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The coupling of an unparticle operator OU to standard model particles opens up the possibility of

unparticle decays into standard model fields. We study this issue by analyzing the pole structure (and

spectral function) of the unparticle propagator, corrected to account for one-loop polarization effects from

virtual standard model particles. We find that the propagator of a scalar unparticle (of scaling dimension

1 � dU < 2) with a mass gap mg develops an isolated pole, m2
p � imp�p, with m2

p & m2
g below the

unparticle continuum that extends above mg (showing that the theory would be unstable without a mass

gap). If that pole lies below the threshold for decay into two standard model particles, it corresponds to a

stable unparticle state (and its width �p is zero). For m2
p above the threshold, the width is nonzero and

related to the rate of the unparticle decay into standard model particles. This picture is valid for any value

of dU in the considered range.
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Unparticle physics was introduced in Ref. [1] as the
effective description of a conformal theory coupled to the
standard model (SM). Unparticles have their origin in a
hidden sector that flows to a strongly coupled conformal
theory with an infrared fixed point below some energy
scale�U. Since that theory is strongly coupled, the anoma-
lous dimensions can be large and (below the scale �U)
unparticle operators can have a dimension dU which differs
sizably from its (integer) ultraviolet dimension. In this
article we consider unparticles not charged under the SM
gauge group and (in order to enhance their interactions
with the standard model) with the lowest possible dimen-
sion. Therefore, we will discuss scalar unparticlesOU with
1 � dU < 2 [2,3].

The conformal invariance of the unparticle sector is
explicitly broken by its interactions with the standard
model. Moreover, when the Higgs field acquires a vacuum
expectation value (VEV), this large breaking of conformal
invariance gives rise to a mass gap mg in the unparticle

spectrum that consists of a continuum of states above mg

[4]. The mass gap plays a relevant role in the cosmology
[5] and phenomenology [6–11] of unparticles and it should
be taken into account when constraining the unparticle
theory from cosmological and experimental data.

In this paper we consider the issue of the stability of
unparticles coupled to the standard model or, in other
words, their possible decay into SM particles. (This is a
controversial subject; see [5,9,12,13].) This issue should
have a great impact for unparticles in their influence on
early Universe cosmology, in their capability as dark mat-
ter candidates, and in their possible detection at high-
energy colliders through their production and subsequent
decay into SM particles. We will see that the possibility of

decay, along with the associated resonant structure, will
depend on the precise relationship between the mass gap
mg and the SM threshold of the channel to which the

unparticle operator is coupled. In particular, we will con-
sider the decay of unparticles into SM particles via the
Lagrangian coupling L ¼ ��UOSMOU, where OSM is a
SM operator which can provide a channel for unparticle
decay and �U is a coupling with dimension 4� dU � dSM.
Examples of such SM operators are F2

��, mf
�ff, and jHj2.

However, instead of focusing on a particular SM opera-
tor, we start by simply considering a toy model with a real
scalar ’, with bare mass m0 and zero VEV, coupled to the
unparticle scalar operator OU with scaling dimension dU
through the effective Lagrangian

L eff ¼ 1
2ð@�’Þ2 � 1

2m
2
0’

2 � 1
2�U’

2OU; (1)

which should capture the main features of more realistic
channels.
The last term in the Lagrangian above induces a tadpole

term for the unparticle operator at one loop, which would
trigger an unparticle VEV.1 This is similar to what happens
when the operator OU is coupled to jHj2 and the Higgs
field H acquires a VEV (although there the tadpole is a
tree-level effect). Here we see that this tadpole problem is
more generic and would appear even without coupling the
unparticles to the Higgs. It was shown in Ref. [4] that in the
presence of such tadpoles an IR divergence appears, which
has to be cut off by an IR mass gapmg. In the context of [4]

the mass gap can be introduced in various ways such that
conformal invariance is spontaneously broken along with

1This tadpole is quadratically sensitive to UV physics, so one
expects it to be of order �U�

2
U=ð16�2Þ.
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electroweak symmetry. Here we just assume that such a
mass gap is provided by the theory. Of course, the VEVof
OU in turn induces a one-loop correction to the mass of the
field ’. We assume that this one-loop corrected mass
squared is positive, m2 > 0, so as to keep h’i ¼ 0. An
alternative possibility is to impose the renormalization
condition of a zero unparticle tadpole at one loop so that
hOUi ¼ 0. As we show later on, a nonzero mass gap will be
necessary in any case.

In the presence of the mass gap mg the unparticle

propagator reads [1,2]

� iPð0Þ
U ðsÞ ¼ 1

Dð0Þ
U ðsÞ �

AdU

2 sinð�dUÞ
1

ð�sþm2
g � i�Þ2�dU

;

(2)

with

AdU ¼ 16�5=2

ð2�Þ2dU
�ðdU þ 1=2Þ

�ðdU � 1Þ�ð2dUÞ ; (3)

where we have explicitly introduced the mass gap mg that

breaks the conformal invariance. In fact, in some scenarios
this parameter can be related to the VEVof the Higgs field,
as was shown in Ref. [4]. A spectral function analysis
shows that, at this level, the unparticle spectrum is a
continuum extending above the mass gap. More precisely,
the spectral function, defined as

�ð0Þ
U ðsÞ ¼ � 1

�
Im½�iPð0Þ

U ðsþ i�Þ�; (4)

is given by

�ð0Þ
U ðsÞ ¼ AdU

2�
ðs�m2

gÞdU�2�ðs�m2
gÞ: (5)

The polarization �ðsÞ induced in the unparticle propa-
gator by the one-loop diagram exchanging ’ fields can be
simply added by a Dyson resummation to give

� iPð1Þ
U ¼ 1

Dð1Þ
U ðsÞ ¼

1

Dð0Þ
U ðsÞ þ �ðsÞ : (6)

The polarization �ðsÞ is given in the MS-renormalization
scheme by [14]

�ðsÞ ¼ �2
U

32�2

�
log

�
�2

U

m2

�
þ 2� 2�ðsÞ log

�
1þ �ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðsÞ � 1

p
��
;

(7)

where �ðsÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=s

p
and we have set the renormal-

ization scale equal to the cutoff �U. (For numerical work
we fix �U ¼ 100m.)

The location of the unparticle resonances will be deter-
mined by the propagator poles s ¼ m2

p � imp�p in the

complex s plane (with mp the pole mass and �p its width).

The polarization �ðsÞ has a branch cut that we take from
the threshold at s ¼ 4m2 to infinity along the real axis with

the principal Riemann sheet corresponding to 0 � � �
2�, where � is defined as s� 4m2 ¼ js� 4m2jei�. The
second Riemann sheet is reached by shifting � ! �þ 2�.
It can be easily seen that a change in the Riemann sheet is
equivalent to the replacement �ðsÞ ! ��ðsÞ. Then, since
the complete propagator is a function of �,

Dð1ÞðsÞ � D½s; �ðsÞ�; (8)

the pole equations

D ½s; �R�ðsÞ� ¼ 0 (9)

where �R ¼ 1ð�1Þ corresponds to solutions in the first
(second) Riemann sheet [15].
A numerical analysis of the pole equation (9) shows that,

besides the unparticle continuum, an isolated pole appears.
Note that the tree-level propagator had no pole (m2

g is not a

pole but a branch point), and therefore the pole appearance
is a purely one-loop effect. Because of the sign of this
radiative effect, we find that m2

p is always2 below m2
g, but

quite close to it, as the polarization is a radiative effect:
m2

p & m2
g. For mp � 2m this isolated pole is real (�p ¼ 0)

and located in the first Riemann sheet. Such a pole does not
correspond to any decaying unparticle, and it is entirely
due to the fact that� � 0 below the threshold and could be
interpreted as an unparticle bound state. We show in Fig. 1
(left panel) a plot of mp vs dU for m ¼ mg. In this plot one

can see that indeed mp ! mg for dU ! 2.

An immediate consequence of the negative mass shift
responsible for m2

p < m2
g is that it yields a lower bound on

the scale of conformal breaking mg. That bound is related

to the masses of the standard model particles the unparticle
operator is coupled to (m in our case). This fact is shown by
Fig. 1 (right panel), where the pole squared mass m2

p is

plotted vs mg for dU ¼ 1:2. We can see that the isolated

unparticle pole becomes tachyonic for small values of mg

(mg < 0:5m). Moreover, this shows that in the particular

limit mg ! 0 the theory becomes unstable. Later on we

give an analytical formula for this lower bound on the mass
gap.
For mg > 2m the isolated unparticle pole is complex

(�p > 0) and appears in the second Riemann sheet,3 and

this now corresponds to the decay of a resonance. This case
is exhibited in Fig. 2, where mp and �p are plotted vs dU
for the case mg ¼ 4m (thick solid lines). Finally, since �2

U

is a global factor in the polarization, the values ofm2
g �m2

p

and �p exhibit an approximate scaling behavior with �2
U.

We want to emphasize here that there are complex pole
solutions for all values of dU in the considered range

2For dU very close to 2, one can also have mp >mg, but in
such cases the mass difference between the pole and the mass
gap is infinitesimal.

3In all cases we also found the corresponding shadow pole [16]
in the unphysical sheet, as required by Hermitian analyticity.
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1 � dU < 2, unlike what was claimed in Ref. [13]. In our
case, nothing special happens for dU > 3=2, and m2

p and

�p smoothly approach m2
g and zero, respectively, when

dU ! 2.
It is easy to understand our results analytically. For

values of s close to the resonance region, one can approxi-
mate the complex polarization by the constant

�ðsÞ ’ �ðm2
gÞ

¼ �2
U

32�2

�
log

�
�2

U

m2

�
þ 2� �ðm2

gÞ

�
�
log

1þ �ðm2
gÞ

1� �ðm2
gÞ
� i�

��
; (10)

and a simple calculation yields an analytic approximation
for the pole mass and width as

m2
p ’ m2

g � 	m2 cos
; mp�p ’ �ðm2
gÞ	m2j sin
j;

(11)

where

	m2 �
� j�ðm2

gÞjAdU

2j sinð�dUÞj
�
1=ð2�dUÞ

(12)

and


 ¼ 1

ð2� dUÞ arctan
Im½�ðm2

gÞ�
Re½�ðm2

gÞ�
: (13)

Figure 2 compares the values formp and �p obtained using

the analytic approximation in (11) (thick dashed lines) with
the full numerical results (thick solid lines), showing that
the analytical approximation is excellent. We can use this
approximation to write down analytically the lower bound
on m2

g to avoid a tachyon. It is given by

m2
g >

�
�ð0ÞAdU

2j sinð�dUÞj
�
1=ð2�dUÞ

; (14)

with �ð0Þ ¼ �2
U=ð16�2Þ logð�U=mÞ.

We can gain further insight into the unparticle spectrum
by calculating the spectral function for the one-loop cor-
rected propagator,

�UðsÞ ¼ � 1

�
Im½�iPð1Þðsþ i�Þ�: (15)

As we show below, this spectral function will faithfully
reproduce the main features of the pole structure discussed
previously, also giving information on the unparticle con-
tinuum above the mass gap. The expression we find for this
spectral function is the following:

�UðsÞ ¼ 1

�

Im½�ðsÞ�
jDð1Þ

U ðsÞj2 þ �ð4m2 �m2
pÞ

	ðs�m2
pÞ

dDð1Þ
U ðsÞ=ds

þ �ðs�m2
gÞ 2sin

2ð�dUÞ
�AdU

ðs�m2
gÞ2�dU

jDð1Þ
U ðsÞj2 : (16)
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FIG. 2 (color online). Left (right) panel: Plot of mp (�p) as a function of dU for �U ¼ 5 and mg ¼ 4m (thick solid lines).
Corresponding results based on the analytical approximation of Eq. (11) are plotted in thick dashed lines. All masses are in units of m.

1.0 1.2 1.4 1.6 1.8 2.0

0.6

0.7

0.8

0.9

1.0

U

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

2

FIG. 1 (color online). Left panel: Plot ofmp as a function of dU for �U ¼ 5,mg ¼ m, and� ¼ �U ¼ 100m. Right panel: Plot ofm2
p

vs mg for �U ¼ 5 and dU ¼ 1:2. All masses are in units of m.
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The first term of �UðsÞ is proportional to the imaginary
part of �ðsÞ [which contains a factor �ðs� 4m2Þ], and thus
for m2

p > 4m2 it corresponds, through the Cutkosky rules,

to a width for the unparticles which decay beyond the
threshold. The second term (for m2

p < 4m2) corresponds

to a real pole in the first Riemann sheet, and should be
interpreted as a stable (un)particle of mass mp. Finally, the

third term is proportional to the imaginary part of Dð0Þ
U ðsÞ4

and does not correspond to any unparticle decay, but gives
rise to the familiar continuous contribution to the spectral
function above the mass gap (a similar continuum appears
in the Higgs spectral function when the Higgs is coupled to
an unparticle operator [17]).

When the decay OU ! ’’ occurs it should give rise to
a resonant structure in the spectral function �UðsÞ through
the term proportional to Im½�ðsÞ�, with an approximate
Breit-Wigner distribution centered aroundm2

p of width �p.

This should correspond to the structure of the poles of the

propagator Pð1ÞðsÞ in the complex s plane, i.e. to the zeroes

of the function Dð1ÞðsÞ which we have previously studied.
In the left panel of Fig. 3 we have plotted the spectral

function for the case of Fig. 1, in which there is no resonant
interpretation, but instead a real pole appears. We see a
delta function corresponding to that pole and a continuous
component for s > m2

g. In the right panel of Fig. 3 we have

plotted the strength of the isolated pole, K2ðm2
p; dUÞ, de-

fined as

K2ðs; dUÞ ¼ 1

dDð1Þ
U ðsÞ=ds : (17)

The fact that for mg > 2m the pole width is sharpening

for increasing values of dU (as shown by the right plot in
Fig. 2) is also shown in Fig. 4, in which we plot the spectral
function for values of the dimension dU ¼ 1:25 (left panel)
and dU ¼ 1:5 (right panel). In both cases we see a clear
resonant contribution that overwhelms the continuous one.
In this region and for values of s close to the value of m2

p,

the unparticle behaves as a resonance.

It can be easily calculated that the height of the peak is
independent of dU

5 and given by the simple expression

�max
U ’ 32

�2
U�ðm2

gÞ
: (18)

Therefore, as the width goes to zero we do not recover a
Dirac delta function at mp, and the resonance will be very

difficult to detect experimentally over the continuous back-
ground starting at mg.

Notice that for m2
g > 4m2 the resonant (‘‘on-shell’’)

production of unparticles would dominate the amplitude
’’ ! ’’, as it happens with an ordinary exchange of
particles in the s channel. Here the presence of unparticles
should be detected through a peak in the invariant mass
distribution of the final state, similar to the case of a new
particle resonance (e.g. the production of a Z0). For the case
m2

p < 4m2 the resonance is located below the production

threshold and the spectral function is dominated by the
continuous contribution, which does not provide any de-
cay. In that case there is no resonant production and the
production of the final state ’’ will be as if induced ‘‘off-
shell.’’ The presence of unparticles in the intermediate state
should be detected by the continuous enhancement of the
corresponding cross section. This situation is reminiscent
of the familiar case of exchange of graviton Kaluza-Klein
modes in Arkani-Hammed–Dimopoulos–Dvali theories of
extra dimensions, where the excess of the cross section is
used to put bounds on the value of the fundamental scale.
The formalism to be used for any realistic standard

model channel, e.g. A�A�, �c Lc R, or H
yH, is similar to

the one used in the toy model considered in this paper. In
every case, for the particular channel OU ! AB, if m2

p >

ðmA þmBÞ2 the unparticle should be detected in the cor-
responding cross section through a peak in the invariant
mass distribution of the final state, which should recon-
struct the resonant pole, much like the reconstruction of a
Z0 resonance. On the contrary, if m2

p < ðmA þmBÞ2 then
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FIG. 3 (color online). Left panel: Plot of �UðsÞ for mg ¼ m, dU ¼ 1:25, �U ¼ 5, and � ¼ �U ¼ 100m. Right panel: Plot of K2ðdUÞ
for the same values of mass parameters. All masses are in units of m.

4Notice that this imaginary part is only different from zero for
s > m2

g, and thus it contains a factor �ðs�m2
gÞ.

5This statement is true up to values of dU very close to 2, for
which the width of the resonance is zero and mp ¼ mg for all
practical purposes.
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the only indirect detection of the unparticle should be by an
excess of events with respect to the corresponding standard
model cross section.

In the standard model the only relevant (unsuppressed)
operator which can give rise to unparticle two-body decays
is �UjHj2OU, an interaction which has been thoroughly
analyzed in Refs. [4,17]. In that case the mixing in the
broken phase provided by the Lagrangian term �UvhOU

gives rise to a tree-level mixing between the Higgs and
unparticles which is Oð�2

Uv
2Þ. Since this mixing is of the

same order as the one-loop polarization, Oð�2
UÞ, it can be

resummed in the unparticle propagator along with �,
leading to [4]

D U½s; pðsÞ� ! DU½s; pðsÞ� þ �2
U

v2

s�m2
h þ i�

; (19)

where mh is the tree-level (unmixed) Higgs mass. The
analysis should follow similar lines to those presented in
this paper (after including the extra mixing term) by just
replacing m ! mh. We have checked that the qualitative
results found in this paper do not change after the inclusion
of the Higgs-unparticle mixing. Finally, for other channels
corresponding to standard model particles which do not
acquire any vacuum expectation values, the qualitative
results should be similar to those presented in this paper.

To summarize our results, we have studied unparticle
decays into SM particles, and showed that this possibility is
controlled by the relation between the unparticle mass gap
mg and the production threshold mA þmB (the latter are

the masses of the decay products). When mg >mA þmB

there is enough phase space, unparticles can decay into SM
particles, and that decay is accounted for by the appearance
of a complex pole on the unparticle one-loop resummed
propagator. If, in turn, mg < mA þmB there is still a pole

but with no imaginary part, corresponding to a stable
unparticle. Finally, it should be stressed that the pole is
always below mg, implying that a theory without a mass

gap and coupled to a SM channel shows an instability. This
can be interpreted as a signal that a mass gap should be
present once the unparticle is coupled to SM fields.
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for Unification’’ (MRTN-CT-2004-503369) and
‘‘UniverseNet’’ (MRTN-CT-2006-035863); by the
Spanish Consolider-Ingenio 2010 Programme CPAN
(CSD2007-00042); by a Comunidad de Madrid project
(P-ESP-00346); and by CICYT, Spain, under Contract
No. FPA 2007-60252 and No. FPA 2008-01430.

APPENDIX: NORMALIZATION OF THE
SPECTRAL FUNCTION

In this appendix we address the issue of the normaliza-
tion of the spectral function �UðsÞ. The integral of a
spectral function along the real axis is determined by the
normalization of the state being considered. For instance, if

we take the tree-level spectral function �ð0Þ
U , we would

write

Nð0Þ
U ¼

Z 1

0
�ð0Þ
U ðsÞds ¼ hUjUi; (A1)

where jUi represents the unparticle operator OU. This
integral turns out to be UV divergent which corresponds
to a non-normalizable state jUi. Strictly speaking, one
should cut off this integral at a scale of order �U, beyond
which the theory leaves the conformal regime. The nor-
malization integral scales as

Nð0Þ
U ð�UÞ ¼

Z �2
U

0
�ð0Þ
U ðsÞds� ð�2

UÞdU�1: (A2)

By using the Cauchy theorem (and the absence of complex
poles in the principal Riemann sheet) one can see that

Nð0Þ
U ð�UÞ is proportional to the integral of the propagator

PUðp2Þ along a circle of radius �2
U so that its scaling is

directly dependent on the UV behavior of such a
propagator.
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FIG. 4 (color online). Left (right) panel: Plot of �UðsÞ for dU ¼ 1:25 (dU ¼ 1:5), mg ¼ 4m, �U ¼ 5, and � ¼ �U ¼ 100m. All
masses are in units of m.
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After including one-loop polarization effects the shape
of the spectral function is affected, but it keeps the same
normalization as before. In fact, defining

NUð�UÞ ¼
Z �2

U

0
�UðsÞds; (A3)

one finds

NU

Nð0Þ
U

¼ 1þO
�
m2

g

�2
U

�
þO

�
�2
U

ð�2
UÞ2�dU

log�2
U

�
; (A4)

which tends to 1 for �2
U � m2

g, ð�2
UÞ1=ð2�dUÞ.

One can also show that

NUð�uÞ � Nð0Þ
U ð�UÞ ¼

Z �2
U

0
½�UðsÞ � �ð0Þ

U ðsÞ�ds
� ð�2

UÞ2dU�3; (A5)

which tends to 0 for dU < 3=2, a case in which the equality
of the normalizations holds also in this stronger sense.
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