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We show that in (anomalous) Uð1Þ gauge theories with the Fayet-Iliopoulos term and with generic

interactions, there are metastable vacua in which supersymmetry (SUSY) is spontaneously broken even

without Uð1ÞR symmetry. In this vacua, various hierarchical structures such as Yukawa hierarchy can be

explained by the smallness of the Fayet-Iliopoulos parameter. It is shown that, by adding just one

positively charged field to phenomenologically viable models, spontaneous SUSY breaking is realized.

Moreover, we propose a new scenario for the stabilization of the moduli in the SUSY breaking models. It

is a new feature that the moduli can be stabilized without the superpotential being dependent on them.
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I. INTRODUCTION

The minimal supersymmetric standard model (MSSM)
is one of the most promising candidates for a model beyond
the standard model (SM) [1–3]. It has several attractive
features. For example, the weak scale can be stabilized by
supersymmetry (SUSY), three gauge couplings meet at a
scale that strongly implies the supersymmetric grand uni-
fied theory (GUT) [4–6], and the lightest supersymmetric
particle (LSP) can be dark matter. However, there are a lot
of unsatisfactory features. One of them is that the number
of parameters is more than 100. If we introduce these
parameters generically, various flavor changing neutral
current (FCNC) processes and CP violating observables,
like electric dipole moments of the electron and the neu-
tron, become too large to be consistent with the experi-
mental bounds [7–10]. Moreover, it is not known why the
supersymmetric Higgs mass parameter � is of the same
order as the SUSY breaking scale [11]. Most of these
unsatisfied features are strongly related to SUSY breaking.
Therefore, it is important to understand the origin of SUSY
breaking in the MSSM in order to solve these problems.
Moreover, the LHC is expected to reveal some features of
SUSY breaking, so it is important to examine various
SUSY breaking mechanisms before the LHC gives the
results.

The (anomalous) Uð1ÞA gauge theories with the Fayet-
Iliopoulos (FI) term [12] are often used to explain the
hierarchical structures of Yukawa couplings [13–19].
This is quite reasonable because the hierarchical structures
can be explained under the assumption that all the inter-
actions which are allowed by the symmetry are introduced
with Oð1Þ coefficients. Moreover, it has been pointed out
that theUð1ÞA symmetry can play an important role even in

breaking the grand unified group [19–24]. This is also
natural because the serious fine-tuning problem called the
doublet-triplet splitting problem can be solved under the
same assumption in which the generic interactions are
introduced [19,25].
In the literature, it has been argued that (anomalous)

Uð1ÞA symmetry with the FI term can play an important
role even in breaking SUSY spontaneously [26]. In order to
break SUSY with generic interactions, the Uð1ÞR symme-
try must be imposed [27]. In other words, without Uð1ÞR
symmetry, SUSY vacua appear in general. However, the
above phenomenological models often have no Uð1ÞR
symmetry. Therefore, it is important to examine sponta-
neous SUSY breaking without Uð1ÞR symmetry. This may
be possible if we consider the metastable vacua [28–31].1

In this paper, we point out that even if generic interactions
are introduced in (anomalous)Uð1ÞA gauge theory with the
FI term and without Uð1ÞR symmetry, SUSY can be spon-
taneously broken in metastable vacua in which various
hierarchical parameters are determined by the smallness
of the FI parameter. If generic interactions are introduced
with Oð1Þ coefficients, almost all the scales can be deter-
mined by the symmetry of the theory [i.e., the Uð1ÞA
charges]. We calculate the various scales, including several
SUSY breaking scales in some examples. One of the most
interesting features of the metastable spontaneous SUSY
breaking proposed in this paper is that by adding just one
positively charged field to the phenomenologically viable
models mentioned in the previous paragraph, spontaneous
SUSY breaking is realized. This makes us expect more
complete models in which, in addition to the previous
advantages of the models with anomalous Uð1ÞA symme-
try, SUSY breaking is also controlled by the anomalous
Uð1ÞA gauge symmetry.
One of the most important problems in the phenome-

nology of the superstring theory is the moduli stabilization
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1In Ref. [31], metastable SUSY breaking with the FI term is
discussed, though in their model Uð1ÞR symmetry is imposed.
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problem [32], though there have been several attempts to
solve this problem in various scenarios in which SUSY is
dynamically broken by the strong dynamics of supersym-
metric QCD (SQCD) [33–39]. Especially in models with
anomalous Uð1ÞA symmetry, the gauge anomaly is can-
celed by the shift of the moduli, and in general, the FI
parameter is determined by the vacuum expectation value
(VEV) of the moduli [40–43]. Therefore, in the context of
the SUSY breaking models with anomalous Uð1ÞA sym-
metry, it is interesting and challenging to consider the
moduli stabilization simultaneously. We propose a possi-
bility to stabilize the moduli in the SUSY breaking sce-
nario. As a result, we can obtain a SUSY breaking scenario
in which SUSY is spontaneously broken and the moduli
can be stabilized without the superpotential being depen-
dent on the moduli. In the literature, the moduli-dependent
superpotential, which is induced by nonperturbative effects
or by the flux compactification [44], plays an essential role
in stabilizing the moduli. However, in the moduli stabili-
zation mechanism proposed in this paper, the superpoten-
tial does not include the moduli.2 This feature is quite
important because the moduli-dependent superpotential
generically spoils the SUSY zero mechanism [19,25,45]
which plays an important role in building realistic models.

The organization of this paper is as follows. In the
second section, we will compare two simple spontaneous
SUSY breaking models with anomalous Uð1ÞA symmetry.
Uð1ÞR symmetry is imposed in one model and not in the
other. The latter model has metastable SUSY breaking
vacua in which the hierarchical couplings such as Yu-
kawa couplings can be realized. In the third section, we ex-
tend the metastable SUSY breaking model without Uð1ÞR
symmetry to more general models. Applying these general
results to phenomenologically viable models, it is easily
understood that by adding one positively charged field to
the models, spontaneous SUSY breaking is realized. And
in the fourth section, we will consider the moduli stabili-
zation. Finally, we will give a summary and discussions.

II. SPONTANEOUS SUSY BREAKING WITH
ANOMALOUS Uð1ÞA SYMMETRY

In this section, we consider SUSY breaking models with
anomalousUð1ÞA gauge symmetry. And we show that there
are metastable SUSY breaking vacua in a simple model

with generic interactions without Uð1ÞR symmetry. In the
vacua, hierarchical couplings can be obtained.
Before we consider the SUSY breaking model without

Uð1ÞR symmetry, let us recall what happens with Uð1ÞR
symmetry [12]. For simplicity, we consider a model which
contains two fields S and �, where S has positive integer
Uð1ÞA charge s and � has negative Uð1ÞA charge � ¼ �1.
(In this paper, we use the lowercase letter as the charge for
the field denoted by the uppercase letter.) We assign R
charges for S and�, as shown in Table I. In this model, the
generic superpotential becomes

W ¼ S�s (1)

where the coefficients are neglected. (In this paper, we
usually neglect the coefficients in the interactions and
take the cutoff � ¼ 1.) The F-terms and the D-term in
this model,

F�
S ¼ �@W

@S
¼ ��s; F�

� ¼ � @W

@�
¼ �sS�s�1;

DA ¼ �gð�2 � j�j2 þ sjSj2Þ; (2)

where � is a FI parameter, cannot vanish simultaneously
because the F-flatness conditions result in the vanishing
VEVof � under which the D-flatness condition cannot be
satisfied. Therefore SUSY is spontaneously broken in this
model. The VEVs of these fields, and the F andD terms are
determined by the minimization of the potential

V ¼ jFSj2 þ jF�j2 þ 1
2D

2
A (3)

as

hSi ¼ 0; h�i ¼ �; (4)

hFSi � �s; hF�i ¼ 0; hDAi � s

g
�2s�2; (5)

when � � 1. Here, � � h�i=�� �=�, and without loss
of generality, we can take the VEVof� to be real because
of the Uð1ÞA symmetry. The typical SUSY breaking scale
�s� must be around the weak scale, which is obtained, for
example, when s� 24 for �� 0:22 and � ¼ 2�
1018 GeV.
What happens if we do not impose Uð1ÞR symmetry?

The quantum numbers are given as in Table II. Then, the
generic superpotential becomes

WðS�sÞ ¼ X
n¼1

anðS�sÞn: (6)

TABLE I. The quantum numbers of the superpotential W and
the fields S and �.

W S �

Uð1ÞA 0 s > 0 �1
Uð1ÞR 2 2 0

2Generically, the symmetry allows exponential-type interac-
tions of the moduli and inverse power-type interactions of the
introduced fields, which may be induced by the nonperturbative
effects of the strong dynamics or of the string. In this paper, we
consider the case in which such interactions are not induced or
are sufficiently small if they exist, because these interactions
spoil the SUSY zero mechanism which plays an important role
in solving various phenomenological problems. Such an assump-
tion may be reasonable in our setup because, in order to break
SUSY, we do not require any strong coupling gauge theory
which has a dynamical scale larger than the weak scale.
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Namely, any polynomial of x � S�s is allowed for the
superpotential WðxÞ. It is known that such a model has
SUSY vacua. Actually, among the F-terms and the D-term

F�
S ¼ �@W

@S
¼ �@W

@x
�s;

F�
� ¼ �@W

@�
¼ �@W

@x
s�s�1S;

DA ¼ �gð�2 � j�j2 þ sjSj2Þ;

(7)

the F-flatness conditions can be satisfied by taking the
VEV of S�s to be @W=@x ¼ 0, and D-flatness can be
satisfied by choosing the VEV of �. Generically, the
VEVs of S and � become Oð1Þ. However, it has not
been emphasized that this model has metastable SUSY
breaking vacuum at h�i � � and hSi � 0 if � � 1. Note
that such VEVs play an important role in solving various
phenomenological problems [13–25]. The reason for the
metastability is, roughly speaking, that in the region hSi,
h�i � 1, the superpotential becomes approximately W ¼
S�s, which is nothing but the superpotential in the sponta-
neous SUSY breaking model with Uð1ÞR symmetry.

In order to estimate the VEVs hSi ¼ Sre
i�s , h�i ¼ �,

hFSi, hF�i, and hDAi and see the metastability of this
vacuum, we must examine the potential

V ¼
��������@W

@x

��������2ð�2s þ s2S2r�
2ðs�1ÞÞ þ g2

2
ð�2 ��2 þ sS2rÞ2;

(8)

where @W
@x ¼ P

n¼1annðSrei�s�sÞn�1. Let us discuss the

vacuum which is slightly away from hSi ¼ 0 and h�i ¼
� � 1. Then, it is sufficient to examine the superpotential
up to the second order as W ¼ a1ðS�sÞ þ a2ðS�sÞ2 be-
cause of the smallness of the VEVs of S and �s. The
stationary conditions

@V

@�
¼ 0;

@V

@Sr
¼ 0;

@V

@�s

¼ 0 (9)

lead to

hDAi � sja1j2
g

�2s�2 � s

g
�2s�2; (10)

Sr �� �sþ2

2s2ja1j2
ða2a�1ei�s þ H:c:Þ � 1

s2
�sþ2; (11)

a�1a2ei�s � a1a
�
2e

�i�s ¼ 0: (12)

If we define �� ¼ �� �, Eq. (10) implies ���
� sja1j2

2g �2s�3. This is consistent with our assumption that

��=� � 1. Then, the VEVs of the auxiliary fields are

determined as �F�
S � a1�

s and�F�
� � �2sþ1A

sa�
1
, where A �

�a1a
�
2e

�i�s ¼ �a�1a2ei�s . Moreover, the stability condi-
tion requires a�1a2ei�s ¼ �ja1a2j.

One of the biggest differences between the above two
SUSY breaking models is the value of the VEV of the
positively charged field S. (It is obvious that the difference
in the VEVof F� is caused by the difference in the VEVof
S.) Therefore, we will briefly examine the reason for the
difference below. In the model with Uð1ÞR symmetry the
VEV of S is vanishing, while in the model without Uð1ÞR
symmetry, S has a nonvanishing VEV, though the VEV is
smaller than the typical SUSY breaking scale FS=�� �s.
Without Uð1ÞR symmetry, the superpotential includes
higher dimensional operators like S2�2s. This term leads
to a tadpole term hFSi�2sS after obtaining the nonvanishing
VEV of FS, which results in the nonvanishing VEV of S.
Namely, the VEV hSi is decided by the tadpole and the
mass term �s�1S� as

hSi � coefficient of tadpole

mass2
(13)

as seen in Fig. 1. It is obvious that the larger tadpole term
leads to lower potential energy. Therefore, the phase of the
VEV of S is determined so that the tadpole term Wj�2 þ
H:c: 3 SS�2sj�2 þ H:c:� SFS�

2s þ H:c: ¼ 2�3sS cos�s

becomes maximal, i.e., cos�s ¼ �1. (Here we take the
coefficients in the superpotential to be real for simplicity.)
The signature of cos�s is determined so that the absolute
value of @W=@x ¼ a1 þ a2Sre

i�s�s is minimal; i.e., the
sign becomes negative if a1 has the same sign as a2. (Here
we use the notation that S and � are positive.) Since the
mass term is given by j @W@� j2 3 �2s�2jSj2, the VEV hSi
becomes hSi � �sþ2 from Eq. (13). If �s� is the weak
scale and the cutoff � is much larger than the weak scale,
the VEV hSi would be much smaller than the cutoff � and
the VEV h�i. As a result, the values of these VEVs are
approximately satisfied with the expected VEV relations
that are important in solving phenomenological problems.

FIG. 1. This figure shows the potential of S. The VEV of S is
determined by the tadpole and the mass term of S. The solid line
shows the sum of the contributions from the tadpole and mass
terms.

TABLE II. The Uð1ÞA charges of the fields S and �.

S �

Uð1ÞA s > 0 �1
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We show the schematic form of the potential in this
model in Figs. 1 and 2. The potential of� rapidly increases
above � ¼ 1 because of jFSj2. Figure 3 shows the magni-
fication of the potential around the origin.

In the last part of this section, we estimate the lifetime of
the metastable vacuum by following the arguments in
Ref. [46], with the values s ¼ 24 for � ¼ 0:22. The life-
time of the metastable vacuum is approximately given by

� / eP; (14)

where P is dimensionless and can be given by

P ¼ ð ffiffiffiffiffiffi
Vh

p
�Þ4

�03
: (15)

� shows the distance from the supersymmetric vacuum to
the metastable vacuum. Vh shows the height of the barrier
wall between the metastable vacuum and SUSY vacua, and
�0 shows the potential height of the metastable vacuum.
The values for this model become��Oð�Þ, Vh �Oð�4Þ,
�0 �Oð�2s�4Þ �OðM2

SUSY�
2Þ, whereMSUSY is the SUSY

breaking scale. Therefore, we can estimate P as

P� �12

M6
SUSY�

6
� �6

M6
SUSY

: (16)

Then we obtain P� 1096. Therefore, the lifetime of the
metastable vacuum is much larger than the age of our
Universe.

III. GENERAL CASES

In this section, we will extend the SUSY breaking model
discussed in the previous section to more general ones. We
introduce nþ positively charged fields Siði ¼ 1; � � � ; nþÞ
and n� negatively charged fields Zjðj ¼ 1; � � � ; n� � 1Þ
and � as shown in Table III.
One of the nþ þ n� complex F-flatness conditions

becomes trivial because of Uð1ÞA gauge symmetry, but
we have the real D-flatness condition for Uð1ÞA. Then
the VEVs of nþ þ n� complex fields are generically fixed
by these conditions, except for one real field which corre-
sponds to the Nambu-Goldstone mode of Uð1ÞA symmetry
if all the conditions are independent. Therefore, if we
introduce the generic superpotential WðS; Z;�Þ, namely,
if the above conditions become independent, then, in gen-
eral, there are SUSY vacua at which all the VEVs of the
fields are of order 1 if all the coefficients are of order 1.
However, as discussed in Refs. [19,25], when nþ 	 n� �
1, other SUSY vacua appear at which all positively charged
fields Si have vanishing VEVs and the negatively charged
fields Zj and � have nonvanishing VEVs which are not

larger than Oð�Þ � 1. When all positively charged fields
have vanishing VEVs, the F-flatness conditions of nega-
tively charged fields are trivially satisfied because @W=@Zj

have positive charges. Therefore, the nþ F-flatness con-
ditions and the D-flatness condition of Uð1ÞA,

@W

@Si
¼ 0; DA ¼ g

�
�2 � j�j2 þX

j

zjjZjj2
�
¼ 0;

(17)

constrain the n� VEVs of negatively charged fields Zj and

�. If nþ 	 n� � 1, these conditions can be satisfied in
general, and therefore, there are SUSY vacua. Because of
the D-flatness conditions, the nonvanishing VEVs cannot
be larger than � � 1. (In this paper, we call such vacua
small vacua.) In particular, when nþ ¼ n� � 1, all the
VEVs are determined by their charges as

hSii ¼ 0; hZji � ��zj : (18)

Since the generic superpotential can be rewritten as

Wð~Si; ~ZjÞ, where ~Si ¼ Si�
si and ~Zj ¼ Zj�

zj , the

FIG. 2 (color online). This figure shows the potential of �.
Here, we take s ¼ 4 and � ¼ 0:2.

FIG. 3 (color online). This figure shows the magnification of
the potential in Fig. 2 around the origin.

TABLE III. The Uð1ÞA charges for the fields Si, Zj, and �.
Here i ¼ 1� nþ; j ¼ 1� ðn� � 1Þ.

Si Zj �
Uð1ÞA si > 0 zj <�1 �1
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F-flatness conditions of Si,

@W

@Si
¼ �si

@W

@~Si
; (19)

give solutions as h ~Zji ¼ Oð1Þ becauseWð~Si; ~ZjÞ haveOð1Þ
coefficients. The equations h ~Zji ¼ Oð1Þ mean that

hZji � ��zj .3 Usually, this is the case in most of the

phenomenologically viable models.
What happens if nþ > n� � 1? Since the number of

constraints is larger than the number of variables, there is
no solution, and therefore, small vacua cannot be in the
supersymmetric vacua, as discussed in Refs. [19,25].
However, as discussed in the previous section, small vacua
can be metastable. Let us figure out what happens if nþ ¼
n�. One of the F- or D-flatness conditions cannot be
satisfied. If the F-flatness condition of the largest charged
field Snþ is not satisfied and the other F- and D-flatness

conditions are almost satisfied, the vacuum energy be-
comes the lowest in the small vacua because Eq. (19) gives
jFSi j � �si . Therefore, the vacuum energy becomes V �
jFSnþj2 � �2snþ , which can be very small if the maximal

charge snþ 
 1. This feature may give an explanation of

the large hierarchy between the SUSY breaking scale and
the Planck scale. It is reasonable to expect that the potential
energy becomes larger than �2snþ between the small vacua
and the SUSY vacua at which all the VEVs are of order 1.
When the VEVs become larger than �, the D-flatness
condition requires the nonvanishing VEVs for positively
charged fields. Then all the F-terms, including those of
negatively charged fields, can contribute to the vacuum
energy, which generically becomes larger than �2snþ .
Note that if we add one positively charged field to the
phenomenologically viable model in which nþ ¼ n� � 1,
we can obtain the model in which SUSY is spontaneously
broken by the metastable vacua.

IV. MODULI STABILIZATION IN A MODELWITH
ANOMALOUS Uð1ÞA SYMMETRY

In the previous sections, we have assumed that the FI
parameter � is a constant. However, in the context of
supergravity or the superstring, the FI parameter is dy-
namically determined; i.e., � depends on the VEV of the
moduli (or dilaton)D [40–43]. Actually, sinceUð1ÞA gauge
symmetry is given by

VA ! VA þ i

2
ð���yÞ; (20)

D ! Dþ i

2
�GS�; (21)

where � is a gauge parameter chiral superfield. A dimen-
sionless parameter �GS, which is proportional to trQA, is
positive when trQA > 0. The Kähler potential KDðDþ
Dy � �GSVAÞ is invariant under Uð1ÞA gauge symmetry,
and the FI term can be given asZ

d4�KDðDþDy � �GSVAÞ ¼ �
�
�GSK

0
D

2

�
DA þ � � �

� �2DA þ � � � ; (22)

where we take the sign of the trace of the anomalousUð1ÞA
charge trQA so that �2 > 0. [Since trQA > 0 in most of the
phenomenologically viable models, the positivity of the FI
parameter requires K0

D < 0, which is consistent with the
stringy tree-level Kähler potential of the moduli, KD ¼
� lnðDþDy � �GSVAÞ.]
The stabilization of the moduli is one of the important

issues in string theory and/or in models with anomalous
Uð1ÞA gauge symmetry. In this section, we will examine a
new possibility for the moduli stabilization by using the
moduli-dependent potential through the FI parameter �,
which is obtained in the previous sections as

V � jFSj2 � �2s: (23)

First, we examine the stabilization by the deformation of
the Kähler potential of the moduli KD from KD ¼
� lnðDþDy � �GSVAÞ, which can be obtained by stringy
calculation at tree level. However, unfortunately we found
it impossible. The point is simple. It is shown that �2sðDÞ is
a monotonically decreasing function for D. Actually,

@�2s

@D
¼ ð�2sÞ0 ¼ sK00

DðK0
DÞs�1

�
��GS

2

�
s
< 0; (24)

where K00
D is positive because it becomes the coefficient of

the moduli kinetic term. This result shows that it is difficult
to stabilize the moduli by the deformation of KD.
Next, we will consider the deformation of the Kähler

potential of S from the canonical form. Since the scalar
potential of the moduli can be obtained as

V �
�
@2KS

@S@Sy

��1
��������@W@S

��������2�
�
@2KS

@S@Sy

��1
�2sðDÞ; (25)

the moduli can be stabilized, as shown in Fig. 4 if @2KS

@S@Sy

becomes much smaller than 1 at hDi ¼ D0.
In order to realize such a situation, let us take a more

generic Kähler potential of the S field as

KS ¼ SySfðDþDy � �GSVAÞ; (26)

where fðxÞ is a function of x. If the function fðxÞ is given
by

3Of course, even if nþ 	 n� � 1, it is possible that there are
no such vacua; i.e., under the assumption that all the positively
charged fields have vanishing VEVs, all the F- and D-flatness
conditions cannot be satisfied. For example, if one positive
charge s1 is smaller than all the magnitudes of the negative
charges zj, then the F-flatness condition of S1 and the D-flatness
condition cannot be satisfied simultaneously. Here, we do not
consider such extreme cases.
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fðxÞ ¼ cðx� x0Þ2 þ �; (27)

where c�Oð1Þ, 0< � � 1, then the function @2KS

@S@Sy be-

comes much smaller than 1 at x ¼ x0. The moduli potential
(25) can be rewritten by using the Kähler potential (26) as

V �
�
@2KS

@S@Sy

��1
��������@W@S

��������2

� �2sðxÞ
ðcðx� x0Þ2 þ �Þ

� 1

ðcðx� x0Þ2 þ �Þ
�
�GS

2x

�
s
; (28)

where the last equality is obtained from Eq. (22) and
KDðxÞ � � lnx. It is easily shown that, if the condition

� <
c

sðsþ 2Þ x
2
0 (29)

is satisfied, the moduli potential has a local minimum at
x ¼ x� and a local maximum at x ¼ xþ, as shown in
Fig. 4, where

x� �
�
sþ 1

sþ 2

�
x0f1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	

p g;

	 � sðsþ 2Þ
ðsþ 1Þ2

�
1þ �

cx20

�
:

(30)

Let us estimate the scales of FS ��ð @2KS

@S@SyÞ�1 @W
@S and

DA. At the metastable vacuum x ¼ x�,
@2KSðxÞ
@S@Sy can be

estimated as

@2KSðxÞ
@S@Sy

��������ðx¼x�Þ
¼ cx20

ðsþ 2Þ2
�
2� sðsþ 2Þ�

cx20

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sðsþ 2Þ�

cx20

s �
(31)

�
� 4
ðsþ2Þ2 cx

2
0 ð� � cx2

0

sðsþ2ÞÞ
1

ðsþ2Þ2 cx
2
0 ð�� cx2

0

sðsþ2ÞÞ:
(32)

Namely, @2KS

@S@Sy �
x20
s2
� 1 for s 
 1 and c� 1. Therefore,

FS � s2�s=x20. From the scalar potential

V � @2KS

@S@Sy
jFSj2 þ 1

2
D2

A; (33)

we obtain

DA � s3

x20
�2s�2: (34)

In the previous sections, we obtained DA � s�2s�2, which
is much larger than jFSj2 � �2s. In the scenario in which
the FI term is dynamically determined, the ratio DA=jFSj2
becomes smaller.
Let us examine the concrete values of the parameters. To

obtain FS �Oð100 GeVÞ, s� 28 is required for � ¼ 0:2,
� ¼ 1018 GeV, c ¼ 1, and x0 ¼ 1. Then, to satisfy the
condition Eq. (29), the parameter � must be smaller than
10�3. The ratio DA=jFSj2 becomes of order 1. This may be
important in applying this mechanism of SUSY breaking to
the realistic SUSY breaking models.
The lifetime of this metastable vacuum can easily be

longer than the age of the Universe. Let us estimate the
lifetime of the metastable vacuum by the successive sub-
stitution Vh ¼ VðxþÞ � Vðx�Þ, �0 ¼ Vðx�Þ, and � ¼
xþ � x� in Eqs. (14) and (15). If we take the parameters
s ¼ 28, c ¼ 1, � ¼ 10�3, and x0 ¼ 1, which satisfy the
condition (29), then P can be estimated as

P>
ð ffiffiffiffiffiffi

Vh

p
�Þ4

ð�0Þ3 � 1031: (35)

Therefore, the lifetime of the metastable vacuum becomes
much longer than the age of the Universe.
Note that we do not use extra SQCD dynamics to break

SUSY and/or stabilize the moduli. In this scenario, the
SUSY breaking scale, which is much smaller than the
Planck scale, is obtained by the smallness of the FI pa-
rameter and the large anomalous Uð1ÞA charge of the S
field. Therefore, this new scenario for spontaneous SUSY
breaking is economical. This is one of the most crucial
differences between this scenario and the previously pro-
posed scenarios [33–39].

V. DISCUSSION AND CONCLUSION

We proposed a new SUSY breaking scenario which can
be applied to most of the phenomenologically viable mod-
els with anomalous Uð1ÞA gauge symmetry. Even without
Uð1ÞR symmetry, which usually plays an essential role in
breaking SUSY spontaneously, SUSY can be broken spon-
taneously because the SUSY breaking vacua are meta-
stable. Moreover, we examined the moduli stabilization
in this scenario. And we found that stabilization is possible
by the deformation of the Kähler potential, though some
tuning of parameters is required. It is important that the
stabilization of the moduli can be realized without the

FIG. 4 (color online). The potential of the moduli.
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superpotential being dependent on the moduli, because
such a superpotential generically spoils the SUSY zero
mechanism which plays a critical role in obtaining phe-
nomenologically viable models.

One of the possible applications of this SUSY breaking
scenario is that SUSY is spontaneously broken in the
hidden sector by this scenario instead of the dynamical
SUSY breaking scenario. Another interesting and impor-
tant objective is to examine the possibility that this SUSY
breaking mechanism is applied in the visible sector and
that the realistic mass spectrum of superpartners of stan-
dard model particles is obtained at the same time; i.e., the
hidden sector is not needed. Unfortunately, there are sev-
eral obstacles. One of the most serious issues is that the
gravity-mediated gaugino masses become �2s�, which is
much smaller than the typical scalar fermion mass scale
FS=� ¼ �s�. This is because the S field has a nonvanish-
ing Uð1ÞA charge. Gauge mediation is an interesting pos-
sibility to avoid this obstacle, though there is the �
problem. Another obstacle is that comparatively large DA

can induce FCNC that are too large, though stabilizing the
moduli makes this issue milder. We think that this is an
interesting and challenging future subject.

Anomalous Uð1ÞA gauge symmetry plays an important
role in solving various problems in the SUSY GUT sce-
nario, such as the doublet-triplet splitting problem, the

proton stability problem [19,25], an unrealistic GUT rela-
tion for the Yukawa couplings [18,19], the � problem
[47,48], etc., and in realizing the natural gauge coupling
unification. It is quite impressive that these problems can
be realized with a reasonable assumption that all terms
which are allowed by the symmetry of the theory are
introduced with Oð1Þ coefficients, and therefore, all the
mass scales can be fixed by the symmetry of the theory. We
thought that we needed an additional sector inducing
SUSY breaking, which is called the ‘‘hidden sector,’’ in
any SUSY models with anomalous Uð1ÞA symmetry.
However, this may not be the case. By adding just one
positively charged field to a phenomenologically viable
model, spontaneous SUSY breaking is realized. Thus, we
expect more complete models in which, in addition to the
previous advantages of the models with anomalous Uð1ÞA
symmetry, SUSY breaking is also controlled by anomalous
Uð1ÞA gauge symmetry.

ACKNOWLEDGMENTS

S.-G. K., K. S., and N.M. are supported in part by
Grants-in-Aid for Scientific Research from the Ministry
of Education, Culture, Sports, Science and Technology of
Japan. This work is supported by the GCOE Program of
Nagoya University provided by JSPS.

[1] H. P. Nilles, Phys. Rep. 110, 1 (1984).
[2] H. E. Haber and G. L. Kane, Phys. Rep. 117, 75 (1985).
[3] S. P. Martin, arXiv:hep-ph/9709356.
[4] S. Dimopoulos, S. Raby, and F. Wilczek, Phys. Rev. D 24,

1681 (1981).
[5] S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150

(1981).
[6] N. Sakai, Z. Phys. C 11, 153 (1981).
[7] J. R. Ellis and D.V. Nanopoulos, Phys. Lett. 110B, 44

(1982).
[8] R. Barbieri and R. Gatto, Phys. Lett. 110B, 211 (1982).
[9] J. S. Hagelin, S. Kelley, and T. Tanaka, Nucl. Phys. B415,

293 (1994).
[10] F. Gabbiani, E. Gabrielli, A. Masiero, and L. Silvestrini,

Nucl. Phys. B477, 321 (1996).
[11] J. E. Kim and H. P. Nilles, Phys. Lett. 138B, 150 (1984).
[12] P. Fayet and J. Iliopoulos, Phys. Lett. 51B, 461 (1974); P.

Fayet, Nucl. Phys. B90, 104 (1975).
[13] C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B147, 277

(1979).
[14] L. E. Ibanez and G.G. Ross, Phys. Lett. B 332, 100 (1994).
[15] E. Dudas, S. Pokorski, and C.A. Savoy, Phys. Lett. B 356,

45 (1995).
[16] P. Binetruy and P. Ramond, Phys. Lett. B 350, 49 (1995);

P. Binetruy, S. Lavignac, and P. Ramond, Nucl. Phys.
B477, 353 (1996); P. Binetruy, S. Lavignac, S. Petcov,

and P. Ramond, Nucl. Phys. B496, 3 (1997).
[17] H. Dreiner, G.K. Leontaris, S. Lola, G.G. Ross, and C.

Scheich, Nucl. Phys. B436, 461 (1995).
[18] M. Bando and T. Kugo, Prog. Theor. Phys. 101, 1313

(1999); M. Bando, T. Kugo, and K. Yoshioka, Prog. Theor.
Phys. 104, 211 (2000).

[19] N. Maekawa, Prog. Theor. Phys. 106, 401 (2001); 107,
597 (2002); 112, 639 (2004); Phys. Lett. B 561, 273
(2003); M. Bando and N. Maekawa, Prog. Theor. Phys.
106, 1255 (2001).

[20] L. J. Hall and S. Raby, Phys. Rev. D 51, 6524 (1995).
[21] G. R. Dvali and S. Pokorski, Phys. Rev. Lett. 78, 807

(1997).
[22] Z. Berezhiani and Z. Tavartkiladze, Phys. Lett. B 396, 150

(1997).
[23] Q. Shafi and Z. Tavartkiladze, Phys. Lett. B 459, 563

(1999).
[24] J. L. Chkareuli, C. D. Froggatt, I. G. Gogoladze, and A. B.

Kobakhidze, Nucl. Phys. B594, 23 (2001).
[25] N. Maekawa and T. Yamashita, Prog. Theor. Phys. 107,

1201 (2002); 110, 93 (2003).
[26] G. Dvali and A. Pomarol, Phys. Rev. Lett. 77, 3728

(1996); P. Binetruy, and E. Dudas, Phys. Lett. B 389,
503 (1996).

[27] A. E. Nelson and N. Seiberg, Nucl. Phys. B416, 46 (1994).
[28] M. Dine, A. E. Nelson, Y. Nir, and Y. Shirman, Phys. Rev.

SPONTANEOUS SUPERSYMMETRY BREAKING WITH . . . PHYSICAL REVIEW D 79, 055009 (2009)

055009-7



D 53, 2658 (1996); M.A. Luty and J. Terning, Phys. Rev.
D 62, 075006 (2000); N. Maekawa, arXiv:hep-ph/
0004260; T. Banks, arXiv:hep-th/0007146.

[29] K. Intriligator, N. Seiberg, and D. Shih, J. High Energy
Phys. 04 (2006) 021.

[30] A. Amariti, L. Girardello, and A. Mariotti, J. High Energy
Phys. 12 (2006) 058; S. A. Abel and V.V. Khoze, arXiv:
hep-ph/0701069; S. Forste, Phys. Lett. B 642, 142 (2006);
M. Gomez-Reino and C.A. Scrucca, J. High Energy Phys.
08 (2007) 091; R. Essig, K. Sinha, and G. Torroba, J. High
Energy Phys. 09 (2007) 032; S. Abel, C. Durnford, J.
Jaeckel, and V.V. Khoze, Phys. Lett. B 661, 201 (2008);
H. Abe, T. Kobayashi, and Y. Omura, J. High Energy Phys.
11 (2007) 044; A. Giveon and D. Kutasov, Nucl. Phys.
B796, 25 (2008); A. Giveon, A. Katz, and Z.
Komargodski, J. High Energy Phys. 06 (2008) 003.

[31] K. R. Dienes and B. Thomas, Phys. Rev. D 78, 106011
(2008).

[32] M. Dine and N. Seiberg, Phys. Lett. 162B, 299 (1985).
[33] N. V. Krasnikov, Phys. Lett. B 193, 37 (1987).
[34] J. A. Casas, Z. Lalak, C. Munoz, and G.G. Ross, Nucl.

Phys. B347, 243 (1990).
[35] B. de Carlos, J. A. Casas, and C. Munoz, Nucl. Phys.

B399, 623 (1993).
[36] T. Banks and M. Dine, Phys. Rev. D 53, 5790 (1996).

[37] P. Binetruy, M.K. Gaillard, and Y.Y. Wu, Nucl. Phys.
B481, 109 (1996); B493, 27 (1997); Phys. Lett. B 412, 288
(1997).

[38] J. A. Casas, Phys. Lett. B 384, 103 (1996).
[39] N. Arkani-Hamed, M. Dine, and S. P. Martin, Phys. Lett. B

431, 329 (1998).
[40] E. Witten, Phys. Lett. 105B, 267 (1981).
[41] M. Dine, N. Seiberg, and E. Witten, Nucl. Phys. B289, 589

(1987).
[42] J. J. Atick, L. J. Dixon, and A. Sen, Nucl. Phys. B292, 109

(1987).
[43] M. Dine, I. Ichinose, and N. Seiberg, Nucl. Phys. B293,

253 (1987).
[44] S. B. Giddings, S. Kachru, and J. Polchinski, Phys. Rev. D

66, 106006 (2002); S. Kachru, R. Kallosh, A. Linde, and
S. P. Trivedi, Phys. Rev. D 68, 046005 (2003).

[45] Y. Nir and N. Seiberg, Phys. Lett. B 309, 337 (1993).
[46] S. Coleman, Phys. Rev. D 15, 2929 (1977); 16, 1248(E)

(1977); S. Coleman and F. DeLuccia, Phys. Rev. D 21,
3305 (1980); A. Linde, Phys. Lett. 100B, 37 (1981); M. J.
Duncan and Lars Gerhard Jensen, Phys. Lett. B 291, 109
(1992).

[47] R. Hempfling, Phys. Lett. B 329, 222 (1994).
[48] N. Maekawa, Phys. Lett. B 521, 42 (2001).

S.-G. KIM, N. MAEKAWA, H. NISHINO, AND K. SAKURAI PHYSICAL REVIEW D 79, 055009 (2009)

055009-8


