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We use Monte Carlo simulations to obtain an improved lattice measurement of the critical coupling

constant ½�=�2�crit for the continuum ð1þ 1Þ-dimensional ð�=4Þ�4 theory. We find that the critical

coupling constant depends logarithmically on the lattice coupling, resulting in a continuum value of

½�=�2�crit ¼ 10:8þ0:10
�0:05, in considerable disagreement with the previously reported ½�=�2�crit ¼

10:26þ0:08
�0:04. Although this logarithmic behavior was not observed in earlier lattice studies, it is consistent

with them, and expected analytically.
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I. INTRODUCTION

The two-dimensional �4
2 field theory specified by the

Euclidean Lagrangian,

L E ¼ 1

2
ðr�Þ2 þ 1

2
�2

0�
2 þ �

4
�4; (1)

exhibits a phase transition between a symmetric phase with
h�i ¼ 0 and a phase in which the discrete symmetry of the
Lagrangian under � ! �� is broken [1,2]. Loinaz and
Willey [3] have used Monte Carlo simulations to calculate
the critical value of the coupling constant that separates the
two phases of the theory.

In this work we perform similar calculations, discretiz-
ing the Euclidean quantum field theory (EQFT) of Eq. (1)
in terms of the two dimensionless lattice parameters

�̂ � �a2; �̂2
0 � �2

0a
2; (2)

where a > 0 is the lattice spacing. (In two dimensions,
both � and �2

0 have mass dimension ½�� ¼ ½�2
0� ¼ 2.) The

lattice action that regularizes Eq. (1) is

A ¼ X

n

�
1

2

Xd

�¼1

ð�nþe� ��nÞ2 þ 1

2
�̂2

0�
2
n þ �̂

4
�4

n

�
; (3)

where e� is the unit vector in the � direction. The EQFT is
the continuum limit a ! 0 of this lattice model.

In two dimensions, the field strength and self-coupling
renormalization factors Z� and Z� are finite and do not

affect the phase structure of the theory. However, there is
an infinite mass renormalization, which requires that the
bare mass parameter be tuned to infinity as the continuum
limit is taken, �2

0 ��2 lnð1=aÞ, where �2 is the finite

renormalized mass squared. Since � is independent of a

and �2
0 diverges only logarithmically as a ! 0, both �̂ and

�̂2
0 vanish in the continuum limit a ! 0. Taking the con-

tinuum limit therefore reduces the number of independent

dimensionless parameters from two to one, which we take
to be the dimensionless coupling constant f ¼ �=�2.
We can parametrize the mass renormalization as

�2
0 ¼ �2 � ��2; (4)

L E ¼ 1

2
ðr�Þ2 þ 1

2
�2�2 þ �

4
�4 � 1

2
��2�2; (5)

where�2 and the finite part of ��2 depend on the choice of
renormalization condition. We want to choose a renormal-
ization scheme in which the effective coupling constant f
distinguishes between the two phases of the theory, which
is not the case for several popular renormalization condi-
tions [3]. We will achieve this by choosing the mass
renormalization to be equivalent to normal ordering the
interaction in the interaction picture in the symmetric
phase.
There is only one divergent Feynman diagram in �4

2

theory, Fig. 1, which involves the integral

A�2 ¼ 1

N2

XN

k1¼1

XN

k2¼1

1

�̂2 þ 4sin2ð�k1=NÞ þ 4sin2ð�k2=NÞ

!
Z d2p

ð2�Þ2
1

p2 þ�2
(6)

in the continuum limit. From Eqs. (1) and (4),

G�1ðp2Þ ¼ p2 þ�2
0 þ �0ðp2Þ ¼ p2 þ�2 þ�ðp2Þ; (7)

�ðp2Þ ¼ 3�A�2 � ��2 þ two-loop: (8)

Therefore the renormalization condition

��2 ¼ 3�A�2 (9)

FIG. 1. The only divergent Feynman diagram in �4
2 theory.
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removes all ultraviolet divergence from the perturbation
series based onthe renormalized parametrizationof Eq. (4).

Applying this renormalization condition,

L E ¼ 1

2
ðr�Þ2 þ 1

2
�2�2 þ �

4
�4 � 3

2
�A�2�2

¼ 1

2
ðr�Þ2 þ 1

2
�2�2 þ �

4
:�4:�2 ; (10)

dropping a constant piece in the second line. In terms of
f ¼ �=�2, the first line of Eq. (10) can be written as

L E ¼ 1

2
ðr�Þ2 þ 1

2
�2ð1� 3fA�2Þ�2 þ f�2

4
�4: (11)

On the lattice (a > 0), A�2 is finite, so we can argue that

for sufficiently small f, the exact effective potential has a
single minimum at h�i ¼ 0. The coefficient of �2 in
Eq. (11) is negative for large f, suggesting a transition to
the broken symmetry phase. However, the effective poten-
tial need not be well approximated by its tree-level form at
strong coupling. Chang [1] has shown that this transition
does occur, using a duality transformation from the strong
coupling regime of Eq. (11) to a weakly coupled theory
normal ordered with respect to the vacuum of the broken
symmetry phase.

We proceed by using Monte Carlo simulations to map

the critical line in the ð�̂2
0; �̂Þ plane. We determine critical

values of �̂2
0cð�̂Þ for various �̂, calculating the infinite-

lattice-size limit of Monte Carlo data measured on lattices
of finite size. We then impose our renormalization condi-
tion

�̂ 2 ¼ �̂2
0 þ 3�̂A�2 (12)

using the integral representation of A�2 in the infinite-

volume limit,

A�2 ¼
Z 1

0
dt exp½��̂2t�ðexpð�2tÞI0ð2tÞÞ2: (13)

Here I0 is a modified Bessel function of the first kind.

For fixed �̂ � 0, we solve Eqs. (12) and (13) numeri-

cally to determine �̂2
c from �̂2

0c. We then extrapolate �̂ !
0 to obtain the critical coupling constant

½�=�2�crit � fc ¼ lim
�̂;�̂2!0

½�̂=�̂2
c� (14)

in the continuum limit. We will see that this extrapolation
has a nonlinear form.

II. SIMULATIONS

We performed Monte Carlo simulations based on the
lattice action of Eq. (3) onN � N lattices withN ¼ 32, 64,

128, 256, 512, and 1024. For each N, we set �̂ ¼ 1:0, 0.7,

0.5, 0.25, 0.1, 0.05, 0.03, 0.02, and 0.01, and for each ðN; �̂Þ
scanned in �̂2

0 beginning in the symmetric phase and

ending in the broken symmetry phase. To further constrain

the data at small �̂, we performed additional simulations at

N ¼ 600 and 1200 for �̂ ¼ 0:05, 0.03, 0.02, and 0.01.
To reduce critical slowing down, our simulations exe-

cute a Wolff cluster algorithm [4] update on the embedded
Ising model after every five random sweeps of the lattice
with standard Metropolis updating, as in [3,5]. After an
initial thermalization of 213–214 Metropolis-Wolff cycles,
we measured lattice quantities following each of an addi-
tional 213–214 cycles.
Since these measurements are not independent, we also

calculated the autocorrelation time � for each ðN; �̂; �̂2
0Þ

simulation and incorporated it into our analysis. Typical
autocorrelation times are around ten measurements, with
maximum autocorrelation times around 100 measurements

for �̂ � 1 on small lattices. In every simulation the ther-
malization time exceeded 100� and we took at least 100
statistically independent measurements. As a result, our
statistical uncertainties are quite small in comparison to
systematic uncertainties.
We use three diagnostics to determine the critical value

of �̂2
0c, where the phase transition occurs for fixed �̂. The

first is the familiar peak in the susceptibility � / h�2i �
hj�ji2, with uncertainty extracted from the full width of the
peak at half its maximum value (FWHM).
The second diagnostic is the bimodality Bð�̂2

0Þ, a pa-

rametrization of the shape of the histogram of the values of

� measured during each simulation with fixed ðN; �̂; �̂2
0Þ

[3]. Figure 2 illustrates these histograms in the two phases
of �4

2 theory: in the symmetric phase the histogram has a
single peak around h�i ¼ 0, while in the broken symmetry
phase it has two peaks around �hj�ji � 0. Constructing
the histogram with an odd number of bins, we define the
bimodality as

B ¼ 1� n0
nmax

; (15)

where n0 is the number of measurements in the central bin
around zero, and nmax is the largest number in any bin. In
the symmetric phase B � 1, while in the broken symmetry
phase B � 1 (cf. Fig. 2).
Since B depends on the specific evolution of the system,

it can vary considerably for similar values of �̂2
0, particu-

larly in the symmetric phase. To smooth out this jitter, we
consider the three-point running average ~Bð�̂2

0Þ of Bð�̂2
0Þ

over �̂2
0,

~Bð�̂2
0Þ ¼ ½Bð�̂2

0 � ��̂2
0Þ þ Bð�̂2

0Þ þ Bð�̂2
0 þ��̂2

0Þ�=3:
(16)

Figure 3 illustrates the benefits of this smoothing proce-
dure. We take as the phase transition point the value of �̂2

0

for which ~Bð�̂2
0Þ is closest to 0.5, with bounds given by the

�̂2
0 most distant from this critical �̂2

0c for which 0:1< ~B<
0:95 (cf. Fig. 3). These conventions produce results con-
sistent with those from the susceptibility, with comparable
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(though generally smaller) uncertainties, as shown in
Table I.

To verify that the bimodality is a robust indicator of the
phase transition, we checked its behavior in the well-
understood two-dimensional Ising model. Using the con-
ventions stated above, we found that the critical �̂2

0c in-

dicated by the bimodality agrees well with that indicated
by the susceptibility in this case as well, with comparable
uncertainties. Both observables agree with the exact ana-
lytic result.

Finally, we extract a third estimate of the critical �̂2
0c

using the Binder cumulant [6]

U ¼ 1� h�4i
3h�2i2 : (17)

For �̂ fixed, U has a fixed point at the critical �̂2
0c for any

value of the lattice size N. We take as the critical �̂2
0c the

value of �̂2
0 at which U for the three largest N are closest

together, with bounds given by the �̂2
0 at which all three

separate.
This analysis of the cumulant in Eq. (17) produces a

single critical �̂2
0c for each �̂, while we have susceptibility

and bimodality data for each ðN; �̂Þ. Performing a linear
regression to find theN ! 1 limit of the susceptibility and

bimodality data with �̂ fixed gives us a total of three

independent indicators of the critical �̂2
0c for each �̂.

We find all three values for each �̂ consistent with each
other, with comparable uncertainties (Table I). Combining
them produces the second column in Table II. The third

FIG. 3 (color online). Bimodality plotted against �̂2
0 for simulations with N ¼ 64 and �̂ ¼ 0:5, before (left graph) and after (right

graph) smoothing.

TABLE I. Critical �̂2
0c from each phase transition indicator.

�̂ Susceptibility Bimodality Cumulant

1.00 �1:272 33ð16Þ �1:272 58ð10Þ �1:272 60ð45Þ
0.70 �0:951 51ð25Þ �0:951 52ð7Þ �0:951 80ð40Þ
0.50 �0:720 80ð11Þ �0:721 31ð9Þ �0:721 30ð30Þ
0.25 �0:403 46ð18Þ �0:403 73ð6Þ �0:403 90ð20Þ
0.10 �0:184 24ð11Þ �0:184 32ð9Þ �0:184 30ð20Þ
0.05 �0:100 60ð5Þ �0:100 71ð4Þ �0:101 00ð35Þ
0.03 �0:064 10ð4Þ �0:064 14ð5Þ �0:064 20ð15Þ
0.02 �0:044 64ð3Þ �0:044 68ð5Þ �0:045 00ð30Þ
0.01 �0:023 97ð6Þ �0:023 99ð5Þ �0:024 10ð10Þ

FIG. 2 (color online). Histograms of � for simulations with N ¼ 32 and �̂ ¼ 0:05, in the symmetric phase (left graph, �̂2
0 ¼�0:075) and the broken symmetry phase (right graph, �̂2

0 ¼ �0:11).

TABLE II. Critical �̂2
0c, �̂

2
c, and �̂=�̂2

c for different �̂.

�̂ �̂2
0c �̂2

c �̂=�̂2
c

1.00 �1:272 51ð16Þ 0.097 320(46) 10.275(5)

0.70 �0:951 53ð16Þ 0.068 462(45) 10.225(7)

0.50 �0:721 12ð11Þ 0.048 884(32) 10.228(7)

0.25 �0:403 72ð9Þ 0.024 176(26) 10.341(11)

0.10 �0:184 29ð8Þ 0.009 476(23) 10.553(26)

0.05 �0:100 67ð12Þ 0.004 679(33) 10.686(76)

0.03 �0:064 12ð5Þ 0.002 794(15) 10.737(59)

0.02 �0:044 66ð10Þ 0.001 870(28) 10.695(163)

0.01 �0:024 00ð4Þ 0.000 931(12) 10.739(138)
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column in Table II holds the corresponding critical renor-
malized �̂2

c determined from Eqs. (12) and (13), while the

fourth presents the values of the critical coupling �̂=�̂2
c

which are to be extrapolated to the a ! 0 continuum limit.

III. ANALYSIS

Figure 4 plots the values of �̂=�̂2
c in the fourth column of

Table II and clearly rules out a linear �̂ ! 0 extrapolation
like that performed in [3].

Analytic investigations into the structure of scalar field
theories, and, more generally, super-renormalizable theo-
ries, long ago established that correlation functions in these
theories typically depend on logarithms of the coupling [7–
11]. Jackiw and Templeton [10] explicitly demonstrated
the presence of such logarithmic terms in a simple �3

4

model, using a truncated Bethe-Salpeter equation. This
nonanalytic dependence on the coupling appears generi-
cally in more complicated super-renormalizable theories as
well, including the �4

2 theory we consider here.
We can numerically investigate the effect of such loga-

rithmic dependence by fitting the data in Table II and Fig. 4
to a function of the form

�̂=�̂2
c ¼ c0 þ c1�̂þ c2�̂ ln�̂: (18)

The constant c0 is exactly the continuum critical coupling
constant fc we wish to determine. Performing this fit, we
find c0 ¼ fc ¼ 10:78ð3Þ, with �2 ¼ 1:21 per degree of
freedom (dof). Performing fits with additional terms

(c3�̂
2 or c3�̂

2 ln�̂) results in even larger fc � 10:9 with
very small �2=dof � 0:15 (Table III). Fits that do not

include a term logarithmic in �̂ are poor, with �2=dof 	 1.
We can check the consistency of these results by fitting

�̂2
c as a function of �̂ and extracting fc from the coefficient

of the term linear in �̂,

�̂ 2
c ¼ d0 þ �̂=fc þOð�̂2Þ:

Fitting

�̂ 2
c ¼ d0 þ �̂=fc þ d1�̂

2 þ d2�̂
2 ln�̂; (19)

we find fc ¼ 10:77ð4Þ with �2=dof ¼ 1:1. As above, in-
cluding additional terms in the fit raises fc while dramati-
cally lowering the �2=dof, while fits without any
logarithmic term have �2=dof 	 1 (Table IV).

Since �̂2
c ! 0 as �̂ ! 0, we should find the constant

term d0 � 0 in these fits, and we can also perform fits with
d0 explicitly set to zero as an additional check. Of the fits
listed in Table IV, only that of Eq. (19) has d0 vanish within
uncertainty, although d0 is within 2	 of zero for the fit
form

�̂ 2
c ¼ d0 þ �̂=fc þ d1�̂

2 þ d2�̂
3

as well. The value of fc extracted from the fit,

�̂ 2
c ¼ �̂=fc þ d1�̂

2 þ d2�̂
2 ln�̂; (20)

is fc ¼ 10:79ð3Þwith �2=dof ¼ 1:0, in agreement with the
values from Eqs. (18) and (19).
Clearly, systematic errors, particularly the choice of

continuum extrapolation form, dominate over statistical
errors. Tables III and IV summarize fc for various linear
and nonlinear extrapolations, along with the goodness of
the fits, �2=dof. Neglecting fits with �2=dof 	 1, we
adopt a final result of

fc ¼ 10:8þ0:10
�0:05 (21)

to be consistent with the numbers in Tables III and IV.

FIG. 4 (color online). Critical coupling constant �̂=�̂2
c plotted

against �̂.

TABLE III. �̂, �̂2 ! 0 extrapolations of �̂=�̂2
c vs �̂.

Form of �̂=�̂2
c fit fc �2=dof

fc þ c1�̂ 10.31(6) 48

fc þ c1�̂þ c2�̂
2 10.60(5) 5.8

fc þ c1�̂þ c2�̂ ln�̂ 10.78(3) 1.2

fc þ c1�̂þ c2�̂ ln�̂þ c3�̂
2 10.89(2) 0.16

fc þ c1�̂þ c2�̂ ln�̂þ c3�̂
2 ln�̂ 10.87(2) 0.13

TABLE IV. �̂ ! 0 extrapolations of �̂2
c vs �̂.

Form of �̂2
c fit fc �2=dof

d0 þ �̂=fc 10.24(2) 28

d0 þ �̂=fc þ d1�̂
2 10.24(6) 33

d0 þ �̂=fc þ d1�̂
2 þ d2�̂

3 10.55(5) 4.1

d0 þ �̂=fc þ d1�̂
2 þ d2�̂

2 ln�̂ 10.77(4) 1.1

d0 þ �̂=fc þ d1�̂
2 þ d2�̂

2 ln�̂þ d3�̂
3 10.98(2) 0.04

d0 þ �̂=fc þ d1�̂
2 þ d2�̂

2 ln�̂þ d3�̂
3 ln�̂ 10.93(2) 0.05

�̂=fc 10.27(2) 47

�̂=fc þ d1�̂
2 10.31(7) 49

�̂=fc þ d1�̂
2 þ d2�̂

3 10.61(5) 5.5

�̂=fc þ d1�̂
2 þ d2�̂

2 ln�̂ 10.79(3) 1.0

�̂=fc þ d1�̂
2 þ d2�̂

2 ln�̂þ d3�̂
3 10.90(2) 0.18

�̂=fc þ d1�̂
2 þ d2�̂

2 ln�̂þ d3�̂
3 ln�̂ 10.89(2) 0.14
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IV. DISCUSSION

Since our approach closely parallels that of Loinaz and
Willey [3], it is distressing that our final result disagrees so
strongly with the fc ¼ 10:26þ0:08

�0:04 reported there. However,

our individual data points are largely consistent with theirs,
as shown in Fig. 5. The disagreement between our final
results comes almost entirely from the nonlinear contin-
uum extrapolations discussed above.

Reanalyzing the data in [3], we find (Tables V and VI)
that they are consistent with all the nonlinear fits consid-
ered in our analysis above. Both linear and nonlinear fits all
have �2=dof � 0:5. While nonlinear extrapolations were
not required by the data in [3], by considering only the
linear case Loinaz and Willey overlooked significant sys-
tematic effects due to fit form. In Tables V and VI, we see
10:2 & fc & 11:9 in fits with �2=dof < 1, consistent with
our result fc ¼ 10:8þ0:10

�0:05.

Several other authors have also calculated the critical
coupling fc in �4

2 theory using a variety of methods,

numerical schemes, and analytic approximations. These
approaches, summarized in Table VII, produce a large
spread of results, of which ours is the largest.

The density matrix renormalization group result fc ¼
9:982ð2Þ [16] is notable for its extremely small claimed

uncertainty. However, this result relies on linear �̂ ! 0
extrapolations like those in [3], performed with just two

data points at �̂ ¼ 0:1, 0.25, for fixed lattice size N ¼ 500

or 1000. A linear 1=N ! 0 extrapolation is then performed
using the two resulting values. Thus, we expect this result
to suffer from the difficulties discussed above.
The diffusion Monte Carlo result fc ¼ 10� 0:8� 0:4

[15] agrees with our result within its relatively large sta-
tistical and systematic uncertainties. The Gaussian effec-
tive potential results fc ¼ 10:272 [12], fc ¼ 10:211 [1],
and fc ¼ 10:21 [13] (the last of which coincides with the
oscillator representation result) are the next closest. Both
the Gaussian effective potential and oscillator representa-
tion methods incorrectly predict a first-order phase transi-
tion, in violation of the Simon-Griffiths theorem [24],
which requires the �4

2 theory phase transition to be second
order.

V. CONCLUSIONS

We have used Monte Carlo simulations to obtain an
accurate lattice measurement of the continuum critical
coupling constant fc ¼ 10:8þ0:10

�0:05 in �4
2 theory, improving

the previously reported Monte Carlo result [3].

FIG. 5 (color online). Our data for �̂=�̂2
c compared with the

results of [3] (empty circles).

TABLE VI. �̂ ! 0 extrapolations of �̂2
c vs �̂, for [3].

Form of �̂2
c fit fc �2=dof

d0 þ �̂=fc 10.23(3) 0.65

d0 þ �̂=fc þ d1�̂
2 10.37(9) 0.44

d0 þ �̂=fc þ d1�̂
2 þ d2�̂

3 10.57(16) 0.32

d0 þ �̂=fc þ d1�̂
2 þ d2�̂

2 ln�̂ 10.80(24) 0.23

d0 þ �̂=fc þ d1�̂
2 þ d2�̂

2 ln�̂þ d3�̂
3 11.86(23) 0.02

d0 þ �̂=fc þ d1�̂
2 þ d2�̂

2 ln�̂þ d3�̂
3 ln�̂ 11.64(12) 0.01

�̂=fc 10.24(2) 0.57

�̂=fc þ d1�̂
2 10.32(5) 0.38

�̂=fc þ d1�̂
2 þ d2�̂

3 10.35(9) 0.49

�̂=fc þ d1�̂
2 þ d2�̂

2 ln�̂ 10.35(12) 0.50

�̂=fc þ d1�̂
2 þ d2�̂

2 ln�̂þ d3�̂
3 10.19(25) 0.59

�̂=fc þ d1�̂
2 þ d2�̂

2 ln�̂þ d3�̂
3 ln�̂ 10.24(22) 0.63

TABLE V. �̂, �̂2 ! 0 extrapolations of �̂=�̂2
c vs �̂, for [3].

Form of �̂=�̂2
c fit fc �2=dof

fc þ c1�̂ 10.32(5) 0.39

fc þ c1�̂þ c2�̂
2 10.34(9) 0.49

fc þ c1�̂þ c2�̂ ln�̂ 10.34(12) 0.51

fc þ c1�̂þ c2�̂ ln�̂þ c3�̂
2 10.18(25) 0.59

fc þ c1�̂þ c2�̂ ln�̂þ c3�̂
2 ln�̂ 10.23(22) 0.63

TABLE VII. Various results for the critical coupling fc.

Method Result Reference

Monte Carlo 10:8þ0:10
�0:05 This work

Gaussian effective potential 10.272 [12]

Gaussian effective potential 10.211 [1]

GEP and oscillator rep. 10.21 [13]

Spherical field theory 10.05 [14]

Diffusion Monte Carlo 10� 0:8� 0:4 [15]

Density matrix RG 9.982(2) [16]

Continuum light-front 9.91 [17]

Connected Green function 9.784 [12]

Coupled cluster expansion 3:80< fc < 8:60 [18]

Discretized light-front 7.325, 7.71 [19]

Discretized light-front 7.316, 5.500 [20,21]

Random phase approximation 7.2 [22]

Non-Gaussian variational 6.88 [23]
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While our data are consistent with those reported in [3],
our improved precision forces a nonlinear extrapolation to
the continuum limit, producing a significantly different
continuum result. The older data are compatible with these
nonlinear extrapolations, although such nonlinearity was
neither required nor investigated previously. Applying
nonlinear extrapolations to the older data, we obtain con-
tinuum results consistent with our own.

Significantly, nonlinearity—in particular, terms loga-

rithmic in the lattice coupling �̂—is expected analytically.

This convergence of analytic theory and numerical data
provides additional evidence that our improved result is
accurate and reliable, and can be used to evaluate analytic
approximations.
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