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We complement the results for the radiative corrections to the ŝ2 � l̂ angular correlation of baryon

semileptonic decays of Neri et al. [Phys. Rev. D 78, 054018 (2008)] with the final results in the rest frame

of the decaying baryon. In addition, we present an analytical result which was not possible to obtain in

Neri et al.’s work.
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In a recent paper [1], we obtained the radiative correc-
tions (RC) to the Dalitz plot of the semileptonic decay of a
spin-1=2 baryon A

A
�
0 ðp1Þ ! B

0
þðp2Þ þ ‘�ðlÞ þ ��‘ðp�Þ; (1)

when the angular correlation ŝ2 � l̂ between the spin ŝ2 of

the emitted baryon B and the direction l̂ of the emitted
charged lepton ‘ is observed. As is customary, the results
were presented in the rest frame of B where p2 ¼
ðM2; 0; 0; 0Þ. However, due to experimental conditions, it
may be more convenient to produce such RC in the rest
frame of A where p1 ¼ ðM1; 0; 0; 0Þ. It is not possible to
translate directly the final result of Ref. [1] into the final
result of the latter RC. The calculation must be retaken
starting at earlier stages. In this paper we shall complement
the analysis of Ref. [1] and present the final result for the

RC to the ŝ2 � l̂ angular correlation in the rest frame of A.
To emphasize the above change of frame, although a rather
simple Lorentz transformation is involved at the transition
amplitude level [basically, specializing 4-vectors to either
the rest frame of B or the rest frame of A, e.g., p1 ¼
ðE1;p1Þ, p2 ¼ ðM2; 0Þ in the first frame or p1 ¼ ðM1; 0Þ,
p2 ¼ ðE2;p2Þ in the second frame], the reader should
appreciate that a very long and tedious calculation is
required to obtain the expression (ready to be used in
experimental analyses) of the decay rate with RC of A !
B‘� with ŝ2 � l̂ as an observable in either frame.

We shall follow the same procedure and use the same
conventions and notation of Ref. [1]. Accordingly, the
four-momenta and masses of the particles involved in
process (1) will be denoted by p1 ¼ ðE1;p1Þ, p2 ¼
ðE2;p2Þ, l ¼ ðE; lÞ, and p� ¼ ðE0

�;p�Þ and by M1, M2, m,
and m�, respectively. We shall omit a detailed discussion,
which can be found in Ref. [1]. Let us just recall that our
results for the virtual part will be model-independent,

gauge invariant, and finite in the ultraviolet and will con-
tain the infrared divergence. In order to avoid repetition of
long expressions, it will be convenient to trace a close
parallelism with the analysis of the RC for the angular

correlation ŝ1 � l̂ between the spin ŝ1 of A and the direction

l̂ of ‘ which were obtained in Ref. [2].
Without further ado, the differential decay rate with

virtual RC in the rest frame of A including the ŝ2 � l̂
correlation and covering the two charge assignments of
A

�
0 is

d�V ¼ d�0
V � d�ðsÞ

V : (2)

The unpolarized part was already calculated in Ref. [2].
It has the form

d�0
V ¼ d�

�
A0
0 þ

�

�
ðA0

1�þ�0A00
1 Þ
�
: (3)

The full expressions for A0
0, A

0
1, A

00
1 , �, and �0 can be

found in Eqs. (B1), (B2), (B3), (11), and (12), respectively,
of this reference. Here the phase space factor d� ¼
ð1=2ÞðG2

V=2ÞdE2dEd�‘d�22M1=ð2�Þ5 is one-half the
phase space factor of Eq. (25) of this same reference.
The polarization appears in

d�ðsÞ
V ¼ d�

�
AðsÞ
0 þ �

�
ðB0�þ�0B00Þ

�
ŝ2 � l̂: (4)

ŝ2 is introduced with the spin projector �ðs2Þ ¼
ð1� �5s6 2Þ=2 applied to the uB spinor. The 4-vector s2
obeys s2 � s2 ¼ �1 and s2 � p2 ¼ 0. The trace calculation
will lead to products s2 � a, with a ¼ l; p�; p1. These prod-
ucts are specialized to the rest frame of A using the relation
[3]
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s2 � a ¼ sA2 �
�
p2

E2

a0 � a

�

¼ ŝB2 �
�
p2

M2

�
a0 � p2 � a

E2 þM2

�
� a

�
; (5)

which corresponds to the Lorentz transformation from the
rest frame of B to the rest frame of A. In the first equality of
(5) it is understood that p2, s

A
2 , and the components of the

4-vector a ¼ ða0; aÞ are specialized in the rest frame of A.
In the second equality of (5) only ŝB2 still remains in the rest
frame of B. The upper indices A and B on the spin of the
emitted baryon emphasize this fact. In addition, the con-

tributions of the correlations ŝB2 � p̂2 and ŝ
B
2 � p̂� to the ŝ

B
2 � l̂

correlation over the Dalitz plot are taken into account with

the substitution rule [2] ŝB2 � p̂ ! ðŝB2 � l̂Þðp̂ � l̂Þ, with p̂ ¼
p̂2; p̂�, which is valid under integration of the variables,

other than E and E2, contained in d�. These steps will be
extended to the bremsstrahlung part, where p̂ can also
stand for the direction of the photon 3-momentum.
The results in Eq. (4) are new. Their explicit expressions

are

AðsÞ
0 ¼ Q0

1

�
p2y0

M1

M2

�
þQ0

2

�
p2y0
M2

�
E� p2ly0

E2 þM2

�
� l

�
;

(6)

B0 ¼ �D4E
0
�lþD3Eðp2y0 þ lÞ; (7)

B00 ¼ �D3El̂ � p�; (8)

where E0
� ¼ M1 � E� E2 and y0 ¼ ðE02

� � p2
2 �

l2Þ=2p2l, with

Q0
1 ¼ ðF2

1 �G2
1Þ
EE2 � p2 � l

M1

� ðF2
1 þG2

1 � 2F1G1ÞM2E

M1

þ ðF1G2 þ F2G1ÞEM
2
2 þ ðE� E0

�ÞðEE2 � p2 � lÞ
M2

1

� ðF1G2 � F2G1ÞM2ðEE2 � p2 � lþm2Þ
M2

1

þ ðF1G3 þ F3G1Þ m
2

M3
1

ðEE2 � p2 � lþM2
2Þ � ðF1G3 � F3G1ÞM2m

2

M2
1

þ ðF1F2 þG1G2ÞEp
2
2 � E2p2 � l

M2
1

� F2G2

M2

M2
1

ð�l2 � p2 � lþ EE0
�Þ � ðF2G3 þ F3G2ÞM2m

2E0
�

M3
1

� F3G3

M2m
2

M4
1

ðEE0
� þ l2 þ p2 � lÞ; (9)

Q0
2 ¼ðF2

1þG2
1Þ
M2

M1

ðM1�E2Þ�ðF2
1�G2

1Þ
E2M1�M2

2

M1

þ2F1G1

M2

M1

ðE0
��EÞþðF1G2þF2G1Þ E2

M1

ðE0
��EÞ

�ðF1G2�F2G1ÞM2

M1

ðE0
��EÞ

�ðF1G3þF3G1ÞE2m
2

M2
1

þðF1G3�F3G1ÞM2m
2

M2
1

�ðF1F2þG1G2Þ p
2
2

M1

; (10)

D3 ¼ 2ðf01g01 � g021 Þ, and D4 ¼ 2ðf01g01 þ g021 Þ. In Eqs. (6)–
(10) and hereafter, p2 and l will denote the magnitudes of
the corresponding 3-momenta. To avoid making the nota-
tion more cumbersome, we did not put primes on the form
factors on the right-hand side of Eqs. (9) and (10).
However, it must be kept in mind that it is the primed
form factors f01 and g01, where all the model dependence
has been absorbed, that appear in these equations. We have
limited ourselves to put primes on Q0

1 and Q0
2, as a re-

minder of this fact.
To the virtual RC of Eq. (3), one must add the brems-

strahlung RC. It arises from the radiative decay

A ! Bþ ‘þ �‘ þ �; (11)

where � is a real photon with 4-momentum k ¼ ð!;kÞ and
which, in order to regulate the infrared divergence, is
emitted with mass � and with an additional longitudinal
degree of freedom. The summation over its polarization is
performed according to Ref. [4], and its model-
independent contribution is controlled with the Low theo-
rem [5]. The integrations over k are performed covariantly
following Ref. [4].
Introducing the projector �ðs2Þ in the radiative decay

transition amplitude, following the usual steps of squaring
it and summing over all polarizations including the sum-

mation over the � polarization [4], and extracting the ŝB2 � l̂
correlation as explained in the virtual part, one obtains for
the differential decay rate the result

d�B ¼ d�0
B � d�ðsÞ

B ; (12)

where d�0
B is independent of ŝB2 and can be identified with

one-half the unpolarized decay rate of Eq. (27) of Ref. [2].
The B spin-dependent part is given by

d�ðsÞ
B ¼ �

�
d�ðI0B0 þD3�3 þD4�4ÞŝB2 � l̂: (13)

I0ðE; E2Þ is the infrared-divergent integral given in Eq. (26)
of Ref. [2], and B0 is identified with Eq. (7) of this work.
The contributions which are different with respect to the
corresponding ones of Ref. [2] are
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�3 ¼ p2l

4�

Z 1

�1
dx

Z y0

�1
dy

Z 2�

0

d�k

Dð1� �xÞ
�
ðp2yþ lþ!xÞ

�
�
�2ð1� x2Þ
1� �x

þ!

E

�
þ �2ð1� x2Þ

1� �x

�
xE�D

�

��

(14)

and

�4 ¼ p2l

4�

Z 1

�1
dx

Z y0

�1
dy

Z 2�

0

d�k

Dð1� �xÞ
��
�2ð1� x2Þ
1� �x

�
l

þ E�

�
��þ

�
1� �2

1� �x
� 1�!

E

�
x

��
; (15)

where

D ¼ E0
� þ ðp2 þ lÞ � k̂ (16)

and

! ¼ p2lðy0 � yÞ
D

: (17)

The neutrino energy in the presence of the real photon is
E� ¼ E0

� �!. In Eqs. (14) and (15), k is referred to a

coordinate axis system where l̂ points along the z direction
and p̂2 lies on the ðx; zÞ plane. The integration over k is

performed with the variables y ¼ p̂2 � l̂ and x ¼ k̂ � l̂ and
the azimuthal angle �k. They are ready to be performed
numerically.

In contrast with Ref. [1], where the integrals contained
in the parts corresponding to Eqs. (14) and (15)—namely,
Eq. (35) of this reference—were most of them new and
required a substantial effort to be performed analytically,
all of the integrals contained in Eqs. (14) and (15) have
already been performed analytically in our previous work.
It is here where the parallelism between the present analy-

sis and the one for the ŝ1 � l̂ calculation [2] becomes very
useful. One can compare Eqs. (14) and (15) with their
counterparts Eqs. (34) and (35) of this last reference and
observe that the integrals with the common factor D4

correspond to the integrals in our �3, while those with
the common factor D3 correspond to our �4. Looking at
the analytical results of the integrals in those Eqs. (34) and
(35), given in Eqs. (46) and (47) of this same reference, we
can establish the following connection:

�
ŝB
2
�l̂

3 ¼ ð�l
2 þ �l

4Þŝ1�l̂ (18)

and

�
ŝB
2
�l̂

4 ¼ ð�l
1 þ �l

3Þŝ1�l̂; (19)

where �l
1; . . . ; �

l
4 are given explicitly in Eqs. (48) and (49)

of Ref. [2]. Here the upper labels ŝB2 � l̂ and ŝ1 � l̂ are
introduced to stress this correspondence. Using these re-
sults, and after some rearrangement to get somewhat more
compact expressions, the analytical forms of Eqs. (14) and
(15) are

�3 ¼ p2

2

�
E2ðY2 � Y3Þ � 2	0Eþ Z1

þ 1

2
m2½2ð1� �2Þ	2 � 5	3� þ 1

2
ð3E2 � 2l2Þ	4

� 3

2
El	5 � ð1� �2ÞE

2
	6 þ 3

2
E	7 þ 	9

4
þ l2	10

� l

2
	14 � 1

2
ð4Eþ E0

�Þ
0 þ �21
2E

�
; (20)

�4¼p2

2

�
l2Y2�1

2
ð2E�E0

�Þ
0�1

2
ðEþ2E0

�Þ�0

þY4E

2
þ l2

2
	3

�
: (21)

The explicit forms of the functions 	i, �0, 
0, �ij, Yi, and

Z1 need not be reproduced here. They are all found in
Ref. [6].
One may say that Eqs. (13)–(15) are the Lorentz trans-

formation of Eq. (37), the sum of Eqs. (42) and (44), and
the sum of Eqs. (45) and (47) of Ref. [1], respectively. The
reader may clearly see that there is no longer a simple
Lorentz transformation that one can apply to the latter
equations that readily produces the former equations. In
addition, the analytical results (20) and (21) cannot be
produced by a Lorentz transformation, because there is
no analytical result in Ref. [1]. Even more, this analytical
result uses many of the intermediate functions (	i, Yi, etc.)

of the ŝ1 � l̂ correlation of Ref. [6], to the extent that one
can make the identification of Eqs. (18) and (19). Such an
identification cannot be the result of a Lorentz transforma-
tion, because no transformation exists that changes ŝ1 into
ŝ2.
Collecting the virtual and bremsstrahlung RC, our final

result is

d�ðA� ! B0e� ��Þ ¼ d�

��
A0
0 þ

�

�
�I

�

�
�
AðsÞ
0 þ �

�
�II

�
ŝB2 � l̂

�
; (22)

where the explicit forms of�I and A
0
0 coincide with �1 of

Eq. (54) and A0
0 of Eq. (B1) of Ref. [2], respectively. Our

new results are AðsÞ
0 of Eq. (6) and

�II ¼ B0½�þ I0ðE; E2Þ� þ B00�0 þD3�3 þD4�4; (23)

where all of the entries are defined above. The final result is
infrared convergent.
Our main result Eq. (22) is not available in full else-

where in the literature, although some parts of it are. We
have kept all of them, new and old, in (22) for complete-
ness sake. It is complementary to the final result Eq. (51) of
Ref. [1]. With both of these expressions [Eqs. (51) and (22)

], the experimental analysis of the ŝ2 � l̂ correlation with
RC can be performed either in the rest frame of B or in the
rest frame of A as it may be more convenient.
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We should recall that the practical application in the
Monte Carlo analysis may be to use the RC in the form

�i ¼ aif
2
1 þ bif1g1 þ cig

2
1 (24)

and to calculate the numerical values of the coefficients ai,
bi, and ci throughout the Dalitz plot in the form of arrays.
Such arrays would be fed into the Monte Carlo simulation
as a matrix multiplication. This procedure should save a
substantial computer effort. In Eq. (24), the index is i ¼
I; II.

The present results complement the ones of Ref. [1]. The

RC to the Dalitz plot when the ŝB2 � l̂ angular correlation is
observed have been obtained both in the rest frame of the
emitted baryon B and in the rest frame of the decaying
baryon A. They cover the three-body region of the Dalitz
plot, they can be used for all charge assignments of A and B

[7], and l may be e�, ��, or �. They are presented in a
form which is not compromised to fixing the values of the
form factors at prescribed values. They provide a good
approximation to RC of medium- (several tens of thou-
sands) and low- (several thousands) statistics experiments
in light- and heavy-quark baryon semileptonic decays,
respectively. As a final remark, let us stress that, even if
we use the same notation of our previous work, the ex-
pressions here apply only to the present case and there
should arise no confusion.
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