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Atomic clock comparisons provide some of the most precise tests of Lorentz and CPT symmetries in

the laboratory. With data from multiple such experiments using different nuclei, it is possible to constrain

new regions of the parameter space for Lorentz violation. Relativistic effects in the nuclei allow us to

disentangle forms of Lorentz violation which could not be separately measured in purely nonrelativistic

experiments. The disentangled bounds in the neutron sectors are at the 10�28 GeV level, far better than

could be obtained with any other current technique.
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There is a great deal of current interest in the possibility
that Lorentz and CPT invariances may not be exact in
nature. Violations of these symmetries could be tied to
quantum gravity, and if any such violation were observed
experimentally, it would be a discovery of profound im-
portance. Modern tests of Lorentz and CPT symmetry have
included studies of matter-antimatter asymmetries for
trapped charged particles [1–3] and bound state systems
[4,5], determinations of muon properties [6–8], analyses of
the behavior of spin-polarized matter [9,10], Michelson-
Morley experiments [11–13], measurements of neutral
meson oscillations [14–19], polarization measurements
on the light from distant galaxies [20–23], high-energy
astrophysical tests [24–27], and others. So far, no signifi-
cant evidence of Lorentz violation has been found.

There is a parametrization of Lorentz and CPT viola-
tions in low-energy effective field theory, known as the
standard model extension (SME). The SME contains pos-
sible Lorentz- and CPT-violating corrections to the stan-
dard model [28,29] and general relativity [30]. The SME
provides a useful framework for interpreting experimental
tests of these symmetries. Many of the coefficients that
characterize the SME have been constrained very tightly.
However, many others have not. (Up-to-date information
about bounds on SME coefficients may be found in [31].)
Moreover, in many cases, only specific combinations of
coefficients can be bounded, rather than the individual
coefficients themselves.

Some of the most precise laboratory tests of Lorentz
symmetry are clock comparison experiments [32–37]. The
results of these experiments are usually interpreted in the
context of the Schmidt model [38], which assigns all of a
nucleus’s angular momentum to a single unpaired nucleon.
Since these atomic clock experiments are so powerful,
there has been a great deal of interest in devising methods
to expand the scope of the bounds they provide. For
example, the suggestion that atomic clock experiments
on orbiting satellites could add sensitivity to previously

unconstrained SME parameters [39] attracted a great deal
of interest. In this paper, we shall show that with multiple
complementary clock comparison experiments using dif-
ferent isotopes, there is unexpected sensitivity to new areas
of the SME parameter space. This fact provides a new
motivation for experimenters to improve the atomic clock
constraints on many SME coefficients, even those for
which there are already strong bounds. (A somewhat simi-
lar technique, using complementary optical cavity experi-
ments with different dielectric materials, was used in [40]
to place improved bounds on an entirely different collec-
tion of SME coefficients.)
The minimal SME Lagrange density for a single species

of fermion is

L f ¼ �c ði��@� �MÞc ; (1)

where

M ¼ mþ a6 � b6 �5 þ 1
2H

����� (2)

�� ¼ �� þ c���� � d�����5 þ e� þ if��5

þ 1
2g

������: (3)

Bounds based on atomic clock and other nonrelativistic
experiments are conventionally quoted in terms of specific

combinations of SME coefficients, such as ~bJ ¼
bJ � 1

2 �JKLHKL �mðdJT � 1
2 �JKLgKLTÞ. (The full set of

combinations, which are expressed in sun-centered coor-

dinates, is given in [31]. We shall concentrate on the ~b
combination, because it is the best measured in most
sectors.) The combinations mix coefficients from M with
mass dimension 1 with coefficients from �, which are
dimensionless and so must be multiplied by m to have
the dimensions match.
In strictly nonrelativistic experiments, the separate co-

efficients cannot be further disentangled. Despite this, a
number of coefficients can in fact be separated, using only
existing data from laboratory experiments. (The newly

bounded coefficients are not the same as the ~b�J coeffi-

cients, which are the analogues of the ~bJ coefficients for*baltschu@physics.sc.edu
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experiments performed with antifermions.) What makes
the new bounds possible is a small relativistic effect.
Because the effect is weak, there is a loss of precision in
the resulting bounds, compared with the bounds on the
conventional combinations. Nevertheless, these bounds are
important, because they represent separate constraints on
groups of coefficients that it was not previously believed
possible to separate.

Nonrelativistically, the effects of, say, bj and dj0 are

equivalent, because dj0 enters the Lagrange density in the

form � �c ðEdj0Þ�j�5c ¼ � �c ðmdj0Þ�j�5c , which has

the same structure as the b term in L. However, the non-
relativistic approximation E ¼ m never holds exactly. In
particular, a proton or neutron inside a nucleus has an
energy smaller than its mass, because of nuclear binding.
If the dominant contribution to the measured Lorentz-
violating effects in a atomic species comes from a single
unpaired nucleon moving in the scalar potential of the
nucleus, and the binding energy associated with this nu-

cleon is e, what will be bounded is not ~bj, but rather

b
�
JðeÞ ¼ bJ � 1

2ð1þ eK=3mÞ�JKLHKL

� ðm� e� 2eK=3ÞdJT
þ 1

2ðm� e� eKÞ�JKLgKLT: (4)

eK is the nucleon kinetic energy, and both e and eK are
assumed to be small compared with m. We shall neglect
eK, although its effects are not that strongly suppressed
compared with those of e. With more data, eK could be
used to further disentangle H and g.

The ~bJ coefficients are the combinations of SME pa-
rameters that appear in the nonrelativistic Hamiltonian for
the fermions [41], which can be derived from the relativ-
istic theory by a Foldy-Wouthuysen transformation [42].
However, this transformation process changes in the pres-
ence of interactions. If one instead considers fermions
moving in a potential well, different effective coefficients

such as b
�
J will appear.

This makes it possible to distinguish contributions from
M terms from those of � terms. If two experiments are
done, using nucleons with binding energies e1 and e2, and
they produce identical bounds, conventionally expressed as

j~bJj<A, this actually implies separate bounds jbJ �
1
2 �JKLHKLj< 2Am

je1�e2j and jdJT � 1
2 �JKLgKLTj< 2A

je1�e2j .
Because the nuclear binding makes a small contribution
to the overall energies of the nucleons involved, the bounds

are worse than the conventionally quoted bounds on ~bJ by
a factor of Oðm=je1 � e2jÞ. On the other hand, in experi-
ments involving relativistic motion, in which energies are
large compared with the particle mass, the effects ofM and
� terms can be disentangled without any loss of precision.
For example, the maximum achievable velocity for a par-
ticle (which need not be the speed of light when there is

Lorentz violation) generally depends on the � terms but not
on M. However, truly relativistic experiments have not
been nearly as precise as atomic clock experiments. The
most precise relativistic Lorentz test, which disentangled

several contributions to the muon ~b
�
J , gave bounds at the

10�24 GeV level [8].
As noted in [33], many clock experiments will have

sensitivities to additional SME coefficients, beyond those
indicated by the Schmidt model. To understand the addi-
tional sensitivities, an improved understanding of nuclear
structures would be required. However, this is a comple-
mentary effect to the one considered here. Any further
sensitivities of the type discussed in [33] would still be
sensitivities to the conventional combinations of coeffi-
cients and would not allow the disentanglement of M and
� terms.
The two best atomic clock experiments which measured

neutron Lorentz violations involved 3He colocated with
heavier species. The heavy species were used as comagne-
tometers, while the 3He Zeeman frequencies were read out.
The experiments were ultimately sensitive to the combi-
nations ��He � �He

�M
��M, where the �� and � denote fre-

quency shifts and magnetic moments, and the subscript M
indicates the comagnetometer species.
One experiment used a 129Xe=3He maser. Taking into

account the distinct binding energies, eHe and eXe, of the
neutrons in the isotopes involved, the measurements re-
ported in [35] become

��������
�He

�He ��Xe

b
�
n
XðeXeÞ � �Xe

�He ��Xe

b
�
n
XðeHeÞ

��������
¼ ð�2:2� 7:9Þ � 10�32 GeV (5)

��������
�He

�He ��Xe

b
�
n
YðeXeÞ � �Xe

�He ��Xe

b
�
n
YðeHeÞ

��������
¼ ð8:0� 9:5Þ � 10�32 GeV; (6)

neglecting small contributions from other coefficients.
The other experiment used K for the comagnetometer.

The magnetic moment of K is �K � �B, 3 orders of
magnitude greater than �He, so the sensitivity to Lorentz
violation comes almost entirely from the 3He, provided
there are no contributions from the K valance electron. But
the relevant type of electron Lorentz violation is ruled out
very strongly by torsion pendulum experiments [10]. So
the results from this experiment were [37]

��������b
�
n
XðeHeÞ

��������¼ ð�3:7� 8:1Þ � 10�32 GeV (7)

��������b
�
n
YðeHeÞ

��������¼ ð�9:0� 7:5Þ � 10�32 GeV: (8)

Each of the four measurements (5)–(8) implies a 1� bound
at the 2� 10�31 GeV level or better.
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In setting these bounds, numerous approximations have
been made, and the bounds cannot be expected to have
better than order of magnitude accuracy. The Schmidt
model is a significant idealization, and essentially all nu-
clear interaction effects except the binding energy have
been ignored. In reality, the nuclear angular momentum is
divided up among protons and neutrons with different
binding energies. The correct value of emust be a weighted
average of these—and this assumes that it is possible to
assign a binding energy to each individual nucleon, which
is not strictly the case. The neglect of eK is also a signifi-
cant approximation.

However, assuming there are no special cancellations

between the b
�
J coefficients for different species, the 2�

10�31 GeV bound noted above should be approximately
valid. One might be further tempted to conclude that the

individual b,H, d, and g coefficients that make up ~b should
also be bounded at roughly this level. There is a crucial
difference, however, between possible cancellations
among the Lorentz violation coefficients for different spe-
cies and between the various coefficients that make up

combinations such as ~bnJ . The relative sizes of the contri-
butions to an observable frequency shift made by the SME
coefficients for different particles are determined by the
complex structures of atoms and nuclei. Even if the various
SME coefficients were all comparable in size, it would be
remarkable if their contributions cancelled out. On the
other hand, the relative sizes of the M and � coefficients

that appear in ~bJ are set by the unknown underlying
physics that control the Lorentz violation, and it would

not be unreasonable for a cancellation to exist within ~bJ.
For example, consider a model in which a single dimen-

sionless vector field acquires a Lorentz-violating expecta-
tion value u�. (This is known as a ‘‘bumblebee’’ model.)
The b and d coefficients for a given species of fermions
could then be b� ¼ Gmu� and d�� ¼ Gu�u�, where G is
a coupling constant that controls the strength of the inter-
action between the fermion field and the background. This
coupling would generally depend on the species. So there
would be a natural relationship between the b vectors for
different species—they would all be parallel—but their
magnitudes could differ substantially. However, if the ex-
pectation value u� is a null vector and u� ¼ ð1; ûÞ in a
frame (such as the rest frame of the cosmic microwave
background) that is moving nonrelativistically with respect
to the sun-centered frame, bJ �mdJT � 0. This demon-
strates that cancellation among the coefficients that make

up ~bJ is an entirely natural possibility.
With this in mind, (5)–(8) imply

��������bnJ �
1

2
�JKLH

n
KL

��������;
��������mdnJT � 1

2
�JKLmgnKLT

��������
<

�
2m

eXe � eHe

�
ð2� 10�31 GeVÞ (9)

for J ¼ X, Y. With more data, and including eK, we could
expect to bound b, H, d, and g separately at nearly the
same level. It remains to determine the difference in the
binding energies of the 3He and 129Xe neutrons. 3He is a
relatively compact nucleus, with all three nucleons in
primarily 1S orbital states. The binding energy of
6.69 MeV is nearly evenly distributed among the constit-
uents, giving eHe ¼ 2:23 MeV. The case of 129Xe is
slightly trickier. This isotope has an average binding en-
ergy of 8.21 MeV per nucleon. However, the neutron
whose spin properties the experiment can observe is a
valance neutron and hence less bound than this average
would suggest. As a conservative order of magnitude esti-
mate, we shall therefore take eXe � eHe � 4 MeV. This
yields the final bounds

jbnJ � 1
2�JKLH

n
KLj;

jmdnJT � 1
2�JKLmgnKLTj< 10�28 GeV:

(10)

The strength of these bounds is principally determined by

the tightness of the experimental bounds on the b
�
n
J , since

the difference in binding energies is close to optimal. 3He
is a rather weakly bound nucleus, while 129Xe lies on the
broad plateau of isotopes whose binding energies are close
to the maximal value of �9 MeV per nucleon.
Even if they have only order of magnitude accuracy,

these are by far the best bounds on the neutron M and �
coefficients separately. As already noted, it is possible to
measure d separately from b in experiments with relativ-
istic fermions. Often, this is done by measuring the rela-
tionships between energy, momentum, and velocity for
extremely energetic particles. The scale of the resulting
bounds is ��2, where � is the Lorentz factor of the parti-
cles involved. The most relativistic observable particles are
cosmic ray protons near the Greisen-Zatsepin-Kuzmin
limit, which have Lorentz factors of �1011. Con-
sequently, it is impossible with direct measurements of
the proton dispersion relation to place bounds on d with
better than �10�22 precision. Neutron measurements are
far less precise, since neutrons, being unstable, are less
plentiful at the highest energies. The present bounds rep-
resent an improvement over the cosmic ray limits on dn

given in [43] of 14 orders of magnitude.
Complementary experimental results may also be used

to disentangle coefficients in the proton sector, but the
results are not as good. An analysis of the K=3He experi-
ment that includes the proton polarization in the 3He

nucleus gives bounds on b
�
p
J at the 10�31 GeV level.

However, these bounds are not independent of the neutron
bounds from the same experiment. The only other bounds
on this form of proton Lorentz violation are at the
10�27 GeV level [33,34]. However, some of these bounds
come from a H maser experiment, and data collected with
H is ideal for the kind of comparisons we have considered
here, since the H nucleus, being a free proton, has the least
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possible binding energy of any isotope. Experiments with
H also tend to be very clean, with only proton and electron
coefficients involved. Combining the 3He and H data gives

disentangled bounds on theM and � contributions to ~bpJ at
the 10�24 GeV level, still significantly better than any
astrophysical bound.

Improved H maser experiments, in connection with
proton measurements made using heavier nuclei, could
obviously give improved bounds on the proton M and �
coefficients. For both the proton and neutron, there are also
many combinations of Lorentz violation coefficients be-

yond ~b which could be separated into their M and � parts
using complementary experiments.

In summary, we have derived new bounds on several
SME coefficients in the neutron sector. All the coefficients
involved have previously been bounded by atomic clock
experiments, but not individually—only in particular com-
binations. However, when multiple measurements are
available, differences in the nuclear structure of the iso-
topes involved make it possible to disentangle the coeffi-
cients, a fact which had not previously been appreciated.
Because a weak relativistic effect in the nucleus is in-
volved, there is a loss of precision in the disentangled
bounds of at least 2 orders of magnitude. Nevertheless,
the new bounds are at the 10�28 GeV level, much better
that would be possible with any other present technique.
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