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Generalized form factors of hadrons are objects appearing in moments of the generalized parton

distributions. Their leading-order DGLAP-ERBL QCD evolution is exceedingly simple and the solution is

given in terms of matrix triangular structures of linear equations where the coefficients are the evolution

ratios. We point out that this solution has a practical importance in analyses where the generalized form

factors are basic objects, e.g., the lattice-gauge studies or models. It also displays general features of their

evolution.
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Generalized parton distributions (GPDs) (for notations
and discussion see the extensive reviews [1–9] and refer-
ences therein) carry very rich information on the internal
structure of hadrons. In particular, moments of the GPDs in
the X variable, according to the polynomiality feature, can
be written as polynomials in the � variable, assuming the
form

Z 1

�1
dXX2jFnsðX; �; tÞ ¼ 2

Xj
i¼0

A2jþ1;2iðtÞ�2i;

Z 1

�1
dXX2jþ1FsðX; �; tÞ ¼ 2

Xjþ1

i¼0

A2jþ2;2iðtÞ�2i;

(1)

with j ¼ 0; 1; . . . . Here X is the average fraction of the
target’s momentum carried by the struck quark, and � is the
fraction of the momentum along the light cone passed to
the target. We use the so-called symmetric notation, where
X 2 ½�1; 1� and � 2 ½0; 1�. Indices ns and s denote the
nonsinglet and singlet distributions. The singlet GPD con-
sists of the quark and gluon parts, FsðX; �; tÞ ¼
ðFs;qðX; �; tÞ; XFs;GðX; �; tÞ). The generalized form factors
Ank (GFFs) for the quark operators are the matrix elements
between states i and f of the form (we take the even-parity
operator and a spin 0 target)

hfðp0Þj �c ð0Þ�f�iD
**�1

iD
**�2

. . . iD
**�n�1g

c ð0ÞjiðpÞi
¼ 2Pf�P�1 . . .P�n�1gAn0ðtÞ

þ 2
Xn
k¼2
even

qf�q�1 . . . q�k�1P�k . . .P�n�1g2�kAnkðtÞ;
(2)

with n ¼ 1; 2; 3 . . . , k ¼ 0; 2; . . . ; n, P ¼ ðpþ p0Þ=2, q ¼
p0 � p, t ¼ q2, and c denoting the quark field. The sym-

bol D
*

is the QCD covariant derivative, D
** ¼ 1

2 ðD
* �D

*Þ,
and f. . .g denote the symmetrization of indices and the
subtraction of traces for each pair of indices �1 . . .�n�1.

The factor of 2�k is conventional. A similar expression can
be written for the singlet gluon GFFs [7].
For the simplest case of a spin-0 target with positive

charge such as e.g. �þ, A10ðtÞ is the charge form factor,
while A20ðtÞ and �A22ðtÞ are the quark components of the
gravitational form factors [10,11].
The GPDs undergo the QCD evolution with a change of

the renormalization scale. Unlike the parton distribution
functions (PDFs) or the distribution amplitudes (DAs), it is
nontrivial to pass to the space of moments where the
evolution is diagonal and then invert the transformation.
This issue makes the case different and more complicated
already at LO from the case of the PDFs, where the Mellin
moments are used, or the DAs, where the Gegenbauer
moments diagonalize the evolution. Theoretical tools
have been developed to achieve the task, such as the
Shuvaev transformations [12], the dual representation of
the GPDs [13,14] or techniques based on the conformal
moments complemented with the Mellin-Barnes transfor-
mations [15,16]. One may also solve the DGLAP-ERBL
equations numerically [17,18]. Such approaches are
needed, if the whole GPD is demanded. Frequently, how-
ever, one is only interested or has access to a limited
number of GFFs. The purpose of this note is to point out
that in fact the LO DGLAP-ERBL evolution of the GFFs is
inherently much simpler and straightforward to implement
in practice, without any need of complicated mathematical
transformations. The result discussed in this paper is im-
plicitly present in numerous works concerning the evolu-
tion of GPDs ([7] and references therein), but nevertheless
we find it practical to present its explicit form, useful for
those dealing with the GFFs only and not the full GPDs.
Our starting point is the work of Kivel and Mankiewicz

[19,20], which elaborates the formalism of Balitsky and
Braun [21] on the QCD string operators in the coordinate
space. We use Eqs. (18) and (20) from Ref. [19] for the LO
DGLAP-ERBL evolution of the GPDs from the scale �0,
where one assumes they are known, to the scale �:
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F nsð�; �; t;�2Þ ¼ 1ffiffiffiffi
�
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:
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�

p
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��
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�
5

2
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�
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Z 1

0
d!Fsð!; �; t;�2

0ÞC3=2
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�
!

�

�
;

(3)

where

F nsð�; �; t;�2Þ ¼ 2

�

Z 1

0
d!Fnsð!; �; t;�2Þ cosð!�Þ;

F sð�; �; t;�2Þ ¼ 2

�

Z 1

0
d!Fsð!; �; t;�2Þ sinð!�Þ: (4)

For the nonsinglet case the quantity L2nþ1 denotes the
evolution ratio. For the singlet case L2nþ2 forms a two-
dimensional matrix in the quark-gluon space. Explicitly,

L2nþ1 ¼
�
�ð�2Þ
�ð�2

0Þ
�
�qq
n =ð2�0Þ

; L2nþ2 ¼
�
�ð�2Þ
�ð�2

0Þ
�
�n=ð2�0Þ

;

�n ¼
�qq
n �qG

n

�Gq
n �GG

n

 !
; (5)

where the �’s denote the appropriate anomalous dimen-
sions. Our further procedure is based on the observation

that F ð�; �; t;�2Þ is the generating function of the the
GFF’s. We then expand Eq. (3) and (4) in � around 0 using
the series expansions

JmðzÞ ¼
X1
l¼0

ð�1Þl
l!ðmþ lÞ!

�
z

2

�
2lþm

; (6)

C�
mðzÞ ¼

Xbm=2c

l¼0

ð�1Þlð2zÞm�2lð�Þm�l

l!ðm� 2lÞ! ; (7)

where ð:Þn denotes the Pochhammer symbol, and finally
use the polynomiality property (1). As a result, polyno-
mials in � and � are obtained on both sides of Eq. (3). For
subsequent values of the powers of � we compare the
coefficients of powers of �. As a result, the equations for
the form factors from Eq. (1) and (2) follow immediately.
We use the short-hand notation Ank ¼ AnkðX; �; t;�Þ and
A0
nk ¼ AnkðX; �; t;�0Þ. For the nonsinglet case

A2kþ1;2l ¼ k�ð2kÞ Xk
m¼0

ð4mþ 3ÞL2mþ1

Xk
j¼k�l

22ðj�kÞð�1Þm�j�ðjþmþ 3
2ÞA0

2jþ1;2ðj�kþlÞ
�ð2jþ 1Þ�ðm� jþ 1Þ�ðk�mþ 1Þ�ðkþmþ 5

2Þ
; (8)

for k ¼ 0; 1; 2; . . . and l ¼ 0; 1; . . . ; k, or, explicitly,

A10¼L1A
0
10; A32¼1

5
ðL1�L3ÞA0

10þL3A
0
32;

A54¼ 1

105
ð9L1�14L3þ5L5ÞA0

10þ
2

3
ðL3�L5ÞA0

32þL5A
0
54;

. . .

A30¼L3A
0
30; A52¼2

3
ðL3�L5ÞA0

30þL5A
0
52;

. . .

A50¼L5A
0
50; (9)

where we have grouped the equations in the growing
difference of the indices n and i in Ani. The ellipses denote
equations with n � 5. Since L1 ¼ 1, the vector form fac-
tor, of course, does not evolve. All other form factors in
Eq. (9) change. While the standard form factors An0 retain
their shape, i.e. An0ðtÞ=An0ðt ¼ 0Þ is not altered by the
evolution, other genuine generalized form factors involve
linear combinations and both their value at t ¼ 0 and their
shape do change. Analogously, for the singlet case

A2kþ2;2l¼�ð2kþ2ÞXk
m¼0

ð4mþ5ÞL2mþ2

Xk
j¼k�l

� 22j�2k�1ð�1Þm�j�ðjþmþ5
2ÞA0

2ðjþ1Þ;2ðj�kþlÞ
�ð2jþ2Þ�ðm�jþ1Þ�ðk�mþ1Þ�ðkþmþ7

2Þ
;

(10)

for k ¼ 0; 1; 2; . . . and l ¼ 0; 1; . . . ; kþ 1, or, explicitly,

A22¼L2A
0
22; A44¼3

7
ðL2�L4ÞA0

22þL4A
0
44;

A66¼ 5

231
ð11L2�18L4þ7L6ÞA0

22þ
10

11
ðL4�L6ÞA0

44þL6A
0
66;

...

A20¼L2A
0
20; A42¼3

7
ðL2�L4ÞA0

20þL4A
0
42;

A64¼ 5

231
ð11L2�18L4þ7L6ÞA0

20þ
10

11
ðL4�L6ÞA0

42þL6A
0
64;

...

A40¼L4A
0
40; A62¼10

11
ðL4�L6ÞA0

40þL6A
0
62;

...

A60¼L6A
0
60;

(11)
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Note the identical structure of the first two groups in the
above equation. Again, the shape of the form factors An0

does not change. The sets of Eqs. (9) and (11), although
implicitly present in schemes involving the conformal mo-
ments, have not, to our knowledge, been written explicitly
and their practical importance has not been recognized.
Since all quantities on the right-hand side are known, from
any practical point of view the problem of the leading-
order DGLAP-ERBL evolution of the GFFs is solved.

Expressions for higher values of nmay be obtained from
the general expressions, however, it is the lowest form
factors which are most relevant, as they can be obtained
in the Euclidean lattice studies for the pion [22–24] and the
nucleon [25–28]. Equations (9) and (11) are useful for the
evolution of higher GFFs which eventually will be mea-
sured on the lattice as the accuracy is increased, as well as
for various model calculations, where the results need to be
evolved in order to compare to the data [29].

Sequences of equations in (9) and (11) separated by
ellipses form (infinite) triangular matrix structures.
Mixing occurs between the ns or s form factors where
the difference n-i in Ani is fixed, for instance A10, A32, A54,
etc. This corresponds, according to Eq. (2), to the mixing
of the t-channel states of the same angular momentum.
Indeed, n-i is the number of Lorentz indices of the
t-channel momentum q. These triangular matrix equations
may be diagonalized, yielding the combinations

A10; A32 � 1

5
A10; A54 � 2

3
A32 þ 1

21
A10; (12)

etc., which evolve autonomously with Ln. The coefficients
in the above combinations are proportional to the coeffi-

cients of the Gegenbauer polynomial C3=2
n ðzÞ. In fact, we

are simply recovering the well known fact [7] that the
conformal moments of the GPDs,

�ð3=2Þ�ðnþ 1Þ
2nþ1�ðnþ 3=2Þ

Z 1

�1
dX�nC3=2

n ðX=�ÞFns;sðX; �; tÞ; (13)

evolve autonomously at LO. The point is, however, that the
diagonalization of Eq. (12) is not necessary for the evolu-
tion of the GFFs, as for any practical purpose one can
simply apply Eq. (9) and (11).

Asymptotically, as �2 ! 1 we have (for the positive-
parity operator) L1 ¼ 1 and Ln ! 0 for n > 1. Hence, in
the nonsinglet channel

A10 ! A0
10; A32 ! 1

5
A0
10; A54 ! 9

105
A0
10 . . .

A30 ! 0; A52 ! 0; . . . A50 ! 0; . . .

(14)

In the singlet channel we give the sum of the quark and
gluon components, whose second moment for the assumed
vector case is related to the momentum sum rule. Denoting
Snk ¼ Aq

nk þ AG
nk we find asymptotically

S22 ! S022; S44 ! 3

7
S022; S66 ! 5

21
S022; . . .

S20 ! S020; S42 ! 3

7
S020; S64 ! 5

21
S020; . . .

S40 ! 0; S62 ! 0; . . . S60 ! 0; . . .

(15)

Equations (14) and (15) comply to the following LO
asymptotic forms of the quark and gluon GPDs,

Fns ! �ð�2 � X2Þ 3

2�

�
1� X2

�2

�
A10ðtÞ;

Fs;q ! �ð�2 � X2ÞðS20ðtÞ þ �2S22ðtÞÞ

� 15

4�2

Nf

4CF þ Nf

X

�

�
1� X2

�2

�
;

XFs;G ! �ð�2 � X2ÞðS20ðtÞ þ �2S22ðtÞÞ

� 15

16�

4CF

4CF þ Nf

�
1� X2

�2

�
2
: (16)

The lowest form factors determine these expressions. Note,
however, that the gravitational form factors S20ðtÞ and
S22ðtÞÞ need not be equal. Only for the special case S20ðtÞ ¼
�S22ðtÞ ¼ �ðtÞ one recovers the typically written form
with the common factor ð1� �2Þ�ðtÞ. Since S22 corre-
sponds to the coupling of a scalar, and S20 to the traceless
rank-2 tensor, there is no reason why S20ðtÞ ¼ S22ðtÞ
should hold. This issue is related to the lack of factorization
of the t-dependence in GPDs.
In conclusion, we state that the generalization of the

result to other channels is straightforward. For other prob-
ing operators one needs to simply use appropriate anoma-
lous dimensions. For various targets (pion, nucleon) where
different tensor couplings appear, one evolves the form
factors separately for the independent structures.
Gravitational and higher-order GFFs may be obtained

from chiral quark models of the GPDs for the pion [29–36]
and for the nucleon [37,38]. A related quantity, the pion-
photon transition distribution amplitude [39–42], has also
been obtained in quark models Refs. [43–47] and its mo-
ments undergo the QCD evolution in a similar way.
Dynamical calculations test the simplifying but a priori
unjustified assumptions made in many phenomenological
studies. In particular, the widely assumed factorization of
the t-dependence is disproved. On the other hand, the
reference scale,�0, turns out to be very low in chiral quark
models, around 320 MeV for the local models, and hence
QCD evolution to experimentally accessible scales implies
a long distance evolution. This is a case where the dilata-
tion covariance may prove crucial, as it ensures the inte-
grability of the renorm-group equations, hence the
evolution path independence between two different scales
[48].
Actually, much of the explicit simplicity of the GFF

evolution of Eq. (9) and (11) is linked to the LO approxi-
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mation and the conformal invariance of the evolution
which represents faithfully the dilatation group, a feature
not automatically guaranteed in the current factorization
approaches at NLO, possibly inducing systematic errors.
Renorm-group improvement of the GPDs might be imple-
mented as previously done for the DGLAP evolution of the
PDFs [48] as well as the ERBL evolution of the PDAs [49].
While these NLO complications prevent writing down a
handy analytic solution for the GFF evolution, the problem
can be reduced to a set of coupled differential equations. It

remains a tractable and much simpler alternative when a
reduced set of GFFs is available. See also Refs. [15,16].
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