average development of purely electro-
magnetic showers indicates that it is possible to define a
shower age s:

s ’ ��1
1

�
1

Ne

dNe

dt

�
’ 3t

tþ 2 lnðE0="Þ ’
3t

tþ 2tmax

: (42)

In showers of the same age the electrons and photons
around and below the critical energy " (that dominate the
total number of particles in the shower) have the spectra of
the same shape. The energy spectra differ at larger energy.

IV. THE GREISEN PROFILE

The average longitudinal development of a purely elec-
tromagnetic shower generated by a photon or electron of
energy E0 can be accurately described by a simple analytic
expression introduced by Greisen [3]:

NGreisenðE0; tÞ ¼ 0:31ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðE0="Þ

p exp

�
t

�
1� 3

2

� log

�
3t

tþ 2 lnðE0="Þ
���

: (43)

The ‘‘Greisen Profile’’ is essentially identical to the more
complex expression given in (21). The derivation [3] of
Eq. (43) is simple and instructive, and requires the intelli-
gent ‘‘recombination’’ of some the results obtained above.
The starting point of the derivation is the remark that the

saddle point solution for the total electron size (38) indi-
cates the approximate validity of the relation:

dNeðtÞ
dt

¼ �1ðsÞNeðtÞ: (44)

with the age s given by (42). One can now substitute for
�1ðsÞ the approximation ��11ðsÞ given in (10) and rewrite
Eq. (44) as:

dNeðtÞ
dt

¼ �1ðsÞNeðtÞ

¼ 1

2

�
3t

tþ 2tmax

� 1� 3 log

�
3t

tþ 2tmax

��
NðtÞ:

(45)

The solution of this differential equation for the boundary
condition NðtmaxÞ ¼ Nmax is readily found as:

NeðtÞ ¼ Nmaxe
�tmax exp

�
t

�
1� 3

2
log

�
3t

tþ 2tmax

���
(46)

The normalization is fixed observing that the size at maxi-
mum for an electromagnetic shower can be obtained in-
serting the value s ¼ 1 in Eq. (38) with the result:

Nmax
e ðE0Þ ¼ 0:31ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðE0="Þ
p E0

"
; (47)

where we have used:

1ffiffiffiffiffiffiffi
2�

p G�!eð1Þffiffiffiffiffiffiffiffiffiffiffiffi
�00
1 ð1Þ

p K1ð1;�1Þ ¼ 1ffiffiffiffiffiffiffi
2�

p Ge!eð1Þffiffiffiffiffiffiffiffiffiffiffiffi
�00
1 ð1Þ

p K1ð1;�1Þ

’ 0:31: (48)

Substituting this results in (46) one obtains the final result
(43). Expressions (38) and (43) ‘‘look’’ different from each
other but are essentially coincident numerically.
A test of the accuracy of the Greisen profile solution can

be performed verifying energy conservation using Eq. (41).
This energy conservation condition is satisfied to better
than 4.5% in the broad energy range from a few GeV to
1020 eV.
In summary, the Greisen profile (43) and the expression

for the age in (1) (or (42)) are equivalent to each other. The
age definition (1) implies that the shower develops with the
Greisen profile (45), vice versa the Greisen profile implies
the simple functional dependence for the age of Eq. (1).

FIG. 7. Electron spectra for the showers generated by primary
photons of energy 1016 eV, 1018 eV, and 1020 eV at shower
maximum (t ¼ 18:6, t ¼ 23:7 and t ¼ 27:8). The normalization
is chosen so that the spectra are equal at E ¼ " ¼ 81 MeV. The
top panel shows the spectra in the form EnðEÞ versus E; the
bottom panel shows the same spectra in the form E2nðEÞ versus
E. The similarities and differences between the curves illustrates
the concept and the limitations of the universality of the electron
spectra in showers of the same age (in this case s ¼ 1).
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The Greisen profile and the ‘‘Greisen age’’ (1) are (via the
mapping �1ðsÞ) the integral and the derivative of each
other:

sðt; tmaxÞ ¼ 3t

tþ 2tmax

, NðtÞ ¼ NGreisenðt; tmaxÞ: (49)

A recent paper by Schiel and Ralston [7] has complained
that while the Greisen profile is shown and discussed many
articles and textbooks, a full derivation is missing. The
authors of [7] make an attempt to ‘‘reverse-engineer’’ the
steps performed originally performed by Greisen to obtain
this result, and arrive at the surprising and erroneous con-
clusion that the Greisen profile was ‘‘likely motivated by
early numerical work in a time predating high-speed com-
puter’’. These comments miss the essential point that the
Greisen profile is the result of the exact integration of a
well-defined (albeit product of some approximations) dif-
ferential equation.

The work [7] contains also a serious error when it argues
that performing the derivative of the Greisen profile with
respect to the critical energy and setting the value " ! E,
one obtains the electron differential spectrum at the energy
E for a shower of primary energy E0 at the depth t. This
error originates in a confusion between approximation A
and approximation B for the shower equations, or perhaps
more accurately in using the crude assumption to consider
approximation B as nothing else than the introduction of a
‘‘sharp’’ cutoff for the electron spectra of approximation A
for E � ".

In fact performing the ‘‘trick’’ of the derivative with
respect to " in the energy interval E � ". yields an inter-
esting result that is proportional (but not equal) to the
electron differential spectrum:

� @NGreisenðE0; "; tÞ
@"

��������"¼E
’ Kðs;�sÞneðE0; E; tÞ (50)

(with s ¼ sðt; E0Þ according to Eq. (42)). This result can be
obtained comparing Eqs. (21) and (38). When E ap-
proaches " the interpretation of the derivative in (50)
ceases to be valid, and the electron spectrum takes the

universal (age dependent) shape / p1ðs; E="ÞE�ðsþ1Þ
with appropriate normalization.

This last exercise is however instructive in the sense that
it illustrates an important point. The age s determines the
shape of the energy spectra of the ‘‘bulk’’ of the electrons
and photons in the shower, but the distribution of the high
energy particles depends on additional parameters. For the
average development of an electromagnetic shower the
only additional parameter is the primary particle energy
E0 (or equivalently the position of maximum tmax ’
lnðE0="ÞÞ. The high energy particle content is crucial for
the overall development of the shower. The Greisen profile
implies that at each level t the shower contains a spectrum
of high energy particles that is consistent with the shape of
the development. This high energy particle content is not

determined by the shower age, but (for each age) depends
also on the primary particle energy E0. The high energy
(E � ") electron spectrum can be ‘‘extracted’’ from the
shower profile via Eq. (50).

V. UNIVERSALITY

As discussed in the introduction, the recent works of
Giller et al. [4] and Nerling et al. [5] have shown that for
the same shower age (using the definition of Eq. (1)),
individual showers of hadronic primaries have electron
spectra of the same shape. This result is clearly an impor-
tant generalization of the result obtained in the previous
section that the average development of purely electro-
magnetic showers.
In the following we want to:
(1) Show that the shapes of the electron spectra calcu-

lated by Monte Carlo for individual hadronic show-
ers in [4,5] are essentially identical to the Rossi-
Greisen shapes, calculated for the average develop-
ment of electromagnetic showers, and given for

each age s by the expression p1ðs; E="ÞE�ðsþ1Þ.
(2) Argue that this universality result is correct and

expected, but that the definition of shower age
should be modified from Eq. (1) that strictly speak-
ing is only applicable to the average development of
electromagnetic shower, to the much more general
form (3).

(3) Show that also the shape of the photon energy
distribution and its normalization relative to the
spectrum of electrons in the shower are universal
and determined by the shower age.

As an example of the numerical coincidence of the
Rossi-Greisen spectra of Eq. (29) with the shape of the
electron spectra calculated with Monte Carlo methods for
the same value of the parameter s, in Fig. 8 we compare the
function p1ðs; xÞ for the value s ¼ 1 with the equivalent

quantity (that is neðs; EÞEðsþ1Þ) from the fit to the electron
spectra at shower maximum obtained by Nerling et al. [5].
The two functions are nearly coincident, and agreement of
comparable quality is obtained for all age values in the
phenomenologically most important range 0:7 & s & 1:4
(for more discussion see Appendix D). It is also interesting
to note that the parametrization of [5] for the electron
spectrum has the form:

neðs; EÞ ¼ 1

½Eþ a1ðsÞ�½Eþ a2ðsÞ�s (51)

that has manifestly the same asymptotic behavior as the
Rossi-Greisen shape at both low and high energy: neðEÞ !
constant for E ! 0, and neðEÞ / E�ðsþ1Þ for E � ".
The fact that the energy spectra calculated of individual

hadronic showers coincide with remarkable accuracy with
spectral shapes calculated for the average development of
purely electromagnetic showers may appear at first sight
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surprising, but it is of course not a simple numerical
coincidence, and has in fact a natural explanation.

The first simple point is that in all shower types (elec-
tromagnetic, hadronic and also neutrino induced) the total
number of charged particles is essentially always (with the
exception of very early and very late stages of develop-
ment) dominated by electrons with energy around the
critical energy ". In the hadronic shower this happens
because in each hadronic interaction a large fraction of
the energy is transferred to photons via the production and
decay of�� and�mesons, these photons then generate the
electromagnetic part of the shower that accounts for a
growing fraction of the shower energy, and for most of
the particles in the shower.

The universality of the spectra in different showers of
the same age, can then be immediately relating the age
with the size slope � according to Eq. (3), and observing
that the arguments outlined in the previous sections can be
generalized to conclude that the size slope � must be
associated to a well defined shape for the bulk of the
electrons and photons and to a well defined relative nor-
malization between the two populations.

For example, at shower maximum, when the shower size
is ‘‘stationary’’ (dN=dt ’ 0), the photon and electron spec-
tra must have spectral shapes and relative normalization
that insure this stationarity of the shower size. A stable
solution for this problem has been found in the previous
section and is:

neðEÞ / E�2p

�
1;
E

"

�
n�ðEÞ / 1:31E�2g

�
1;
E

"

�
: (52)

To demonstrate formally that this in fact the general struc-
ture of the electron and photon spectra at shower maximum

is in fact not trivial, however this is a very natural con-
clusion, observing how the results (52) emerge as the
spectra at shower maximum for the average development
of the shower generated by both electrons or photons of
arbitrary energy.

Similarly, for each size slope � the quantity �ð�1Þ
1 ðsÞ can

be identified with the parameters that label the shape of the
electron and photon spectra according to Eq. (31). The
argument that we have outlined to relate the age and the
electron and photon energy spectra is independent from the
nature of the primary particle, from its energy, and from the
value of the depth where the shower is measured.
The argument however does not allow to estimate the

age from a closed form relation of type sðt; tmaxÞ such as
Eq. (1). The fact that this is impossible can be easily
illustrated with the example of the shower generated by a
neutrino. In this case the tmax of the shower can of course
be arbitrary large, and therefore, for example, the definition
(1) returns for the entire shower development �s ’ 1, that is
of course meaningless, while it is physically transparent
that the age concept maintain its validity and applicability,
and the general definition (3) has no difficulty in dealing
with neutrino-induced showers.
One may think that the neutrino example described

above is ‘‘artificial’’ and that the problem that emerged
can be ‘‘solved’’, for example, shifting the origin of the
depth measurement to the neutrino interaction point.
However this point is in most cases unobservable, and
this shifting procedure is operationally not well defined
(and would open the problem of performing a similar shift
of the origin of the t measurements also for hadrons and
photon primaries).
Another way of to see the problem for a closed form

expression of the age of form s ¼ sðt; tmaxÞ is that such a
definition implies via Eq. (44) the entire longitudinal pro-
file of the shower. For example, as discussed before, the
expression (1) implies that the shower develops with the
Greisen profile (45) (and vice versa). In general the longi-
tudinal development of cosmic rays showers cannot be
described accurately with the form (45), and this failure
implies limitations for the approximate definition (1).

The ‘‘Gaisser-Hillas’’ longitudinal profile

The observations of longitudinal profile of high energy
showers obtained with the detection of fluorescence light,
using the technique pioneered by the Fly’s Eye detector,
and currently in use by the HiRes and Auger collaboration,
are commonly fitted using a 4-parameters expression
known as the ‘‘Gaisser-Hillas’’ profile: [8]:

NGHðtÞ ¼ Nmax

�
t� t0

tmax � t0

�ðtmax�t0Þ=�
exp

�
tmax � t0

�

�
:

(53)

The maximum of this function is at t ¼ tmax, where the size
is equal to Nmax, while t0 and � modify the shape. The

FIG. 8 (color online). Plots of the functions pðs; xÞ and gðs; xÞ
at shower maximum (s ¼ 1). The points show the results ob-
tained taking the first 4 terms the power series developments
(C4) and (C5). The dashed line shows the corresponding fit of
Nerling et al. [5] for the electron spectrum at shower maximum.
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Gaisser-Hillas profile (53) implies the shower age:

s ¼ �ð�1Þ
1

�
1

NGHðtÞ
dNGHðtÞ

dt

�
¼ �ð�1Þ

1

�
� 1

�

ðt� tmaxÞ
ðt� t0Þ

�
;

(54)

where �ð�1Þ
1 ðxÞ is the inverse function. of �1ðsÞ. For com-

pleteness we note that the inverse of the function ��1ðsÞ ¼ �

has the explicit form: ��ð�1Þ
1 ð�Þ ¼ �3Product log�

f�1=3 exp½ð�1� 2�Þ=3�g. To study the age near shower
maximum, one expand in a power series around the posi-
tion of the maximum, using as expansion parameter the
quantity �:

� ¼ ðt� tmaxÞ
ðtmax � t0Þ : (55)

The first terms in the series expansion are:

s ¼ 1þ �

�
�

�
4�� 3

4�2

�
�2 þ

�
8�2 � 12�þ 5

8�3

�
�3 þ . . . :

(56)

For comparison, the age near shower maximum for the
Greisen profile (45) can be written as a power expansion in
the quantity �0:

�0 ¼ ðt� tmaxÞ
tmax

(57)

with the result:

s ¼ 3t

tþ 2tmax

¼ 1þ 2
X1
k¼1

ð�1Þkþ1 1

3k
ð�0Þk

¼ 1þ 2

3
�0 � 2

9
ð�0Þ2 þ 2

27
ð�0Þ3 þ . . . : (58)

A comparison of the expansions (56) and (58) shows
explicitly how precisely expression (58) maps the true
age of a shower.

VI. CONCLUSIONS AND OUTLOOK

The concept of the shower age can be very useful for the
analysis of high energy cosmic ray data. The essence of the
idea is very simple and can be summarized in a nutshell
saying that the t-slope � and the E-slope s of a shower are
connected to each other by a one to one mapping. The t
slope (or size slope) is the fractional rate of change of the
shower size with increasing depth (� ¼ N�1dN=dt). The
E slope (or energy slope) is the integral slope of the (power
law) energy spectra of photons or electrons above the
critical energy. The mapping between � and s is given by
� ¼ �1ðsÞ ’ ðs� 1� 3 lnsÞ=2. The spectra of photons and
electrons have a more complex shape around and below "
that is also determined by s (or �), and have a relative
normalization also determined by s (or �). It is remarkable
that the electron and photon spectra that correspond to
different s (or �) have been calculated accurately with

analytic methods by the pioneers Rossi and Greisen
many decades ago.
These properties of universality extend to the angular

and lateral distributions of electrons and photons. This
crucially important subject is not discussed here (see
Appendix E for some remarks).
The definition of age discussed here is independent from

the shape of the longitudinal development of a shower, and
is therefore more general and accurate that the commonly
used definition s ’ 3t=ðtþ 2tmaxÞ that is correct only when
the shower development is described by the ‘‘Greisen
profile’’. The average shape (and the fluctuations around
this average) of the longitudinal development of high
energy cosmic ray showers is determined by the nature
of the primary particles and by the properties of hadronic
interactions. The observation of these shape is a very
important subject for future experimental studies.
A definition of age that depends only on the derivative of

the shower size can be applied also to neutrino-induced
showers, and more generally is expected to remain valid for
the description of all shower where the size is dominated
by electrons. This includes showers generated by exotic
primaries, or the presence of unexpected physics (or un-
expected fluctuations) in the development of the showers
by primary particles of known nature. The search for
events that have unusual longitudinal developments, such
as multiple maxima is an interesting direction of research.
It is likely (and at least the best possible a priori assump-
tion) that the spectra of the electromagnetic component
around and below the critical energy will, also in these
cases, be controlled by the shower age.
These ideas can be useful in the analysis of high energy

cosmic ray observations in several ways. As examples:
(i) the knowledge of the variations of the electron energy
spectrum during the evolution of a shower can be used to
obtain a better reconstruction of the longitudinal profile of
the shower in observations that use fluorescence and/or
Cherenkov light detectors (see [9] for more discussion);
(ii) the reconstruction of the shower age from the lateral
distribution of its electromagnetic component can in prin-
ciple help in the reconstruction of the energy in surface
array measurements; (iii) in case of hybrid measurements
of the showers, the redundant measurement of the age
(from the size longitudinal development and the lateral
distribution of the electromagnetic component at the
ground) can allow to disentangle a muon component,
allowing composition measurements, or test of hadronic
interaction models (see [10] for more discussion).
It should finally be stressed that the universality in the

electromagnetic component of high energy showers, is
clearly an important analysis tool, but gives only a partial
information about the shower. Other information is con-
tained in the shower muon component, moreover the
shower core, that is essentially undetected in large area
shower arrays, in most cases also contains a significant
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amount of energy. The energy contained in the core must
be ‘‘inferred’’ from the information obtained at large dis-
tances from the shower axis, introducing unavoidably
some model dependence in the energy reconstruction.
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APPENDIX A: CROSS SECTIONS FOR
FUNDAMENTAL PROCESSES

In this appendix we list the expressions of the differen-
tial cross sections for the bremsstrahlung and pair produc-
tion, the fundamental processes that control the
development of electromagnetic showers. It is convenient
to measure the column density X in units of radiation
length X0 (with the notation t ¼ X=X0). The radiation
length in air [11] is approximately 36:66 ðg cm2Þ�1.

The probability per unit of radiation length that an
electron of energy Ee emits a photon of energy E� ¼
vEe has the asymptotic form:

’ðvÞ ¼ 1

v

�
1�

�
2

3
� 2b

�
ð1� vÞ þ ð1� vÞ2

�
: (A1)

For the pair production process � ! e�eþ, the energy
distribution of the final state electron is:

c ðuÞ ¼ ð1� uÞ2 þ
�
2

3
� 2b

�
ð1� uÞuþ u2 (A2)

with u ¼ Ee�=E�. Integrating over all u values one obtains

the pair production probability per radiation length:

�0 ¼
Z 1

0
duc ðuÞ ¼ 7

9
� b

3
: (A3)

In the previous equations b depends on the atomic number
of the medium:

b ’ 1

18 logð183Z�1=3Þ (A4)

For air one has b ’ 0:0135.
Important momenta of the functions ’ðvÞ and c ðuÞ are:

AðsÞ ¼
Z 1

0
dv’ðvÞ½1� ð1� vÞs�

¼
�
4

3
þ 2b

��
�0ð1þ sÞ
�ð1þ sÞ þ �

�

þ sð7þ 5sþ 12bð2þ sÞÞ
6ð1þ sÞð2þ sÞ (A5)

BðsÞ ¼ 2
Z 1

0
duusc ðuÞ ¼ 2ð14þ 11sþ 3s2 � 6bð1þ sÞÞ

3ð1þ sÞð2þ sÞð3þ sÞ
(A6)

CðsÞ ¼
Z 1

0
dvvs’ðvÞ ¼ 8þ 7sþ 3s2 þ 6bð2þ sÞ

3sð2þ 3sþ s2Þ
(A7)

In Eq. (A5) �0ðzÞ=�ðzÞ is the digamma function and � is the
Euler gamma constant � ’ 0:577216.

APPENDIX B: SHOWER EQUATIONS IN
APPROXIMATION A

In this section we sketch a derivation of the solutions of
the shower equations in approximation A for the initial
condition of a monochromatic electron or photon.
The first step is to introduce the Mellin transforms

Meðs; tÞ and M�ðs; tÞ of the electron and photon spectra

neðE; tÞ and n�ðE; tÞ. In general the Mellin transform of the

function fðEÞ is defined as:

MfðsÞ ¼
Z 1

0
dEEsfðEÞ (B1)

with s a complex parameter. The Mellin transform con-
verges in a strip bounded by two straight lines parallel to
the imaginary axis (s1 <<½s�< s2). The inverse trans-
formation is:

fðEÞ ¼ 1

2�i

Z
C
dsE�ðsþ1ÞMfðsÞ; (B2)

where the integration path C runs parallel to the imaginary
axis within the strip of convergence of MfðsÞ.
Applying the operator:Z 1

0
dEEs

to the shower Eqs. (5) and (6) one obtains a system of two
linear differential equations for Meðs; tÞ and M�ðs; tÞ:

@Meðs; tÞ
@t

¼ �AðsÞMeðs; tÞ þ BðsÞM�ðs; tÞ (B3)

@M�ðs; tÞ
@t

¼ þCðsÞMeðs; tÞ � �0M�ðs; tÞ: (B4)

The general solution of this system can be easily obtained

as a linear combination of the exponential functions e�1ðsÞt

and e�2ðsÞt.
The shower generated by an electron of energy E0 at

depth t ¼ 0 corresponds to the initial condition:

neðE; 0Þ ¼ �½E� E0� n�ðE; 0Þ ¼ 0 (B5)

or

Meðs; 0Þ ¼ ðE0Þs M�ðs; 0Þ ¼ 0 (B6)

while the shower generated by an initial photon of energy
E0 corresponds to the initial conditions:

neðE; 0Þ ¼ 0 n�ðE; 0Þ ¼ �½E� E0� (B7)
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or

Meðs; 0Þ ¼ 0 M�ðs; 0Þ ¼ ðE0Þs: (B8)

Using these boundary conditions one finds the solutions:

Me!eðE0; s; tÞ ¼ Es
0

�1ðsÞ � �2ðsÞ f½�0 þ �1ðsÞ�e�1ðsÞt

� ½�0 þ �2ðsÞ�e�2ðsÞtg

Me!�ðE0; s; tÞ ¼ CðsÞEs
0

�1ðsÞ � �2ðsÞ fe
�1ðsÞt � e�2ðsÞtg (B9)

and

M�!eðE0; s; tÞ ¼ � Es
0

CðsÞ
½�0 þ �1ðsÞ�½�0 þ �2ðsÞ�

�1ðsÞ � �2ðsÞ
� fe�1ðsÞt � e�2ðsÞtg

M�!�ðE0; s; tÞ ¼ � Es
0

�1ðsÞ � �2ðsÞ f½�0 þ �2ðsÞ�e�1ðsÞt

� ½�0 þ �1ðsÞ�e�2ðsÞtg: (B10)

The functions ne;�ðE0; E; tÞ can be obtained inverting the
Mellin transformation using (B2), or more explicitly:

n�ðEÞ ¼ 1

2�i

Z
C
dsE�ðsþ1ÞM�ðsÞ

¼ 1

2�i

Z s0þi1

s0�i1
dsE�ðsþ1ÞM�ðsÞ (B11)

(with the subscript � than runs over the 4 cases: (e ! e),
(e ! �), (� ! e) and (� ! �)). This integral cannot be
done exactly analytically, however with modern tools it is
trivial to obtain the numerical result with any desired level
of accuracy. In fact the integrand function is well defined
(and available in computer libraries) for all complex values
s. The imaginary part of the integral vanishes while the real
part gives the physically observable spectra.

Rossi and Greisen have also shown that using the
‘‘saddle point’’ approximation it is possible to obtain sim-
ple analytic expressions that are a very good approximation
of the exact results for t not too small, and that remain very
instructive and useful. The basic idea behind the saddle
point approximation is that the integrand in (B11) is an
analytic function in the variable s. For any analytic func-
tion fðzÞ ¼ fðxþ iyÞ one has:

@2f

@x2
þ @2f

@y2
¼ 0

This implies that if the function fðzÞ has a minimum for a
real value �z when z runs along the real axis, the function
will then have a maximum at the same point along a path
that is at right angle with respect to the real axis. The
integral is then dominated by the value of the function
near the maximum, and can be performed analytically
approximating the integrand with a Gaussian function,
and using the well known result that if QðxÞ is a quadratic

form:

QðxÞ ¼ q0 þ q1xþ 1

2
q2x

2

with coefficient q2 > 0, one has:

Z þ1

�1
dxe�QðxÞ ¼

ffiffiffiffiffiffiffi
2�

q2

s
exp½�Qð �xÞ� (B12)

(where �x ¼ �q1=q2 is the point where the quadratic form
QðxÞ is minimum, and the integrand is therefore
maximum).
One can now apply this idea to the integral (B11). For t

not too small, one can neglect the term proportional to
exp½�2ðsÞt� in the expressions for the Mellin transforms
given in Eqs. (B9) and (B10) and rewrite the integrand of
the inverse transform as:

1

2�i
E�ðsþ1ÞM�ðE0; sÞ ¼ 1

2�i

1

E
G�ðsÞ

��
E

E0

��s
e�1ðsÞt

�
;

(B13)

where the functions G�ðsÞ are:

Ge!eðsÞ ¼ ½�0 þ �1ðsÞ�
�1ðsÞ � �2ðsÞ (B14)

Ge!�ðsÞ ¼ CðsÞ
�1ðsÞ � �2ðsÞ (B15)

G�!eðsÞ ¼ � 1

CðsÞ
½�0 þ �1ðsÞ�½�0 þ �2ðsÞ�

�1ðsÞ � �2ðsÞ (B16)

G�!�ðsÞ ¼ � ½�0 þ �2ðsÞ�
�1ðsÞ � �2ðsÞ : (B17)

In Eq. (B13) the integrand of the inverse Mellin transform
has been written as the product of a function that changes
rapidly with s (in square parenthesis) and a function that is
considered as slowly varying. The part of the function that
is rapidly varying with s has a minimum along the real axis
for the value s determined by the implicit equation:

d

ds

��
E

E0

��s
e�1ðsÞt

�
¼ 0 (B18)

or equivalently:

�0ðsÞtþ ln

�
E0

E

�
¼ 0: (B19)

This equation has an explicit solution if one substitutes
for �1ðsÞ the Greisen analytic approximation ��ðsÞ given in
(10). The solution is:

s ’ �s

�
E

E0

; t

�
¼ 3t

t� 2 lnðE=E0Þ : (B20)

One can now complete the calculation at the saddle point
s ¼ �s approximating the integrand as a Gaussian function
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and using Eq. (B12) with q2 ’ �00ðsÞt with the result:

n�ðE0; E; tÞ ’ 1

E0

1ffiffiffiffiffiffiffi
2�

p
�
G�ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
�00
1 ðsÞt

p
�ð E

E0

Þ�ðsþ1Þe�1ðsÞt
�
s¼�sðE=E0;tÞ

: (B21)

The integral distributions can be calculated noting that for t
not too small the integration is dominated by E close to
Emin. Neglecting the slow variation of s with E one finds:

N�ðEmin; E0; tÞ ’ 1ffiffiffiffiffiffiffi
2�

p
�
1

s

G�ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
�00
1 ðsÞt

p
�

�
Emin

E0

��s
e�1ðsÞt

�
s¼ �sðEmin=E0;tÞ

: (B22)

An alternative method to obtain Eq. (B22) is to observe
that if FðEminÞ is the integral of the function fðEÞ for E>
Emin, then the Mellin transform MFðsÞ is given by:

MFðsÞ ¼ 1

sþ 1
Mfðsþ 1Þ (B23)

and performing the inversion with the saddle point
approximation.

For completeness we note that Rossi and Greisen sug-
gest some slightly more complex forms for the saddle point
solutions in place of Eqs. (B21) and (B22) for a better
approximation with the exact solution. The idea is to make
a better choice for the ‘‘fast varying’’ part of the Mellin
transform. This can be done introducing the quantity m�

and rewriting the decomposition (B13) as:

1

2�i
E�ðsþ1ÞM�ðE0; sÞ ¼ 1

2�i

1

E
G�ðsÞs�m�

�
�
sm�

�
E

E0

��s
e�1ðsÞt

�
: (B24)

The exponent m� is chosen ‘‘ad-hoc’’ for better quantita-
tive results. Rossi and Greisen [1] suggest the values:

me!e ¼ m�!� ¼ 0 (B25)

me!� ¼ �m�!e ¼ � 1

2
: (B26)

The part of the function that is considered as varying
rapidly with s is indicated in square parenthesis in (B24)
and has a minimum along the real axis for the value s
determined by the implicit equation:

�0ðsÞtþ ln

�
E0

E

�
þm�

s
¼ 0; (B27)

that can be solved explicitly if one substitutes �1ðsÞ with
the Greisen analytic approximation. The solution is:

s ¼ ~s�

�
E

E0

; t

�
¼ 3t� 2m�

t� 2 lnðE=E0Þ : (B28)

One can proceed with the saddle point solution, noting that
for the Gaussian approximation of the rapidly varying
function the parameter q2 is now given by: q2 ’ �00ðsÞt�
m�=s

2. The differential spectra can then be written as:

n�ðE0; E; tÞ ¼ 1

E0

1ffiffiffiffiffiffiffi
2�

p
�

G�ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�00ðsÞt�m�=s

2
p

�
�
E

E0

��ðsþ1Þ
e�1ðsÞt

�
s¼~s�ðE=E0;tÞ

: (B29)

Similarly a more complex expression can be written to
improve on Eq. (B22) for the integral spectra. For large
E0 and large t one can neglect the terms m�=s

2 and the
more complex expressions for the differential and integral
spectra coincide with the simpler results (B21) and (B22).

APPENDIX C: ELEMENTARY SOLUTIONS IN
APPROXIMATION B

The form of the solution for the shower equation in
approximation B is given in Eq. (29). Inserting this ex-
pression in the shower equations one obtains two integro-
differential equations for the functions pðs; xÞ and gðs; xÞ:

�ðsÞpðs; xÞ ¼ 2CðsÞ
�0 þ �ðsÞ

Z 1

0
duusc ðuÞg

�
s;
x

u

�

�
Z 1

0
dv’ðvÞ

�
pðs; xÞ � ð1

� vÞsp
�
s;

x

1� v

��
� ðsþ 1Þpðs; xÞ

x

þ @pðs; xÞ
@x

(C1)

and

gðs; xÞ ¼ 1

CðsÞ
Z 1

0
dvvsp

�
s;
x

v

�
: (C2)

It is possible to eliminate the function g in (C1), obtaining
an equation for pðs; xÞ:

�ðsÞpðs; xÞ ¼ 2

�0 þ �ðsÞ
Z 1

0
duusc ðuÞ

�
Z 1

0
dvvs’ðvÞp

�
s;

x

uv

�
�

Z 1

0
dv’ðvÞ

�
�
pðs; xÞ � ð1� vÞsp

�
s;

x

1� v

��

� ðsþ 1Þpðs; xÞ
x

þ @pðs; xÞ
@x

: (C3)

The two solutions for pðs; xÞ are obtained substituting in
(C3) the two solutions for �ðsÞ given in (8). Note that Eq.
(C2) is a simple integral, therefore from the knowledge of
the electron energy spectrum, that is the functions
p1;2ðs; xÞ, it is trivial to obtain numerically the correspond-
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ing photon spectrum, while it is not entirely trivial to solve
numerically Eq. (C3) for pðs; xÞ.

Power expansion for the functions pðs; xÞ and gðs; xÞ
A useful result obtained by Rossi and Greisen is the

demonstration that the functions pðs; xÞ and gðs; xÞ can be
expressed as a power series in 1=x:

pðs; xÞ ¼ X
j

cjðsÞx�j ¼ 1þ c1ðsÞ
x

þ c2ðsÞ
x2

þ . . . (C4)

gðs; xÞ ¼ X
j

djðsÞx�j ¼ 1þ d1ðsÞ
x

þ d2ðsÞ
x2

þ . . . (C5)

with easily calculable coefficients. In fact, inserting these
power series forms in Eqs. (C3) and (C2) one obtains
simple recursive relations for the coefficients:

cn ¼ � cn�1ðsþ nÞ
Fðs; nÞ ; c0 ¼ 1: (C6)

dn ¼ cn
Cðsþ nÞ
CðsÞ ; (C7)

where the function Fðs; nÞ is:

Fðs; nÞ ¼ �ðsÞ þ Aðsþ nÞ � Bðsþ nÞCðsþ nÞ
�0 þ �ðsÞ (C8)

and the functions AðsÞ, BðsÞ and CðsÞ are listed in
appendix A. Clearly a power series in 1=x solution cannot
be used for x close or below unity (that is for E close or
below the critical energy "), however this expansion allows
to test in its range of validity solutions obtained with
different methods.

APPENDIX D: ANALYTIC AND MONTE CARLO
SOLUTIONS

The calculation of the spectra of electrons and photons
in shower of the same age obtained by Rossi and Greisen in
[1] and discussed in this paper has the limitations that are
intrinsic to the realistic but simplified theoretical frame-
work (approximation B) that has been used. This frame-
work introduces several simplifications: the cross sections
for bremsstrahlung and pair production have always the
asymptotic form that is strictly speaking only valid at very
high energy, the electron collision losses are treated as a
simple energy independent constant, and Compton scatter-
ing is entirely neglected. Also in approximation B the
electron mass is neglected and the electron spectrum ex-
tends down to zero energy. A Monte Carlo calculation of
the spectral shapes can of course avoid all these limitations
and is in principle more accurate, even if it has its own
limitations and difficulties

A comparison of the Rossi-Greisen shapes with the
numerical results of [4,5], shows remarkable agreement

but also some small differences, that could be interesting to
explore in more detail. As an illustration, normalizing the

high energy spectra to neðE; sÞ ! E�ðsþ1Þ, the quantity

s
Z 1

0
dEneðs; EÞ (D1)

is given by the function K1ðs;�sÞ for the Rossi-Greisen
calculation. The numerical integration of the Nerling et al.
parametrization [5] gives results that differ by 5–10% (at
shower maximum the difference is 4.5%). A comparison of
the results is shown in Fig. 9.
As an additional test we have calculated the first coef-

ficient in the development:

FIG. 9 (color online). Plot of the function K1ðs;�sÞ. The
dashed line shows the normalization of the electron spectrum
of Nerling et al. [5].

FIG. 10 (color online). Plot of the coefficient c1ðsÞ of the
expansion (C4) for the p1ðs; xÞ function. The red dashed curve
is the coefficient for the numerical calculation of Nerling et al.
[5].
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p1

�
s;
E

"

�
¼ Esþ1neðs; EÞ

¼ 1þ c1ðsÞ "Eþ c2ðsÞ
�
"

E

�
2 þ . . . (D2)

For the Nerling parametrization (51) the first coefficient is
c1ðsÞ ¼ �½a1ðsÞ þ sa2ðsÞ�, while for the Rossi-Greisen
solution the coefficient is given by (C6). A comparison
of the two estimate is shown in Fig. 10.

The origin of the (small) differences between the ana-
lytic and Monte Carlo solutions merits further studies. A
possible explanation is a more precise description of the
physics of the electromagnetic interactions in the
Monte Carlo calculation.

APPENDIX E: LATERAL DISTRIBUTION

It is intuitive that in showers of the same age most
electrons and photons have not only the same energy
distributions but also the same angular distributions and,
for the same density profile of the medium where the
showers are propagating, also essentially equal lateral dis-
tributions around the shower axis.

The problem of calculating the electron lateral distribu-
tion has attracted considerable in the past. Nishimura and
Kamata [2] solved numerically the 3-dimensional shower
equations in approximation B to obtain the (energy inte-

grated) lateral distribution of electrons propagating in a
medium of constant density. Their result were fitted by
Greisen [3] with the approximate form:

�eðs; rÞ ¼ NeKðsÞ 1
r20

�
r

r0

�
s�2

�
1þ r

r0

�
s�4:5

(E1)

with r0 is the Moliere radius and KðsÞ ¼ ð2�Þ�1�½4:5�
s�=ð�½4:5� 2s��½s�Þ is a normalization factor. After these
works several other authors have given different parame-
trizations of the lateral distribution as a function of an age
parameter (see, for example, Hillas in [12].
In the view of this author it is in fact not possible to have

a single parametrization for lateral distribution, because it
is essential to consider the properties of the detector that
measure the shower at the ground. For example the results
of Nishimura and Kamata refer to the total number of
electrons integrated down to zero energy, however in
most cases the detectors of shower arrays do not sample
the electron number but an energy deposition, and in any
case it is always needed to take into account some contri-
bution from photons in the shower. Therefore one needs to
combine appropriately the electron and photon contribu-
tions with the detector response. An additional complica-
tions is of course that for hadronic primaries one has to
disentangle the electromagnetic and muon components of
the shower.
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