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Complete single-horizon quantum corrected black hole spacetime

Ari Peltola™ and Gabor Kunstatter’

Department of Physics and Winnipeg Institute for Theoretical Physics,
The University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba. Canada. R3B 2E9
(Received 25 November 2008; published 19 March 2009)

We show that a semiclassical polymerization of the interior of Schwarzschild black holes gives rise to a
tantalizing candidate for a nonsingular, single-horizon black hole spacetime. The exterior has nonzero
quantum stress energy but closely approximates the classical spacetime for macroscopic black holes. The
interior exhibits a bounce at a microscopic scale and then expands indefinitely to a Kantowski-Sachs

spacetime. Polymerization therefore removes the singularity and produces a scenario reminiscent of past
proposals for universe creation via quantum effects inside a black hole.
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I. INTRODUCTION

Recent work suggests that loop quantum gravity (LQG)
may be capable of resolving the singularities that are
inevitable in classical general relativity. Because of the
inherent difficulty in solving the complete system, the
focus has been on dimensionally reduced, minisuperspace
models of quantum cosmology [1] and spherically sym-
metric black hole spacetimes [2-5]. As observed in [2,3],
for example, singularity avoidance in these two cases is
deeply connected because the interior Schwarzschild
spacetime coincides with the homogeneous anistropic
Kantowski-Sachs cosmology. While significant progress
has been made, there is as yet no clear evidence as to
which theory of quantum gravity will ultimately be proven
correct, LQG, string theory, or perhaps something else. Nor
is there, to the best of our knowledge, a rigorous and
unambiguous path from the full loop quantum gravity
theory to the quantization techniques used in the minisu-
perspace models. One particularly fruitful technique that
has been used recently to great effect [4,5] is a semiclas-
sical polymerization that preserves aspects of the under-
lying discreteness of spacetime suggested by LQG but
considers the limit in which quantum effects are vanish-
ingly small. Different polymerizations can give qualita-
tively different regularized spacetimes, so that it is of
great interest to examine more fully a wider class of
models and methods.

In the following, we describe quantum corrections that
arise from the semiclassical polymerization of the interior
of generic black holes in a family of theories known
collectively as generic two-dimensional dilaton gravity.
Of prime importance for the present work is that this
family includes spherically symmetric black holes in
spacetime dimension three or higher. We investigate two
different polymerization schemes, and show that the results
differ qualitatively: in one case the resulting nonsingular
spacetime generically has only a single horizon while in
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the second there are multiple horizons. In our considera-
tions, the polymerization scale is taken to be a constant but
we note that in the context of loop quantum cosmology, as
well as in some black hole scenarios [6], a dynamical
polymerization scale has been considered.

Our key result is the analytic solution of the semiclassi-
cal equations that is obtained in four dimensions when only
area is polymerized. This solution can be extended analyti-
cally to a complete nonsingular spacetime with only a
single horizon. This has the advantage over other candi-
dates for loop quantum corrected black holes [4,5] of
avoiding the problem of mass inflation [7] normally asso-
ciated with inner horizons. The exterior has nonzero quan-
tum stress energy but closely approximates the classical
spacetime for macroscopic black holes. There are two
interior regions, one in the past and one in the future.
Both exhibit a bounce at a microscopic scale and then
asymptote (one in the infinite past and the other in the
infinite future) to a nonsingular product Kantowski-Sachs
[8] type cosmological spacetime containing an anisotropic
fluid, with product topology of a spacelike R, and an
expanding 2+ 1 positive curvature Friedmann-
Robertson-Walker cosmology. The polymer dynamics
thus drives the system into an asymptotic interior end-state
that is not a small correction to the classical spacetime. In
the limit that the polymerization scale goes to zero, the
interior cosmological regions “‘pinch off,” leaving behind
the standard singular Schwarzschild interior. The com-
plete, nonsingular semiclassical spacetime is suggestive
of past proposals for ‘““universe creation” inside black
holes [9].

II. CLASSICAL THEORY

Our formalism begins with the most general (up to point
reparametrizations) 1 + 1-dimensional, second order, dif-
feomorphism invariant action that can be built from a 2-
metric g, and a scalar ¢ [10,11]

e, 61 = o [ @x=z(orie + VE? )), ()
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where [ is a positive constant with a dimension of length
and G is the dimensionless two-dimensional Newton’s
constant. This action provides a convenient representation
of spherically symmetric black hole spacetimes in D =
n + 2 dimensions. It obeys a generalized Birkhoff theorem
[11] with general solution

ds* = —[2IGM — j(¢$)] 'Pd¢p* + [2IGM — j(b)]dx?,
(2)

where j(¢) satisfies dj/d¢ = V(¢p). For our purposes, it is
convenient to assume that j(¢) — 0 when ¢ — 0. The
integration constant M is the Arnowitt-Deser-Misner
(ADM) mass, and we take M > (. For monotonic functions
Jj(¢) the solution contains precisely one Killing horizon
[11] at ¢y, such that j(¢y) = 2IGM. The metric (2) and
dilaton can be related to a spherically symmetric metric in
D dimensions as follows:

ds®
ds% = ——+ r2(¢)dQ?, ., 3)
e T e
where dQ(ZD_Z) is the line element of the unit (D — 2)-

sphere. Equation (3) corresponds, in particular, to the in-
terior of the four-dimensional Schwarzschild solution with
the identifications 2GI> = GW, V = 1/(2\/¢), and ¢ =
r?/(41).

In order to address the question of singularity resolution
in the semiclassical polymerized theory, we restrict to
homogeneous slices with metric parametrization

ds? = 2rO(—o2(0)dr* + dx?). 4

After suppressing an irrelevant integration over the spatial
coordinate, the resulting action is that of a parametrized
system

1 _ .
-5 [dt(l_[pp T+ My + 0G), 5)

where a dot denotes a derivative with respect to the time
coordinate ¢ and the (Hamiltonian) constraint is

G =GII, My + e - ~0. (6)

2°G
In spherically symmetric four-dimensional spacetime, this
Hamiltonian can be converted to the LQG Hamiltonian of
[5] by a simple point canonical transformation.

The simplicity of the Hamiltonian in (6) makes it rather
straightforward to find analytic solutions for the compo-
nents of the physical metric. These solutions depend on
two parameters, the ADM mass M, and its canonical con-
jugate P,,. In the full (inhomogeneous) spherically sym-
metric theory the latter corresponds to the Schwarzschild
time separation of spatial slices [12]. In the present case,
the arbitrariness of P, represents the residual invariance of
the theory under rescalings of the Schwarzschild “time”
coordinate x.
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III. SEMICLASSICAL POLYMER APPROACH

In the polymer representation of quantum mechanics
[13,14] one effectively studies the Hamiltonian dynamics
on a discrete spatial lattice. In many cases the full polymer
theory is rather challenging to analyze but fortunately one
can get interesting results by investigating the semiclassi-
cal limit of the theory, which corresponds formally to the
limit in which quantum effects are small (2 — 0), but the
polymerization scale w stays finite. This approximation is
the basis for recent analyses of black hole interiors [4,5]. It
can be derived by studying the action of the fully quantized
operators on coherent states and expanding in the width of
the states [15,16]. The end result is to simply replace the
classical momentum variable p in the classical
Hamiltonian function by sin(up)/w. After the replace-
ment, one studies the (semi)classical dynamics of the
resulting polymer Hamiltonian by means of standard tech-
niques. We assume in the following that this effective
description is valid without further state-dependent correc-
tions, at least for states that approach semiclassical behav-
ior at scales large compared to u.

We first polymerize only the generalized area variable
¢. While this may seem ad hoc, it is perhaps not unrea-
sonable to introduce a fundamental discreteness for the
geometrical variable that corresponds to area in the spheri-
cally symmetric theory while leaving the coordinate de-
pendent conformal mode of the metric continuous. This
approach is motivated by (but not derived from) full LQG,
where it is the area operator that is naturally discretized.
For completeness we will subsequently illustrate the result
of polymerizing both variables. Details of both polymer-
izations are presented elsewhere [17]. Note that we choose
to work with a state-independent (constant) polymerization
scale, despite the fact that in the context of loop quantum
cosmology consistency with predictions requires a state-
dependent discreteness scale [1]. Here we choose the sim-
plest approach that produces reasonable semiclassical be-
havior and leave the study of state-dependent
polymerization scales for future research.

The partially polymerized Hamiltonian constraint is

sin(ully) |, V(g) _

= GII
G P 2P2G

0. 7)

In this equation u has a dimension of length, which means
that ¢ has a discrete polymer structure with edge length of
/1. The essence of the singularity resolution mechanism
is evident from the equation of motion for ¢

i = —1I, cos(uIl,). 3)
Go

¢ now vanishes at two turning points: the “classical”
turning point I, =0 and semiclassical turning point
cos(ull,) = 0. The former condition turns out to be sat-
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isfied at the horizon as expected while the latter occurs first
at a microscopic scale proportional to .

The solution to the corresponding Hamilton-Jacobi
equation is

§s=-—Lewil /arcsm( )d¢ +C (9

where a and C are constants. For convenience, we shall
take a > 0. The expression for 114 now reads

198 1 nv
ITy, = 7 ﬁ = ; arcsm(alG> (10)

We concentrate henceforth on spherically symmetric grav-
ity for which V o ¢~/ In this case ¢ has a minimum
given by uV(dnin) = alG. Note that ¢, is located at the
roots of the cosine function as expected from (8).
To find the solutions, we require
S _ g (11)
Ja
where [ is again a constant of motion that is conjugate to
a. The constants 8 and « are related to the usual canonical
pair (M, Py;) by a simple canonical transformation.
Equation (11) yields a solution for ¢?# in terms of ¢ and
the two constants « and S that are determined by initial
conditions. The solution is

1
4G

2”+ 1"(¢) = B, (12)

where

=< v de. 13
f\/(alG/M)z —-v? ¢ 4

In (13), the value of € = *1 depends on a branch of wII.
The upper sign is valid in the branches where the cosine
function is positive, which include the principal branch
(—m/2, 7m/2), whereas the lower sign is used elsewhere.

One now has a complete solution in terms of a single
arbitrary function that must be fixed by specifying a time
variable. It is illustrative to write the physical metric using
¢ as a coordinate, which corresponds to the area of the
throat in the interior of the extended Schwarzschild solu-
tion of the unpolymerized theory. Suppressing the angular
part, one obtains

—412d¢2

Ay, = [1 — (uV/(alG)]

1
o=l

+ e2pdx2),
(14)
which shows that the solution has a horizon at ¢ = ¢y for
which ¢?? = 0.
Taking IT 6 as the time variable, one can deduce, generi-

cally, the following qualitative time evolution. One starts at
the horizon ¢ = ¢y, with corresponding initial ITH é given

by (10). Without loss of generality, we can take ,U,HH to be

PHYSICAL REVIEW D 79, 061501(R) (2009)
404

30

FIG. 1 (color online). The physical conformal mode in four-
dimensional spacetime. The calculations use @ = GW = M = 1
and u = 0.1.

in the principle branch of the arcsin function, and because
¢ is positive, it takes values between (0, 77/2). As Il
increases, ¢ decreases until it reaches its minimum value
at ull, = /2. After that ¢ increases as Il increases.
When w114 is in the range (77/2, 7), € in (13) necessarily
changes sign, and one can verify that after the bounce ¢>”
does not vanish again, but the throat area expands to ¢ —
oo in finite coordinate time IT,. The expansion takes an
infinite amount of proper time so that our semiclassical
polymerization has produced a solution that avoids the
singularity but does not oscillate. The time evolution of
the physical conformal mode e*”/j(¢) is illustrated in
Fig. 1.

We now contrast the above behavior with that of the
fully polymerized theory. The Hamiltonian constraint is

sin(wII ) sin(wIT Vv

oSl sin(elly) | oy V. _ o s)
M 7 21°G

Going through precisely the same Hamilton-Jacobi analy-

sis as before, we are lead to the following expression for
the conformal mode of the metric:

G =

e = 26 sinQuaB/l — 2aI™(p)), (16)
ap

where 1™ is given in Eq. (13). All other ¢ dependence is
unchanged so that the net change from the partially poly-
merized case is that the conformal mode is now an oscil-
lating function of ¢. There will now be inner horizons
whenever the sin function vanishes, giving rise to a quali-
tatively different quantum corrected spacetime. In fact the
number of horizons will vary depending on the relative
magnitude of M and the quantity w/a [17].

IV. FOUR-DIMENSIONAL SCHWARZSCHILD
BLACK HOLE

We now write the four-dimensional partially polymer-
ized metric in terms of the radius r and the Schwarzschild

061501-3

RAPID COMMUNICATIONS



ARI PELTOLA AND GABOR KUNSTATTER

time x

s dr?
s - _

phys )
(=)

2MGW K>\ (2dx\2
+< A 1—7)<J) + Q2. (17)
o

€
r r

In the above, M = o?B/(21) and k = wu/(aG). As per our
earlier claim, P,; = 2I/a completes the canonical trans-
formation from the pair (a, 8) to (M, P,,), and hence the
conjugate P,; does indeed rescale the x coordinate. These
rescalings do affect the bounce radius k& which is a con-
sequence of the fact that the introduction of the discrete
scale has broken the scale invariance of the theory.

The metric (17) has remarkable properties. There is a

single bifurcative horizon at ry =y (2MGW)? + k2

which exhibits a quantum correction due to the polymer-
ization. The solution evolves from the horizon at ry to the
minimum radius & in finite proper time, and then expands
to r = o0 in infinite proper time. As the throat expands in
the interior, the metric approaches

2 4)
d — dr n (1 L 2MG

_ 2
phys 1 +2MGW /r )dx U9

where we have absorbed 2/« into x and suppressed the
angles. This asymptotic interior solution does not obey the
vacuum FEinstein equations, but has nonvanishing stress
tensor with 7/ = T « —1/r*> which does not depend on
k. This corresponds to an anisotropic perfect fluid that has
been recently considered in a model of the Schwarzschild
interior [18].

It is possible to continue the metric (17) analytically
across the horizon to the exterior region. The validity of
this extension is an open question given that our chosen
foliation does not extend to the exterior, but the procedure
seems natural in the present context and has been used
before to construct a complete semiclassical black hole
spacetime. In the present case, the resulting black hole
exterior has interesting and physically reasonable proper-
ties; in particular, it is asymptotically flat and closely
approximates a Schwarzschild black hole of mass M.

The fact that » = k in (17) is a coordinate singularity can
be explicitly illustrated by the coordinate transformation
r = kcosh(y) [19]. The resulting metric is regular at the
bounce y = 0 and has a horizon at sinh(yy) = 2MG™ /k.
For large y, the metric describes the exterior of the black
hole, while the asymptotic interior region corresponds to
y — —oo. The conformal diagram of the complete space-
time is shown in Fig. 2. It includes two exterior regions (I
and I'), the black hole and the white hole interior regions (I
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FIG. 2. Conformal diagram of the partially polymerized
Schwarzschild spacetime.

and II'), and two “‘quantum corrected” interior regions (III
and IIT'). The classical singularity is replaced by a bounce
at r = rp;, and subsequent expansion to r = 0.

The Ricci and Kretschmann scalars are everywhere non-
singular and vanish rapidly in the exterior (large, positive
y). A calculation of the Einstein tensor reveals that while
the solutions violate the classical energy conditions, the
violations are of order k?/r* and hence vanish far from the
bounce radius » = k. This means, in particular, that the
exterior is endowed with nonzero quantum stress energy
that is vanishingly small for macroscopic black holes
(rg > k) so that the Schwarzschild solution is well ap-
proximated everywhere outside the horizon. This also
leads naturally to a quantum corrected Hawking tempera-
ture of order O(k?/M?) as well as a logarithmic correction
to the Bekenstein-Hawking entropy [17].

The interior spacetime on the other hand describes an
expanding anisotropic cosmology with stress energy that
approximately satisfies the energy conditions but does not
vanish far from k, nor does it vanish in the limit that k — 0.
Instead, the asymptotic region ‘“‘pinches off™ in this limit at
the curvature singularity at » = 0, leaving behind the stan-
dard, complete but singular Schwarzschild spacetime and
two disconnected, time-reversed copies of the (singular)
cosmological spacetime.

V. CONCLUSION

We have presented an intriguing candidate for a com-
plete, nonsingular quantum corrected black hole space-
time. This spacetime was derived by the semiclassical
polymerization of only the area in the interior of spheri-
cally symmetric black hole spacetimes. Our treatment
neglects polymeric corrections to the conformal mode of
the metric, but this somewhat speculative procedure is
perhaps justified by the interesting results that emerge.
The singularity is resolved at a bounce radius determined
by the polymerization scale and the exterior black hole
spacetime has small, but nonzero quantum energy.
Remarkably, the solution in the interior does not oscillate,
but instead reexpands indefinitely to a Kantowski-Sachs
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spacetime with anisotropic fluid stress energy that is non-
vanishing in the limit that the polymerization scale van-
ishes. The generation via polymerization of an interior
cosmology is reminiscent of earlier work that explored
universe creation in black hole interiors [9].

One may also note that the solution does not reduce to
Minkowski space in the limit that the Schwarzschild mass
M goes to zero. In fact, Eq. (17) shows that there is still a
horizon in this limit, located at the bounce radius r = r;,.
While it is tempting to speculate about quantum remnants,
it must be remembered that the semiclassical approxima-
tion employed here will likely break down for microscopic
black holes. This is certainly worthy of further
investigation.
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Note added.—After this paper was completed, a paper
by Modesto [20] appeared which presents an interesting
and thorough analysis of the complete LQG corrected,
multiple horizon four-dimensional black hole spacetimes
that emerge from a generalization of the procedure in [5].
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