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Detection of a gravitational-wave stochastic background via ground or space-based gravitational-wave

detectors requires the cross correlation of the response of two or more independent detectors. The cross

correlation involves a frequency-dependent factor—the so-called overlap reduction function or Hellings-

Downs curve—that depends on the relative geometry of each detector pair, i.e., the detector separations

and the relative orientation of their antenna patterns (beams). An incorrect formulation of this geometrical

factor has appeared in the literature, leading to incorrect conclusions regarding the sensitivity of proposed

detectors to a stochastic gravitational-wave background. To rectify these errors and as a reference for

future work we provide here a complete, first-principles derivation of the overlap reduction function and

assess the nature of the errors associated with the use of the incorrect expression that has appeared in the

literature. We describe the behavior of the overlap reduction function in different limiting regimes, and

show how the difference between the correct and incorrect expressions can be understood physically.
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I. INTRODUCTION

The measured response of a single gravitational-wave
detector to a stationary stochastic gravitational-wave sig-
nal is indistinguishable from unidentified instrumental
noise. The gravitational-wave contribution to the measured
response of two or more independent detectors will, how-
ever, be correlated between detector pairs in ways that
other technical noises will not. The relationship between
the power in a stochastic gravitational-wave background
and the cross-correlated response of a detector pair de-
pends on the response of the individual detectors and their
relative geometry, i.e., their separation and the relative
orientation of their respective detector antenna patterns,
or beams. In the context of ground or space-based laser
interferometric detectors [1–7] or resonant acoustic
gravitational-wave detectors [8] this geometrical factor is
referred to as the overlap reduction function [9–13]; in the
context of pulsar timing arrays [14] or spacecraft doppler
tracking [15] it is called the Hellings-Downs curve [16].

Incorrect expressions for the overlap reduction function
have appeared in the recent literature [17,18] and, with
them, incorrect conclusions regarding the sensitivity of
proposed gravitational-wave detectors to stochastic gravi-

tational waves. These errors have lead to significantly
flawed appraisals of the high-frequency sensitivity of the
Big Bang Observer (BBO) to a stochastic gravitational-
wave background, including spurious nulls in the
frequency-dependent detector response and a reduced es-
timate of the signal-to-noise ratio as a function of the
gravitational-wave power. To rectify these errors and as a
reference for future work we provide here a complete, first-
principles derivation of the overlap reduction function and
assess the nature and physical interpretation of the errors
associated with the use of the incorrect expression that has
appeared in the literature.

II. THE OVERLAP REDUCTION FUNCTION

The overlap reduction function of a pair of gravitational-
wave detectors is the collection of geometric factors, asso-
ciated with the relative position and orientation of the
detector pair that appear in the cross-correlation of the
detector pair’s response. Here, we derive an expression
for the overlap reduction function by deconstructing the
cross correlation, identifying those contributions that de-
pend only on the radiation and those that depend only on
the detectors, which are then identified as the overlap
reduction function. This approach has the virtue of clearly
illustrating the physical origins of the overlap reduction
function and making less likely mistakes of the kind that
may have led to the existing errors in the literature.
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A. Interdetector cross correlation

Consider two gravitational-wave detectors. A stochastic
gravitational-wave ‘‘background’’ will manifest itself in a
nonvanishing cross correlation between the measurements
mðtÞ made at the two detectors, calculated as a time aver-
age over the product of the measurements

CTð�t; tÞ ¼ 1

T

Z T=2

�T=2
dt0m1ðtþ �tþ t0Þm2ðtþ t0Þ: (2.1)

The signature of a stochastic gravitational-wave signal
hijðt; ~xÞ is just the expectation value of CTð�t; tÞ in the

presence of hijðt; ~xÞ. Write the measurement mIðtÞ made at

detector I as the sum of a noise contribution nIðtÞ and a
signal contribution rIðtÞ, corresponding to the detector
response to hijðt; ~xÞ [19]. Assume that the noise in each

detector is independent and that there are no
nongravitational-wave effects that might lead to a correla-
tion in the measurements made at each detector. Under
these assumptions the expectation value of the product
n1ðtþ �tÞn2ðtÞ vanishes, implying that the expectation
value of CTð�t; tÞ is just the expectation value of the
product r1ðtþ �tÞr2ðtÞ

�Cð�tÞ � CTð�t; tÞ ¼ r1ðtþ �tÞr2ðtÞ; (2.2)

where the overbar denotes the expectation value, and we
have assumed that the expectation value of CTð�t; tÞ is
independent of t. This is equivalent to assuming that the
background is stationary, as wewill describe in more detail
in Sec. II C.

Turn now to the detector response. Gravitational waves
are weak. Even the most sensitive detectors respond line-
arly to the local field hijðt; ~xÞ. Correspondingly, we write

the detector response as a convolution, in time and space,

of an impulse response function Rij
I ðt; ~xÞ with the field

hijðt; ~xÞ

rIðtÞ � rIðt; ~xIÞ
¼

Z 1

�1
d�

Z
R3
d3xhijðt� �; ~xI � ~xÞRij

I ð�; ~xÞ; (2.3)

where ~xI is the spatial location of detector I about which its

response Rij
I ðt; ~xÞ is defined. Causality requires that

Rij
I ðt; ~xÞ vanishes outside the future light cone of ð0; ~0Þ.

Exploiting the convolution theorem we can also write

rIðtÞ ¼ ð2�Þ3
Z 1

�1
df

Z
R3
d3k~hijðf; ~kÞ ~Rij

I ðf; ~kÞeið2�ft� ~k� ~xIÞ;

(2.4)

where

~hijðf; ~kÞ ¼ 1

ð2�Þ3
Z 1

�1
dt

Z
R3
d3xhijðt; ~xÞe�ið2�ft� ~k� ~xÞ;

(2.5a)

~Rij
I ðf; ~kÞ ¼

1

ð2�Þ3
Z 1

�1
dt

Z
R3
d3xRij

I ðt; ~xÞe�ið2�ft� ~k� ~xÞ

(2.5b)

are the field Fourier modes and detector transfer function.
Note that for real hij and Rij

~h�ijðf; ~kÞ ¼ ~hijð�f;� ~kÞ; (2.6a)

~Rij�
I ðf; ~kÞ ¼ ~Rij

I ð�f;� ~kÞ: (2.6b)

With the above representations of the detector response,
we can express �Cð�tÞ in terms of the detector response and
the field

�Cð�tÞ ¼
Z 1

�1
d�

Z 1

�1
d�0

Z
R3
d3x

Z
R3
d3x0

� hijðtþ �t� �; ~x1 � ~xÞhklðt� �0; ~x2 � ~x0Þ
� Rij

1 ð�; ~xÞ; Rkl
2 ð�0; ~x0Þ (2.7a)

or, equivalently,

�Cð�tÞ ¼ ð2�Þ6
Z 1

�1
df

Z 1

�1
df0

Z
R3
d3k

Z
R3
d3k0

� fe2�iðf�f0Þte2�if�t ~hijðf; ~kÞ~h�klðf0; ~k0Þ
� ½ ~Rij

1 ðf; ~kÞe�i ~k� ~x1�½ ~Rkl
2 ðf0; ~k0Þe�i ~k0� ~x2��g: (2.7b)

Note particularly how the detector location and the transfer
function appear together in the combination
~Rij
I ðf; ~kÞe�i ~k� ~xI . The form of this combination will be criti-

cal when we come to understand the physical character of
the errors made in earlier calculations of the overlap re-
duction function.

B. Plane-wave representation of stochastic signal

Focus attention on gravitational-wave fields hijðt; ~xÞ.
These are conveniently represented as a superposition of
plane waves

hijðt; ~xÞ ¼
Z 1

�1
df

Z
S2
d2�k̂e

2�ifðt�k̂� ~xÞH Aðf; k̂ÞeAijðk̂Þ;
(2.8)

where k̂ is the unit vector direction of wave propagation,

and eAijðk̂Þ are the two orthogonal polarization tensors

2�AA0 ¼ eAijðk̂ÞeA0
ij ðk̂Þ; (2.9a)

eAijðk̂Þ ¼ eAjiðk̂Þ: (2.9b)

Note thatH �
Aðf; k̂Þ ¼ H Að�f; k̂Þ as a consequence of the

reality of hij. The plane-wave field amplitudes H Aðf; k̂Þ
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are related to the field’s Fourier modes ~hijðf; ~kÞ by

H Aðf; k̂ÞeAijðk̂Þ ¼
� ð2�fÞ2HðþÞ

ij ðf; k̂Þ; f � 0

ð2�fÞ2Hð�Þ
ij ðf;�k̂Þ; f < 0

;

(2.10)

where

~hijðf; ~kÞ ¼ HðþÞ
ij ðf; k̂Þ�ðj ~kj � 2�fÞ

þ Hð�Þ
ij ðf; k̂Þ�ðj ~kj þ 2�fÞ: (2.11)

Here, we have introduced separate amplitudes Hð�Þ
ij for the

positive and negative frequency solutions to the dispersion

relations j ~kj2 ¼ ð2�fÞ2 for a plane wave.
Using expansion (2.8), we can write the detector re-

sponse rIðtÞ as

rIðtÞ ¼
Z 1

�1
df

Z
S2
d2�k̂H Aðf; k̂ÞRA

I ðf; k̂Þe2�ifðt�k̂� ~xIÞ;

(2.12)

where

R A
I ðf; k̂Þ ¼ ð2�Þ3eAijðk̂Þ ~Rij

I ðf; 2�fk̂Þ: (2.13)

The expectation value �Cð�tÞ can also be written as

�Cð�tÞ ¼
Z 1

�1
df

Z 1

�1
df0

Z
S2
d2�k̂

Z
S2
d2�k̂0

� fe2�iðf�f0Þte2�if�tH Aðf; k̂ÞH �
A0 ðf0; k̂0Þ

� ½RA
1 ðf; k̂Þe�2�ifk̂� ~x1�½RA0

2 ðf0; k̂0Þe�2�if0k̂0� ~x2��g:
(2.14)

Again make note of how the detector locations ~x1, ~x2 are
associated with the respective transfer functions RA

1 and
RA

2 .

C. Stationarity, isotropy, and polarization correlations

The statistical properties of the stochastic signal are
encoded in the expectation values of products of the gravi-
tational field

hijðt; ~xÞ; hijðt; ~xÞhklðt0; ~x0Þ;
hijðt; ~xÞhklðt0; ~x0Þhmnðt00; ~x00Þ; � � �

(2.15)

Without loss of generality, wewill assume that any nonzero
mean has been absorbed in the background spacetime, so

that hijðt; ~xÞ ¼ 0. Furthermore, for Gaussian-distributed

fields, knowledge of the quadratic correlations will suffice
as all higher-order moments can be constructed from these.

In our problem we expect that the gravitational-wave
background is effectively stationary, i.e., that

hijðt; ~xÞhklðt0; ~x0Þ depends on t and t0 only through their

difference t� t0. In terms of the plane-wave components

H Aðf; k̂Þ, this condition becomes

H Aðf; k̂ÞH �
A0 ðf0; k̂0Þ ¼ HAA0 ðf; k̂; k̂0Þ�ðf� f0Þ: (2.16)

Thus, the different frequency components of a stationary
stochastic background are statistically independent, but
they can contribute differently to the cross-correlated
power through the f dependence in HAA0 . Note that the
�ðf� f0Þ factor in (2.16) eliminates the t dependence in
�Cð�tÞ, cf., Eq. (2.14).
If the background is isotropic—i.e., the gravitational-

wave specific intensity is independent of the direction of

propagation k̂—then the most general form of the qua-
dratic expectation value of the plane-wave components

H Aðf; k̂Þ is
H Aðf; k̂ÞH �

A0 ðf0; k̂0Þ ¼ HAA0 ðf; f0; k̂ � k̂0Þ; (2.17a)

where HAA0 depends on k̂ and k̂0 only through the angle
between them. If we further assume that the components
corresponding to different propagation directions are sta-
tistically independent, then

H Aðf; k̂ÞH �
A0 ðf0; k̂0Þ ¼ HAA0 ðf; f0Þ�2ðk̂; k̂0Þ; (2.17b)

where �2ðk̂; k̂0Þ � �ðcos�� cos�0Þ�ð���0Þ is the cova-
riant Dirac delta function on the two-sphere. This latter,
more restrictive, condition is the definition of isotropy for
gravitational-wave stochastic backgrounds typically as-
sumed in the literature, e.g., [10–13].
Finally, if the background is unpolarized, by which we

will mean that the different polarization components are
statistically independent and contribute equally to the
cross-correlated power, then

H Aðf; k̂ÞH �
A0 ðf0; k̂0Þ ¼ Hðf; f0; k̂; k̂0Þ�AA0 : (2.18)

Putting all these conditions together, we have that an
unpolarized, stationary, isotropic stochastic gravitational-
wave background satisfies

H Aðf; k̂ÞH �
A0 ðf; k̂0Þ ¼ HðfÞ�ðf� f0Þ�2ðk̂; k̂0Þ�AA0 :

(2.19)

Here, HðfÞ is a real-valued function proportional to the
gravitational-wave energy density. This is, in turn, directly
related to �gwðfÞ, the ratio of the gravitational-wave en-

ergy density to the cosmological closure density [13]

H ðfÞ ¼ 3H2
0

32�3

�gwðfÞ
jfj3 ; (2.20)

where H0 is the Hubble expansion rate at the present
epoch.

D. The overlap reduction function

Combining the results of the previous subsections we
find that we can express the expectation value �Cð�tÞ of the
interdetector cross correlation in the presence of an unpo-
larized, stationary, isotropic gravitational-wave back-
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ground as

�Cð�tÞ ¼
Z 1

�1
dfe2�if�tHðfÞ�12ðfÞ; (2.21a)

where

�12ðfÞ ¼
Z
S2
d2�k̂R

A
1 ðf; k̂ÞRA�

2 ðf; k̂Þe�2�ifk̂�ð ~x1� ~x2Þ;

(2.21b)

R A
I ðf; k̂Þ ¼ eAijðk̂Þ

Z 1

�1
dt

Z
R3
d3xRij

I ðt; ~xÞe�2�ifðt�k̂� ~xÞ:

(2.21c)

The quantity �12ðfÞ is the overlap reduction function. It is
often convenient to define a normalized overlap reduction
function �12ðfÞ / �12ðfÞ with �12ð0Þ ¼ 1 for two coinci-
dent and coaligned identical detectors. For identical inter-
ferometers with opening angle � this leads to the
normalized form

�12ðfÞ ¼ 5

8�sin2�
�12ðfÞ: (2.22)

Some symmetry properties of �12ðfÞ follow from imme-
diately from its definition, in particular,

��
12ðfÞ ¼ �21ðfÞ; (2.23a)

��
12ðfÞ ¼ �12ð�fÞ: (2.23b)

III. DISCUSSION

Summarizing the results of the previous section, the
overlap reduction function normalized for interferometric
detectors is

�12ðfÞ ¼ 5

8�sin2�

�
Z
S2
d2�k̂R

A
1 ðf; k̂ÞRA�

2 ðf; k̂Þe�2�ifk̂�ð ~x1� ~x2Þ;

(3.1a)

where

R A
I ðf; k̂Þ ¼ eAijðk̂Þ

Z 1

�1
dt

Z
R3
d3xRij

I ðt; ~xÞe�2�ifðt�k̂� ~xÞ:

(3.1b)

Adjusting where necessary for differences in the plane-
wave expansion and detector numbering conventions,
Refs. [17,18] give the overlap reduction function as

�0
12ðfÞ ¼

5

8�sin2�

�
Z
S2
d2�k̂R

A
1 ðf; k̂ÞRA�

2 ðf; k̂Þe2�ifk̂�ð ~x1� ~x2Þ:

(3.2)

Comparing this expression with our Eq. (3.1a) we see that

they differ by the substitution of e2�ifk̂�ð ~x1� ~x2Þ for

e�2�ifk̂�ð ~x1� ~x2Þ. This difference and when it is significant
can be understood physically; doing so provides the occa-
sion for a deeper discussion of the overlap reduction
function.

A. Detector locations

At the end of Sec. II B, we observed that the response of
detector I, located at ~xI, to a field of plane gravitational
waves is given by [cf. Equation (2.12)]

rIðtÞ ¼
Z 1

�1
df

Z
S2
d2�k̂H Aðf; k̂ÞRA

I ðf; k̂Þe2�ifðt�k̂� ~xIÞ:

(3.3)

The detector location appears here in the form e�2�ifk̂� ~xI .
Referring to Eqs. (3.1a) and (3.2) for �12 and �

0
12 it is clear

the substitution of �0
12 for �12 is equivalent to simply

exchanging the locations of detectors 1 and 2 keeping the
rest of the configuration of the detectors fixed, i.e., �0

12 is
the overlap reduction function for the detector configura-
tion consisting of detector 1 at location ~x2 and detector 2 at
location ~x1. With this understanding we now ask when that
exchange is significant and when it is not.

B. Radiation wavelength and detector separation

An intuitive understanding of �12ðfÞ recognizes that its
behavior in different frequency regimes is governed by
several independent dimensionless parameters that can be
created from the radiation wavelength, the separation be-
tween the detectors, and several intrinsic properties of the
detectors as they are represented in the detector impulse
response functions.
Referring to Eq. (3.1a) we note that when fj ~x1 � ~x2j 	

1 the exponential term may be replaced by unity. As this is
the only place where the detector separation appears, in
this limit the detector separation plays no role in determin-
ing the value or behavior of �12ðfÞ. Defining

� ¼ fj ~x1 � ~x2j (3.4)

we refer to � 	 1 as the small separation limit. In the
small separation limit, then, the difference between �12

and �0
12 is negligible under all circumstances.

Now consider the case � * 1. As we have observed, the
difference between �12 and �0

12 is the difference between
locating detector 1 at ~x1 or ~x2, and detector 2 at ~x2 or ~x1.
When the two detectors are identical in all other aspects, so
thatRA

1 ¼ RA
2 , this exchange leaves the physical configu-

ration unchanged and, again, there will be no difference
between �12 and �0

12.
To understand the case � * 1when the two detectors are

not identical we must consider the detector impulse re-
sponse functions as they appear in Eqs. (3.1).
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C. Radiation wavelength and detector impulse response

The impulse response of a detector has finite support,

i.e., Rij
I ðt; ~xÞ ’ 0 for sufficiently large t > 0 or j ~xj. A de-

tector does not sample the field beyond its physical extent,
so the support in ~x will be on order the detector’s size ‘.

Referring to Eq. (3.1b) it is apparent thatRA
I ðf; k̂Þ depends

on k̂ only through eijA ðk̂Þ when f‘ 	 1

R A
I ðf; k̂Þ ’ ð2�Þ3eAijðk̂Þ ~Rij

I ðf; ~0Þ: (3.5)

Introducing the parameters

�I ¼ f‘I (3.6)

for the two detectors I ¼ 1, 2 we refer to �I 	 1 as the
small antenna limit for detector I.
Return now to the difference between �12 and �

0
12 when

� * 1 and the detectors are not identical. When both �1
and �2 are	 1 and noting that eAijð�k̂Þ ¼ �eAijðk̂Þ we find

�12ðfÞ ’ 5

8�sin2�
ð2�Þ6 ~Rij

1 ðf; ~0Þ ~Rkl�
2 ðf; ~0Þ

Z
S2
d2�k̂e

A
ijðk̂ÞeAklðk̂Þe�2�ifk̂�ð ~x1� ~x2Þ

¼ 5

8�sin2�
ð2�Þ6 ~Rij

1 ðf; ~0Þ ~Rkl�
2 ðf; ~0Þ

Z
S2
d2��k̂e

A
ijð�k̂ÞeAklð�k̂Þe2�ifk̂�ð ~x1� ~x2Þ

¼ 5

8�sin2�
ð2�Þ6 ~Rij

1 ðf; ~0Þ ~Rkl�
2 ðf; ~0Þ

Z
S2
d2�k̂e

A
ijðk̂ÞeAklðk̂Þe2�ifk̂�ð ~x1� ~x2Þ ’ �0

12ðfÞ; (3.7)

i.e., in the small antenna limit there is no distinction
between �12 and �0

12.

D. Large separations and large detectors

Finally, consider the case � * 1 and, without loss of
generality, �1 * 1. In this case, the variation of the field
across the spatial extent of detector 1 is important to the
detector response and, in turn to �12. Exchanging the
detector locations changes the relationship between the
spatial extent and orientation of detector 1 relative to the
location of detector 2. Correspondingly, in this limit the
distinction between �12 and �0

12 is significant.
An example of the case � * 1, �1, �2 * 1 is the antici-

pated sensitivity to a stochastic gravitational-wave back-
ground of the BBO, a space-based follow-on to LISA that
has been the subject of recent study [7,17,20–22]. The
principal results of this study reported in the literature
[17,18] make use of the incorrect form of the overlap
reduction function, thus misestimating this proposed de-
tector’s sensitivity to a stochastic gravitational-wave signal
in the higher frequency regime. Figure 1 illustrates the
physical effect of using �0

12 in place of �12 when analyzing
the cross correlation of the two BBO detectors as described
in [17]. On the left are the two interferometric detectors as
they are actually arranged in space; on the right are the
effective location and orientation of the detectors when �0

12

is used in place of �12, i.e., when detector 1 is translated to
~x2 and detector 2 is translated to ~x1. Under this trans-
formation the spatial extent of the two detector pairs is
much greater than is actually the case; correspondingly, we
expect �0

12 to be a much more sensitive function of fre-
quency than �12.

To calculate �0
12 for comparison with �12, we need an

explicit expression for the transfer function of the detec-
tors. This is derived in [17] (Eqs. 5, 7, 11). In our notation,

R Aðf; k̂Þ ¼ eAijðk̂Þ12ðuiujT ðû � k̂; fÞ � vivjT ðv̂ � k̂; fÞÞ;
(3.8a)

where

x
1

x
2

x
2

x
1

Detector 1

Detector 2

Detector 2

Detector 1

FIG. 1. The arrangement of the two BBO detectors described
[17] and the arrangement actually analyzed when �0

12 is sub-

stituted for �12. Owing to its larger spatial extent, the system
actually studied is much more sensitive to frequency than the
system whose study was intended.
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T ðû � k̂; fÞ ¼ 1

2

�
sinc

�
f

2f�
ð1� û � k̂Þ

�

� exp

�
�i

f

2f�
ð3þ û � k̂Þ

�

þ sinc

�
f

2f�
ð1þ û � k̂Þ

�

� exp

�
�i

f

2f�
ð1þ û � k̂Þ

��
: (3.8b)

Here, û and v̂ are unit vectors pointing in the direction of
the detector arms, f� ¼ c=ð2�LÞ is the transfer frequency
of the detectors (arm length L ¼ 5� 109 m), and
sincðxÞ ¼ sinðxÞ=x. Figure 2 compares �0

12 (cf. [17]
Fig. 5) and �12 [Eq. (3.1)] for this configuration. As ex-
pected, �0

12 decreases much more rapidly with frequency
and has its nulls more closely spaced than those of �12.
Figure 3 shows the fractional error j1� �0

12ðfÞ=�12ðfÞj as
a function of frequency. The large amplitude spikes in the
error occur where nulls of �0

12 do not coincide with nulls of
�12.

It is apparent from Fig. 2 that the use of an incorrect
overlap reduction function has, in this case, led to an
underestimate of BBO’s sensitivity to a stochastic
gravitational-wave background. Estimating the back-
ground and detector noise power spectral density as white,
the magnitude of the error is just the ratio of integrated
squared magnitudes j�12ðfÞj2 and j�0

12ðfÞj2,
R
dfj�0

12ðfÞj2R
dfj�12ðfÞj2

¼ 1� 0:28; (3.9)

i.e., the BBO estimates of [17,18] underestimate the sensi-

tivity of BBO by nearly 30% across the entire band, and
substantially larger if interest is focused on the higher
frequencies. Achieving BBO’s goals of detecting the sto-
chastic gravitational-wave relics of the inflationary epoch
depend on the accurate identification and subtraction of
contributions owing to compact binary systems.
Underestimating BBO’s response to a gravitational-wave
background leads to an overestimate of the accuracy re-
quired in this identification and subtraction [20].
Recognizing and correcting the underestimate in BBO
sensitivity thus relaxes the analysis problem associated
with the identification of these foreground sources.

IV. CONCLUSIONS

Detection of a gravitational-wave stochastic background
relies on the cross-correlated response of one or more pairs
of gravitational-wave detectors. The separation and rela-
tive orientation of the two detectors plays a crucial role in
determining the frequency-dependent sensitivity of each
detector pair to the stochastic background. Recent studies
[17,18] of the sensitivity of the BBO and related future
generation gravitational-wave detectors have used an in-
correct expression for this geometrical factor. The errors
committed may be physically interpreted as an exchange in
space of the two detectors, leaving their absolute orienta-
tions fixed. In the case of the BBO, this error leads to an
approximately 30% underestimate in its sensitivity to relic
gravitational waves associated with, e.g., the inflationary
epoch. Since achieving BBO’s goals of detecting this
background requires the accurate identification and sub-
traction of gravitational-wave foreground contributions
from compact binary systems [20], this underestimate has
lead to commensurate overestimate of the difficulty of this
analysis problem. Recognizing and correcting this error
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thus improves, in two ways, the prospects for the BBO
missions’ main goal as a Big Bang Observer.
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